Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématiques

Module: Intro. Proc. aléatoire 2019/2020

Niveau: 1er année Master

Série Nº3

Exercice 01.

Soit $\{X(t), t \ge 0\}$ un processus a accroissements indépendants a espace de valeurs E discret. Montrer que $\{X(t), t \ge 0\}$ est un processus de Markov.

Exercice 02.

Supposons q'un point fait une promenade aléatoire sur la droite et qu'il ne peut s'arrêter qu'aux points de coordonnés 1,2,3,... m.

En plus on suppose que de l'état i ne peut se déplacer qu'a l'état i+1 ou a l'état i-1 avec les probabilités

$$p_{i,i+1} = P(X_{k+1} = i+1 | X_k = i) = p,$$

 $p_{i,i-1} = P(X_{k+1} = i-1 | X_k = i) = q = 1-p.$

si $i \neq 1$ et $i \neq m$.

Pour i = 1 ou i = m on a les états absorbants

$$p_{1,1} = P(X_{k+1} = 1 \mid X_k = 1) = 1,$$

 $p_{m,m} = P(X_{k+1} = m \mid X_k = m) = 1.$

Dans ce cas déterminer l'espace des état ansi que la matrice de transition de cette chaîne de Markov.

Exercice 03.

1) Soit $p_{ij}^{(k)}$ la probabilité de transition d'un système de l'état i a l'état j pour k pas. Dans ce cas nous pouvons écrire

$$\pi_j^{(k)} = \sum_{i=1}^m P(X_k = j \mid X_0 = i) P(X_0 = i),$$

$$= \sum_{i=1}^m p_{ij}^{(k)} \pi_i = \sum_{i=1}^m \pi_i p_{ij}^{(k)}.$$

Montrer que

$$\mathbf{P}^{(k)} = \left\| p_{ij}^{(k)} \right\|,$$
$$= \mathbf{P}^k$$

2) La loi de répartition d'un processus de Markov discret homogène $\{X(t), t \in \mathbb{N}\}$ est déterminée par le vecteur π des probabilités initiales et par la matrice stochastique \mathbf{P} .

Est-ce-que ce processus est déterminée par π et $\mathbf{P}^{(2)}$.

Exercice 04.

Soit $\{X(t), t \in \mathbb{N}\}$ une chaîne homogène de Markov a 2 états, dont la matrice stochastique est

$$\mathbf{P} = \left\| \begin{array}{cc} p_{11} & p_{12} \\ p_{21} & p_{22} \end{array} \right\| = \left\| \begin{array}{cc} 1 - a & a \\ b & 1 - b \end{array} \right\|.$$

 $0 \le a \le 1$ et $0 \le b \le 1$.

1) Montrer que si $0 \le a + b < 2$, alors

$$\mathbf{P}^{n} = \frac{1}{a+b} \left\{ \left\| \begin{array}{cc} b & a \\ b & a \end{array} \right\| + \left(1-a-b\right)^{n} \left\| \begin{array}{cc} a & -a \\ -b & b \end{array} \right\| \right\}.$$

2) Trouver

$$\lim_{n\to\infty}\mathbf{P}^n$$
.

3) Supposons que le vecteur des probabilités initiales

$$\pi = (\pi_1, \pi_2)^T = (0.7, 0.3)^T,$$

et que la matrice stochastique

$$\mathbf{P} = \left| \begin{array}{cc} 0.2 & 0.8 \\ 0.3 & 0.7 \end{array} \right|$$

Trouver $P(X_0 = 1, X_1 = 2, X_2 = 1)$ et $\lim_{n \to \infty} \mathbf{P}^n$.

Exercice 05.

La durée de vie d'un produit a une fonction de répartition $F(t) = 1 - e^{-\alpha t}$, $t \ge 0$. La durée de répartition a une fonction de répartition $G(t) = 1 - e^{-\beta t}$, $t \ge 0$.

Notons 0 l'état de fonctionnement, 1 l'état de réparation. Au moment t=0 le produit est dans l'état 0. Soit X(t), $t \ge 0$, l'état du produit au moment t.

- 1) Ecrire les équations directes de Kolmogorov.
- 2) Trouver les probabilités

$$p_i = P(X(t) = i) \text{ pour } i = 0, 1.$$

3) Montrer que

$$\lim_{t \to +\infty} p_0(t) = \frac{\alpha}{\alpha + \beta},$$
$$\lim_{t \to +\infty} p_1(t) = \frac{\alpha}{\alpha + \beta}.$$

Exercice 06.

Soit $\{X(t), t \ge 0\}$ un processus de naissance, c'est un processus de Markov avec l'espace d'états $E = \{0, 1, 2, ...\}$, tel que X(0) = 0 et les intensités $\lambda_{kj} = 0$ (j < k ou j > k + 1).

- 1) Ecrire les équations de Kolmogorov.
- 2) Trouver la relation de recurrence entre $p_n(t) = P(X(t) = n)$ et $p_{n-1}(t)$.

Exercice 07.

Soit $\{X(t), t \in \mathbb{N}\}$ une chaine homogène de Markov dont la matrice stoshastique et le vecteur de probabilités initiales

$$\mathbf{P} = \left\| \begin{array}{ccc} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{array} \right\|, \text{ et } \pi = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right).$$

2

Notons $A\left(t\right)=\{X\left(t\right)=1\},\,t\in N.$ Trouver P(A) , où $A=\underset{t\geq 1}{\cap}A\left(t\right).$