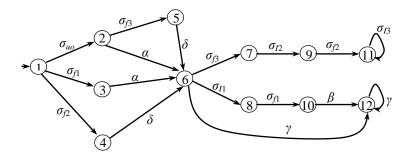
TD: Automates


Exercice $N^{\circ}1$

On s'intéresse à l'étude du problème célèbre du dîner des philosophes. Pour la simplicité, on considère uniquement deux philosophes P_1 et P_2 partageant deux fourchettes F_1 et F_2 . Un philosophe P_i peut faire les actions suivantes : ifj (le philosophe P_i prend la fourchette F_j) et if (le philosophe P_i dépose les deux fourchettes).

- 1. En se basant sur la description précédente, modéliser le comportement de chaque philosophe $(P_i|i=1,2)$ en utilisant le formalisme des automates. Soit P_1 et P_2 ces deux automates (nombre d'états de chaque automate ≤ 4).
- 2. Pour capturer le fait qu'une fourchette peut uniquement être utilisée par un philosophe à tout moment, Une fourchette est soit libre soit occupée ; ainsi son occupation et sa libération sont contrôlées par des actions des philosophes. Proposer deux automates F_1 et F_2 modélisant le comportement de chaque fourchette.
- 3. Calculer le comportement global du système, dénoté par PF, qu'est obtenu par composition parallèle des 4 automates précédents? Le comportement global (PF) est-il bloquant ? Si oui, comment nous pouvons éviter un tel blocage ?

Exercice N°2

Considérons un système dont le comportement est donné via l'automate G suivant:

où les événements observables sont : $\alpha, \beta, \gamma, \delta, \sigma_{I1}, \sigma_{I2}$ et σ_{I3} tandis que σ_{uo} et les événements de faute $\sigma_{f1}, \sigma_{f2}, \sigma_{f3}$ sont non observables.

La partition des types de fautes est choisie d'être comme : $F_1 = {\sigma_{f1}}, F_2 = {\sigma_{f2}}$ et $F_3 = {\sigma_{f3}}$.

On vous demande de construire le diagnostiqueur Diag(G) du système G?

Bonne Réussite