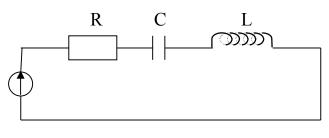
جامعة محمد خيضر كلية العلوم الدقيقة و علوم الطبيعة و الحياة قــسم علوم الــــمادة


العمل التطبيقي رقم 3: تجاوب الجهد لدارة RLC مربوطة على التسلسل

1- المقدمة:

الهدف من هذه التجربة يتمثل في دراسة الرد الترددي لدارة RLC مربوطة على التسلسل لما يتغير تردد شارة المدخل.

الدراسة النظرية:

لتكن الدارة RLC المربوطة على التسلسل (الشكل 1)، حيث نطبق على المخرج جهد جيبي ذو تردد f .

الشكل -1-

بتطبيق نظرية أوم نحصل على:

$$V_e = I \left(R + j \left(Lw - \frac{1}{Cw} \right) \right) \dots 1$$

 $w=w_0$ على رنين الدارة لما يكون فرق طور بين الجهد V_e و التيار V_e معدوم و ذلك من أجل $w=w_0$.

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
 أو $Lw_0 - \frac{1}{Cw_0} = 0 \Rightarrow w_0^2 = \frac{1}{LC}$ إذن الجزء التخيلي للمعادلة (1) يساوي الصفر

هي رنين التجاوب: f_0

$$tg\phi = \frac{Lw - \frac{1}{Cw}}{R}$$
 فرق الطور ϕ يحسب من العلاقة

$$V_e=IR \Rightarrow I=rac{V_e}{R}=I_{
m max}$$
 ** $V_r=RI=V_{r_{
m max}}$ إذن في حالة التجاوب

$$V_L = Lw_0 I = Lw_0 rac{V_e}{R}$$
 : الجهد على طرفي الو شيعة

$$V_c = \frac{1}{Cw_0}I = \frac{V_e}{RCw_0}$$
 الجهد على طرفي المكثفة :
$$\Rightarrow \frac{V_L}{V_e} = \frac{V_c}{V_e} = \frac{w_0L}{R} = \frac{1}{RCw_0}$$

النسبة
$$Q$$
 تسمى بمعامل النوعية و تسمى تسمى الدارة الرنانة $\frac{V_L}{V_e} = \frac{V_c}{V_e}$

$$Q = \frac{V_L}{V_e} = \frac{V_c}{V_e}$$
: إذن

* معامل النوعية Q يحدد شدة الجهد التي تظهر على طرفي L و C في حالة الرنين معاوقة في حالة التجاوب هي :

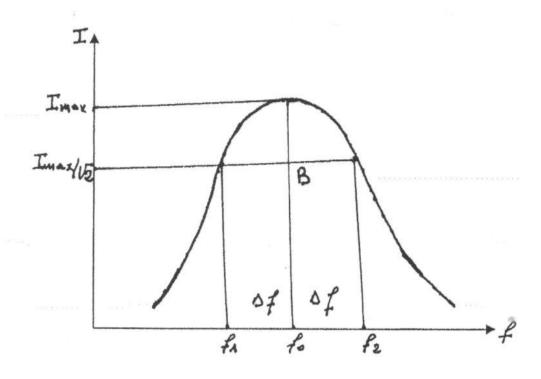
$$Z = R \left(1 + j \left(\frac{wL}{R} - \frac{1}{RCw} \right) \right)$$

$$Q = \frac{w_0 L}{R} = \frac{1}{RCw_0}$$
: خيث أن

$$Z = R \left(1 + jQ \left(\frac{w}{w_0} - \frac{w_0}{w} \right) \right)$$

$$\frac{w}{w_0} - \frac{w_0}{w} = \frac{w^2 - w_0^2}{ww_0} = \frac{\left(w + w_0\right)\left(w - w_0\right)}{ww_0}$$

$$ww_0 \square w_0^2; w + w_0 = 2w_0$$
بمجاورة (بقرب) الرنين


 $ww_0 \square w_0^2; w + w_0 = 2w_0$

$$Z \square R \left(1 + jQ2 \left(\frac{w - w_0}{w_0} \right) \right)$$
 : إذن

$$|Z| = R\sqrt{1 + Q^2 \frac{4\Box w^2}{w_0^2}}$$
 : $Z = R\sqrt{1 + Q^2 \frac{4\Box w^2}{w_0^2}}$

$$\square w = w - w_0$$

يعطى منحنى التيار I بدلالة التردد للدارة السابقة في الشكل (2) بصفة عامة ' نعرف عصابة مرور "B" (V_c) يالتر ددات التي من أجلها تكون التيار (أو الجهد بين طرفي المقاومة R) مع التيار ألأعظمي لدارة $\frac{1}{\sqrt{2}}$ يساوي إلى $\frac{1}{\sqrt{2}}$

الشكل -2-

$$\frac{I}{I_{\text{max}}} = \frac{1}{\sqrt{2}} / / \frac{V_r}{V_{r_{\text{max}}}} = \frac{1}{\sqrt{2}}$$

$$\frac{I}{I_{\text{max}}} = \frac{V_e / |Z|}{V_e / R} = \frac{R}{|Z|} = \frac{1}{\sqrt{1 + Q^2}} = \frac{1}{\sqrt{2}}$$

-2- ومنه
$$B=2\square f$$
 و بما أن $Q=\frac{w_0}{2\square w}=\frac{f_0}{2\ |f|}$ ومنه $Q=\frac{f_0}{B}$. إذن

III- الدراسة العملية:

باستعمال الدارة (الشكل -3-) عين:

أ)- تردد الْرنين f_0 للدارة

Q'' ب)- معامل النوعية

"B" عصابة مرور f_1, f_2 عصابة مرور ددات القطع f_1, f_2

 $Q = \frac{f_0}{R}$ أ بالحساب أن -(ه

IV- التجربة العملية:

 $C = 0.1 \mu F$ و L = 9mH و $R = 200 \Omega$ -1-، الشكل ا

. ثبت V_{e} جهد المدخل إلى 2 فولط من أقصى الذروة إلى أقصى الذروة .

3- عين بواسطة راسم الإهتزاز المهبطي تردد الرنين للدارة ، طويلة الجهد بين طرفي المقاومة $(V_r)R$ بالنسبة V_r المخرج و فرق الطور بين جهد المدخل و جهد المخرج المخرج المخرج الم

ضع القيم الموجودة في الجدول -1-

 $f_{10}=10f_{0}$ و ذلك بأخذ أول قيمة يساوي إلى $f_{1}=f_{0}/10$ و ذلك بأخذ أول قيمة يساوي إلى $f_{1}=f_{0}/10$ ثم دونها في الجدول -1- حسب تغير الترددات .

f((Hz)	$f_0 / 10$	$f_0/8$	$f_0/6$	$f_0/4$	$f_0/2$	f_0	$2f_0$	$4f_0$	$6f_0$	$6f_0$	$10f_0$
V_r	(V)											
φ,	r (°)											

الجدول -1-

$$\varphi_r\left(^{\circ}\right) = \frac{t}{T}.360^{\circ}$$
 مع العلم أن

$$\varphi_r = h(f)$$
 و $V_r = g(f)$ ارسم منحنیات -5

g(f) استنتج من منحنی -6

أ)- عصابة مرور "B" f_1, f_2 ترددات القطع بـ(بُ

Q'' معامل النوعية "Q''

7- قارن بين النتائج المتحصل عليها في السؤال -6- و النتائج الموجودة في الدراسة العملية . 8- ناقش المنحنيات، ماذا تستنتج ؟