Chapitre 8

Correction des systèmes asservis

8.1 Généralités

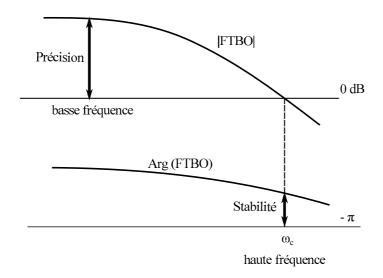
8.1.1 Rappel

On a vu dans les chapitres précédents, sur l'analyse des systèmes asservis, pour satisfaire aux spécifications de stabilité et de précision, on est amené à formuler des conditions sur la fonction de transfert en boucle ouverte (FTBO).

- Stabilité : le degré de stabilité est défini par :
- La marge de gain : la stabilité est d'autant meilleure que le gain de la FTBO est plus petit, donc que la bande passante (en BO) est plus faible.
- La marge de phase : la stabilité est d'autant meilleure que le déphasage de la FTBO est plus faible.
- Précision : Elle consiste en deux points.
- Précision statique : l'annulation de l'erreur en régime permanent nécessite la présence, dans la FTBO, d'une ou plusieurs intégrateurs, selon l'entrée canonique imposée.
- Précision dynamique elle est d'autant plus meilleure que le gain de la FTBO est plus élevé, c-à-d que la bande passante est plus large.

8.1.2 Dilemme Stabilité-Précision

Comme le montre le dessin, les conditions imposées par la précision et la stabilité sont généralement contradictoires, une augmentation du gain de boucle équivaut, sur le dessin, à une translation de l'axe 0dB vers le bas, elle se traduit donc par une augmentation de la précision et une diminution de la stabilité.



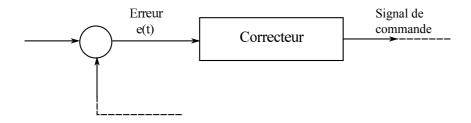
8.1.3 Notion sur le correcteur

Un correcteur est un élément que l'on ajoute au système initial pour assurer la compatibilité des conditions contradictoires imposées par la stabilité et la précision.

8.2 Les correcteurs spécifiques P, PI, PD et PID

8.2.1 Les lois de commande

Il est, en général, nécessaire non seulement d'amplifier l'erreur mais aussi de lui ajouter un autre terme. Ce qui constitue le signal de commande.



 ${
m IL}$ existe parmi eux :

1. la commande proportionnelle : $u(t) = K\varepsilon(t)$

- 2. La commande intégrale : $u(t) = \frac{1}{T_i} \in_0^t \varepsilon(x) dx$
- 3. La commande proportionnelle-dérivée : $u(t) = K(\varepsilon(t) + T_d\dot{\varepsilon}(t))$

8.2.2 La correction

Le signal de commande se traduit par des correcteurs industriels les plus fréquents :

- 1. Correcteur proportionnel (P.) : U(S) = K
- 2. Correcteur proportionnel-intégral (P.I.) : $U(S) = K\left(1 + \frac{1}{T_i S}\right)$ Il agit sur les basses fréquences, améliore la précision en régime permanent.
- 3. Correcteur proportionnel-dérivé (P.D.) : $U(S) = K\left(1 + \frac{1}{T_i S}\right)$ action sur les hautes fréquences, améliore la rapidité de réponse à une variation.
- 4. Correcteur proportionnel-intégral-dérivé (P.I.D.) : c'est le plus utilisé. $U(S) = K\left(1 + \frac{1}{T_iS} + T_dS\right). \ \text{Il améliore la rapidité et précision}.$

8.3 Correction classique

8.3.1 Correction cascade ou série

Elle consiste à introduire le correcteur $W_3(S)$ dans la chaine d'action, les trois formes de correction les plus courantes sont :

- Correction par avance de phase.
- Correction par retard de phase.
- Correction combinée.

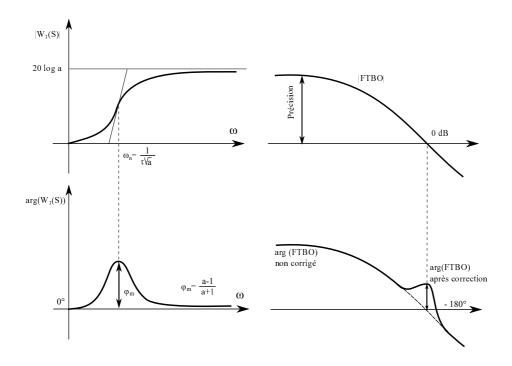
On suppose pour le présent travail que le système non corrigé possède une précision suffisante et stabilité insuffisante

Correction par avance de phase

Elle consiste à choisir le correcteur de façon à déformer localement la courbe de phase. En pratique, sa fonction de transfert est :

$$W_3(S) = \frac{1 + a\tau S}{1 + \tau S}, \quad a > 1 \tag{8.1}$$

avec $FTBO = W_1(S) \cdot W_2(S) \cdot W_3(S)$

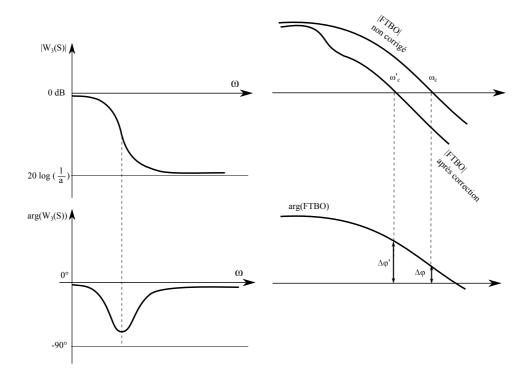


- Effet secondaire : augmentation du gain $\implies \omega_c \nearrow$ (bande passante $\nearrow \equiv$ bruits).
- Le but étant que la "bosse" ϕ_m du correcteur soit centrée sur la nouvelle pulsation de coupure $(\omega_c' \approx 2\omega_c)$.
- Pour obtenir une marge de phase de l'ordre de 45° , il faut souvent que ϕ_m soit de l'ordre de 50° à 60° ; cette condition permet de fixer le paramètre a (environ 8 à 12).

Correction par retard de phase

L'objectif c'est d'obtenir une augmentation de la marge par diminution de la pulsation de coupure. En pratique, le correcteur à retard de phase à une transmittance :

$$W_3(S) = \frac{1+\tau S}{1+a\tau S}; \quad a > 1$$
 (8.2)



8.3.2 Correction parallèle

Elle consiste à créer une boucle secondaire, il s'agit de déterminer $W_2'(S)$ de façon que la FTBO corrigée, soit :

$$W_1 = \frac{W_2}{1 + W_2 W_2'} W_3 W_4 \tag{8.3}$$

Correction par retour tachymètrique

Supposons W_2 soit de classe 1, considérons, par exemple, un moteur avec sortie en position :

$$W_2(S) = \frac{\theta(S)}{U(S)} = \frac{K_v}{S(1+TS)}; \quad W_3(S) = 1.$$
- Correction par retour tachymétrique $\Longrightarrow W_2'(S) = \lambda S$

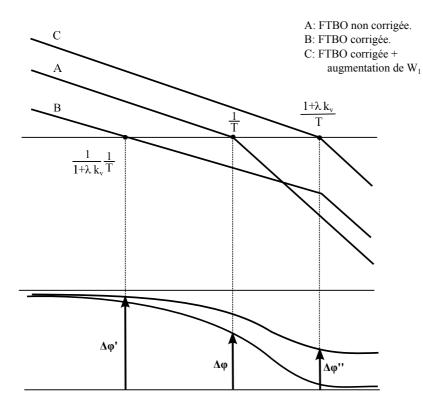
- FTBO non corrigé :
$$\frac{W_1 \cdot K_v \cdot W_4}{S(1+TS)}$$

- Correction par retour tachymétrique
$$\Longrightarrow W_2^r(S) = \lambda S$$
- FTBO non corrigé : $\frac{W_1 \cdot K_v \cdot W_4}{S(1+TS)}$
- FTBO corrigé : $\frac{W_1 \cdot K_v \cdot W_4}{(1+\lambda K_v)S\left(1+\frac{T}{1+\lambda K_v}S\right)}$
Dans le diagramme de Bode, les fonctions de transfert sont représentées comme suit :

Supposant:

Stabilité satisfaisante.

Précision insuffisante.



On constate que après correction, la bande passante est plus large \Longrightarrow un meilleur temps de montée, une plus grande sensibilité aux bruits \Longrightarrow Correction par retour tachymétrique filtré.

$$W_2'(S) = \frac{W_1 \cdot W_3 \cdot W_4}{\lambda} \cdot S \cdot \frac{S}{1 + \tau S}$$
(8.4)

 $\frac{S}{1+\tau S}$: est un terme qui correspond à un filtre.