République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ MOHAMED KHIDER, BISKRA

FACULTÉ des SCIENCES EXACTES et des SCIENCES de la NATURE et de la VIE ${\bf D\acute{E}PARTEMENT~DE~Biologie}$

$Correction \ TD \ 01:$

 $\begin{array}{c} \operatorname{Par} \\ \mathbf{Dr}: \mathbf{CHALA} \ \mathbf{ADEL} \end{array}$

BioStatistiques

Je dédie ce travail.....

A mes parents ils m'ont tous, avec leurs moyens, soutenu et donné la force d'aller toujours plus loin.

Table des matières

Ta	able des Matière	iii
1	Questions	1
2	Réponse:	3

Dr: CHALA Adel Biostatistique-TD01

Chapitre 1

Questions

TD N:01 Introduction à la statistique déscriptive

Exercice 01:

Un quartier est composé de 50 ménages, et on calcul chaque fois le nombre de personnes par ménage. Les valeurs de la variable sont

1	1	1	1	1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	5
5	5	5	5	5	6	6	6	8	8										

1. Déterminez :

- a). L'échantillon étudiée. b). La variable (caractère) étudiée. c). La nature de la variable (caractère). d). Les modalités de la variable (caractère).
- 2. Construisez le tableau statistique associé à la distribution des effectifs, (Calculez les effectifs : Cumulés croissants , Cumulés décroissants. Fréquences cumulées croissantes ; Fréquences Cumulées décroissantes).
 - 3. Représentez la distribution des effectifs par un diagramme en bâtons.

Exercice 02:

Le tableau ci-dessous donne la répartition des prix des baguettes selon le nombres des ventes pour un boulangerie de la ville de Biskra dans un jour.

Prix (Dinars)	7,0	7,5	8,5	9,0	10,0	12,5	15,5
Effectif	4	14	26	11	7	12	6

I) 1/ a) Calculer l'effectif total pour cette échantillon, en précisera tout d'abord l'échantillon.

- b) La variable étudiée. c) La nature de la variable. d) Les modalités de la variable.
- 2/ Reproduire et compléter le tableau avec colonne des effectifs cumulés croissante (décroissantes), et colonne des fréquences cumulées croissantes (décroissantes).
 - 3/ Calculer l'arrondi au Dinar du prix moyen d'une baguette.
 - 4/ Déterminer le prix médian d'une baguette.
 - 5/ Déterminer les premier et troisième quartiles de cette série.
 - 6/ Calculer l'étendue de la série. 7/ Calculer la variance ainsi que l'écart-type.
 - II) 1/ Représentez la distribution des effectifs par un diagramme en bâtons.
- 2/ Représentez la distribution par la courbe de fonction de répartition pour l'effectifs cumulés croissantes
 - 3/ Représentez la médiane ainsi les quartiles dans la courbe précédente...

Exercice 03:

On a procédé au recensement des 40 salariés de la société STM en relevant les salaires horaires

perçus:

```
34 / 36 / 45 / 62 / 37 / 43 / 42 / 66 / 31 / 51 / 31 / 61 / 63 / 47 / 67 / 52 / 43 / 45 / 56 / 41 / 60 / 36 / 48 / 49 / 65 / 35 / 42 / / 43 / 42 / 51 / 55 / 61 / 57 / 46 / 47 / 47 / 54 / 61 / 66 / 33.
```

- 1/ En appliquant la méthode de Yule, calculer le nombre des classes qui nécessite pour faire les classifications en série statistiques continue.
 - 2/ Calculer l'amplitude pour chaque classe.
- 3/ Déterminer les paramètres des positions centrales.(Analytiquement et puis graphiquement).
 - 4/ Déterminer les paramètres de dispersions.
 - 5/ Quelle est votre Conclusion?.

Dr: CHALA Adel Biostatistique-TD01

Chapitre 2

Réponse:

Exercice 01:

1/a) Echantillon étudié : 50 menages.

b) La variable : Le nombre d'enfants par ménages.

c) Sa nature: quantitative.

d) Les modalités : $\{1, 2, 3, 4, 5, 6, 8\}$, avec k = 7.

2/

Caractère	Eff	Fréquance	ECC00	ECD50	FCC00	FCD01
1	5	0,1	5	45	0,1	0,9
2	9	0,18	14	36	0,28	0,72
3	15	0,3	29	21	0,58	0,42
4	10	0,2	39	11	0,78	0,22
5	6	0,12	45	5	0,90	0,1
6	3	0,06	48	2	0,96	0,04
8	2	0,04	50	0	1	0
Total	50	1	***	***	***	***

Remarque : Pour les valeurs des ECC, ECD,FCC, et FCD vous posez les valeurs dans la ligne!!!.

Exercice 02:

I/1/a) Effectif total c'est:

$$4 + 14 + 26 + 11 + 7 + 12 + 6 = 80.$$

Echantillon c'est: 80 baguettes.

b) La variable: Prix des baguettes.

- c) Sa nature : quantitatif discrèt, car elle ne peut prendre que des valeurs isolés.
 - d) Les modalités : $\{7, 7.5, 8.5, 9, 10, 12.5, 15.5\}$, avec k = 7.

Ramarque: Il faut prendre 03 chiffres dicimales, et on calcul le dernier colonne

$$f_i x_i^2 = (f_i x_i) \times x_i.$$

2/ Tableau

Caractère	Eff	Fréquance	ECC00	FCC00	$f_i x_i$	$f_i x_i^2$
7	4	0,05	4	0,05	0,350	2,45
7.5	14	0,175	18	0,225	1,312	9,84
8.5	26	0,325	44	0,550	2,762	23,477
9	11	0,137	55	0,687	1,233	11,097
10	7	0,087	62	0,775	0,870	8,700
12.5	12	0,150	74	0,924	1,875	23,437
15.5	6	0,075	80	1	1,162	18,011
Total	80	1	***	***	9,564	97,012

3/ La moyenne

$$\overline{X}_7 = \sum_{i=1}^7 f_i x_i = 9,564.$$

4/ La médiane : où se trouve 50% de la série stat (ou bien où se trouve $\frac{n}{2}$ de l'echantillon), alors $Me = F^{-1}(0,5) = N^{-1}(\frac{n}{2})$

$$\begin{cases} Me = F^{-1}(0,5) = 8, 5, \text{ car } 0,5 \in [0,225-0,550] \text{ dans colonne de FCC.} \\ Me = N^{-1}\left(\frac{n}{2}\right) = N^{-1}\left(\frac{80}{2}\right) = N^{-1}\left(40\right) = 8, 5, \text{ car } 40 \in [18-44] \text{ dans colonne de ECC.} \end{cases}$$

5/ Les quartiles.

Pour Q_1 : où se trouve les premiers 25% de la série stat (ou bien où se trouve $\frac{n}{4}$ de l'echantillon), alors $Q_1 = F^{-1}(0, 25) = N^{-1}(\frac{n}{4})$

$$\begin{cases} Q_1 = F^{-1}(0, 25) = 8, 5, \text{ car } 0,25 \in [0, 225 - 0, 550] \text{ dans colonne de FCC.} \\ Q_1 = N^{-1}\left(\frac{n}{4}\right) = N^{-1}\left(\frac{80}{4}\right) = N^{-1}\left(20\right) = 8, 5, \text{ car } 20 \in [18 - 44] \text{ dans colonne de ECC.} \end{cases}$$

Pour Q_3 : où se trouve les premiers 75% de la série stat (ou bien où se trouve $\frac{3n}{4}$ de l'echantillon), alors $Q_3 = F^{-1}(0,75) = N^{-1}\left(\frac{3n}{4}\right)$

$$\begin{cases} Q_3 = F^{-1}(0,75) = 10, \text{ car } 0,75 \in [0,687 - 0,775] \text{ dans colonne de FCC.} \\ Q_3 = N^{-1}\left(\frac{3n}{4}\right) = N^{-1}\left(\frac{3\times80}{4}\right) = N^{-1}\left(60\right) = 10, \text{ car } 60 \in [55 - 62] \text{ dans colonne de ECC.} \end{cases}$$

6/ Etendu:

$$E = X_{\text{max}} - X_{\text{min}} = 15, 5 - 7 = 8, 5.$$

7/ La variance:

$$Var(X) = \sum_{i=1}^{7} f_i x_i^2 - \left(\sum_{i=1}^{7} f_i x_i\right)^2$$
$$= 97,012 - (9,564)^2 = 5,541.$$

Ecart-type

$$\sigma = \sqrt{Var(X)} = \sqrt{5,541} = 2,354.$$

Exercice 02:

1/ Méthode de Yule :

Nombre des classes =
$$1 + 3, 3Log_{10}(n)$$

= $1 + 3, 3Log(40) = 6, 28 \approx 6$.

Méthode de Sturge :

Nombre des classes =
$$2,5\sqrt[4]{n} = 2,5\sqrt[4]{40}$$

= $6,28 \approx 6$.

2/ Amplitude:

$$L = \frac{X_{\text{max}} - X_{\text{min}}}{Nombre} = \frac{67 - 31}{6} = 6.$$

3/ Tableau

Classes	Centres	Eff	Freq	ECC00	FCC00	$f_i c_i$	$f_i c_i^2$
[31 - 37[34	7	0,175	7	0,175	5,950	202,3
[37 - 43[40	5	0,125	12	0,30	5	200
[43 - 49[46	10	0,250	22	0,55	11,5	529
[49 - 55[52	5	0,125	27	0,675	6,5	338
[55 - 61[58	4	0,100	31	0,775	5,8	336,4
[61 - 67]	64	9	0,225	40	1	14,4	921,6
Total	***	40	1	***	***	49,150	2527,300

Paramètres des positions centrales:

*Mode : c'est la valeur la plus fréquente.

La plus fréquente c'est 10, alors Mo
∈ [43 – 49[, donc a=43, b=49, $\Delta I=10-5=5,\,\Delta S=10-5$

$$Mo = a + (b - a) \frac{\Delta I}{\Delta I + \Delta S}$$
$$= 43 + (49 - 43) \frac{5}{5 + 5} = 46 \in [43 - 49].$$

*Médiane : c'est la valeur qui partage la population en deux parties d'effectifs egaux.

Alors

$$\frac{n}{2} = \frac{40}{2} = 20 \in [12 - 22[$$
 alors il vient que $Me \in [43 - 49[$.

Alors

$$Me = a + (b - a) \frac{\frac{n}{2} - N_a}{N_b - N_a}$$
$$= 43 + (49 - 43) \frac{20 - 12}{22 - 12} = 43 + 6 \frac{8}{10} = 47,800.$$

ou bien

$$50\% = 0, 5 \in [0, 30 - 0, 55[$$
 alors il vient que $Me \in [43 - 49[$.

Alors

$$Me = a + (b - a) \frac{0.5 - F_a}{F_b - F_a}$$

$$= 43 + (49 - 43) \frac{0.5 - 0.300}{0.550 - 0.300} = 43 + 6 \frac{0.200}{0.250} = 47,800.$$

*Les quartiles : c'est les valeurs qui partagent la population en quatre parties d'effectifs egaux

Pour Q_1 : où se trouve le premier $\frac{n}{4}$, alors

$$\frac{n}{4} = \frac{40}{4} = 10 \in [7 - 12[$$
 alors il vient que $Q_1 \in [37 - 43[$.

Alors

$$Q_1 = a + (b - a) \frac{\frac{n}{4} - N_a}{N_b - N_a}$$
$$= 37 + (43 - 37) \frac{10 - 07}{12 - 07} = 43 + 6\frac{3}{5} = 40,600.$$

ou bien, où se trouve le premier 25\%, alors

$$25\% = 0, 25 \in [0, 175 - 0, 300[$$
 alors il vient que $Q_1 \in [37 - 43[$.

Alors

$$Q_1 = a + (b - a) \frac{0.25 - F_a}{F_b - F_a}$$

$$= 37 + (43 - 37) \frac{0.25 - 0.175}{0.300 - 0.175} = 37 + 6 \frac{0.075}{0.125} = 40,600.$$

Pour Q_3 : où se trouve le premier $\frac{3n}{4}$, alors

$$\frac{3n}{4} = \frac{3 \times 40}{4} = 30 \in [27 - 31[$$
 alors il vient que $Q_3 \in [55 - 61[$.

Alors

$$Q_3 = a + (b - a) \frac{\frac{3n}{4} - N_a}{N_b - N_a}$$
$$= 55 + (61 - 55) \frac{30 - 27}{31 - 27} = 55 + 6\frac{3}{4} = 59,500.$$

ou bien, où se trouve le premier 75\%, alors

$$75\% = 0, 75 \in [0, 675 - 0, 755[\text{ alors il vient que } Q_3 \in [55 - 61[\, . \,$$

Alors

$$Q_3 = a + (b - a) \frac{0.75 - F_a}{F_b - F_a}$$

$$= 55 + (61 - 55) \frac{0.75 - 0.675}{0.755 - 0.675} = 55 + 6 \frac{0.075}{0.08} = 59,500.$$

*La moyenne:

$$\overline{X}_6 = \sum_{i=1}^6 f_i c_i = 49,150.$$

4/ Déterminer les paramètres de dispersions.

* Etendu:

$$E = X_{\text{max}} - X_{\text{min}} = 67 - 31 = 36.$$

*Ecart-interquartiles:

$$I_Q = Q_3 - Q_1 = 59,500 - 40,600 = 18,9.$$

*La variance:

$$Vaar(X) = \sum_{i=1}^{6} f_i c_i^2 - \left(\sum_{i=1}^{6} f_i c_i\right)^2$$
$$= 2527,300 - (49,150)^2$$
$$= 111,577.$$

*Ecart-type:

$$\sigma = \sqrt{Var(X)} = \sqrt{111,577} = 10,563.$$

5/ Conclusion:

*Coefficient de Pearson (pour savoir la forme de la distribution).

$$\delta = \frac{\overline{X}_6 - Me}{\sigma} = \frac{49,150 - 47,800}{10,563} = 0,127 > 0.$$

Alors la serie est étalé à droite.

*Coefficient de variation (pour savoir l'homogéniété)

$$CV = \frac{\sigma}{\overline{X}_6} \times 100 = \frac{10,563}{49,150} \times 100 = 21,491\%.$$

Alors le taux d'homogéniété c'est 21,491% (plus homogène : lorsque CV $\!\leq\!$ 15%).