Chapitre 1

Le calcul intégral

1.1 Intégrale curviligne

Chemins

Soit [a, b] un intervalle fermé de \mathbb{R} et D une partie de \mathbb{C} .

Définition 1.1.1 * Un chemin dans D est une fonction continue

$$\gamma: [a,b] \longrightarrow D.$$

- * Les points $\gamma(a)$ et $\gamma(b)$ sont appelés origine et extrémité du chemin γ .
- * Un chemin γ est fermé si $\gamma(a) = \gamma(b)$ (lacet).
- * Un chemin γ est différentiable si γ est dérivable dans [a,b] et admet une dérivée à gauche au point b et une dérivée à droite au point a.
- * Un chemin γ est continûment différentiable (de classe C^1), s'il est différentiable et si sa fonction dérivée est continue.
- * Un chemin γ est différentiable par morceaux, s'il existe une subdivision $\{x_0, x_1, ..., x_n\}$ de [a, b] telle que la restriction de γ à chaque intervalle $]x_i, x_{i+1}[$, soit de classe C^1 .

Exemple 1.1.1 1- La fonction $\gamma: \left[0, \frac{1}{2}\right] \longrightarrow \mathbb{C}$

$$t \longmapsto \gamma(t) = e^{2\pi i t}$$

est continue, c'est un chemin d'origine $\gamma(0)=1$ et d'extémité $\gamma(\frac{1}{2})=-1$. (γ est le demi-cercle D(0,1) d'origine 1 et d'extrémité -1).

2- La fonction $\gamma:[0,1]\longrightarrow \mathbb{C}$

$$t\longmapsto \gamma(t)=e^{2\pi it}$$

est continue, c'est un chemin fermé (lacet) (le cercle D(0,1))

$$\gamma(0) = \gamma(1) = 1$$

3- La fonction $\gamma:[a,b]\longrightarrow D$

$$t \longmapsto \lambda(t) = \gamma(a+b-t)$$

où γ est un chemin dans D, est un chemin dans D, appelé l'opposé de γ et noté $(-\gamma)$. On $a:\lambda(a)=\gamma(b)$ et $\lambda(b)=\gamma(a)$.

Chemins équivalents

Soient $\gamma_1: [a,b] \longrightarrow D$, $\gamma_2: [c,d] \longrightarrow D$ deux chemins.

Définition 1.1.2 On dit que γ_1 et γ_2 sont équivalents s'il existe une bijection strictement croissante $\varphi : [c, d] \longrightarrow [a, b]$ continue et continûment dérivable par morceaux ainsi que sa réciproque φ^{-1} telle que $\gamma_2(t) = \gamma_1(\varphi(t))$.

Exemple 1.1.2 Le chemin $\lambda : t \longmapsto \lambda(t) = \gamma(\alpha t + \beta)$ où $\alpha > 0$ et $\beta \in \mathbb{R}$ est équivalent au chemin γ .

Remarque 1.1.1 La relation γ_1 équivalent à $\gamma_2 \equiv \gamma_1 \Re \gamma_2$ est une relation d'équivalence sur la famille des chemins dans D.

Juxtaposition de chemins

Définition 1.1.3 Soient γ_1 et γ_2 deux chemins dans D définis sur [a,b] et [c,d] respectivement et tels que $\gamma_1(b) = \gamma_2(c)$ et $b \leq c$. Le chemin γ_3 défini par :

$$\gamma_3(t) = \gamma_2(t+c-b)$$

pour $t \in [b, b+d-c]$ est équivalent au chemin γ_2 .

Le chemin γ défini sur [a,b+d-c] par :

$$\gamma(t) = \begin{cases} \gamma_1(t) & si \quad t \in [a, b] \\ \gamma_3(t) & si \quad t \in [b, b + d - c] \end{cases}$$

est appelé la juxtaposition (le raccordement) des chemins γ_1 et γ_2 , et est noté $\gamma = \gamma_1 \vee \gamma_2$.

Exemple 1.1.3 Un chemin γ différentiable par morceaux est la juxtaposition de n chemins γ_i de classe C^1 , $\gamma = \bigvee_{1 \leq i \leq n} \gamma_i$.

Segment et ligne polygonale

Définition 1.1.4 Un chemin γ de la forme $t \longmapsto \gamma(t) = z + t(\omega - z), \ 0 \le t \le 1$, est appelé un segment. On le note $[z, \omega]$. Une ligne polygonale est une juxtaposition d'un nombre fini de segments.

Proposition 1.1.1 Soit D un ouvert connexe de \mathbb{C} . Pour tous points z_1 et z_2 de D, il existe un chemin différentiable par morceaux dans D, ayant pour origine z_1 et pour extrémité z_2 .

Preuve. Soit z_0 un point de D, désignons par E_0 la partie,

 $E_0 = \{z \in D \mid \exists \gamma \text{ chemin différentiable par morceaux dans } D, d'extrémité <math>z_0 \text{ et } z\}$.

La partie E_0 étant non vide ouverte et fermée de D connexe, elle coincide avec D.

Longueur d'un chemin

$$(S = \{(t_0, t_1, ..., t_n)/\ a = t_0 < t_1 < ... < t_{n-1} < t_n = b\}),$$
nous définissons la quantité, $V(\gamma, S) = \sum_{0 < j < n-1} |\gamma(t_{j+1}) - \gamma(t_j)|.$

Définition 1.1.5

On dit qu'un chemin est rectifiable (ou encore à variation bornée) si l'ensemble

$$\{V(\gamma,S);\ S\ d\'{e}crit\ la\ famille\ de\ toutes\ les\ subdivisions\ de\ [a,b]\}$$

est borné. La borne supérieure $V(\gamma)$ est appelée la variation totale de γ (ou encore la longueur du chemin γ).

Propriétés

* Si le chemin γ est à variation bornée, on a :

$$V(\gamma, S') \le V(\gamma, S)$$

pour toutes subdivisions S et S' telles que S est plus fine que S'.

- * Si γ_1 est à variation bornée, tout chemin γ_2 équivalent à γ_1 l'est aussi et a même longueur que γ_1 : $V(\gamma_2) = V(\gamma_1)$.
- * Si le chemin γ est rectifiable, son opposé $(-\gamma)$ l'est aussi et a même longueur que γ : $V(-\gamma) = V(\gamma)$.
- * Si γ_1 et γ_2 sont deux chemins rectifiables définis sur les segments [a,b] et [c,d] respectivement et tels que $\gamma_1(b) = \gamma_2(c)$, alors leur juxtaposition $\gamma_1 \vee \gamma_2$ est rectifiable et on a :

$$V(\gamma_1 \vee \gamma_2) = V(\gamma_1) + V(\gamma_2)$$

- * $V([z,\omega],S)=|\omega-z|$, quelle que soit la subdivision S, et $V([z,\omega])=|\omega-z|$.
- * Si γ est à valeurs réelles et non décroissante, alors γ est rectifiable et on a :

$$V(\gamma) = \gamma(b) - \gamma(a)$$

* Un chemin γ est à variation bornée si et seulement si, $\text{Re}(\gamma)$ et $\text{Im}(\gamma)$ sont rectifiables.

Proposition 1.1.2 Soit γ un chemin dans \mathbb{C} défini sur un segment [a,b].

Si γ est continûment différentiable sur [a,b], alors on a:

$$V(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$

Corollaire 1.1.1 Si γ est un chemin différentiable par morceaux, alors γ est rectifiable et,

$$V(\gamma) = \sum_{0 \le i \le n-1} \int_{t_i}^{t_{i+1}} |\gamma_i'(t)| dt$$

où γ_i est un chemin de classe C^1 , $1 \leq i \leq n$.

Exemple 1.1.4

$$\gamma:[0,1]\to\mathbb{C}$$

$$t \longmapsto \gamma(t) = re^{2\pi it}, \ r > 0$$

 γ est de classe C^1 , rectifiable et $V(\gamma) = \int_0^1 |\gamma'(t)| dt = 2\pi r$.

Homotopie

Définition 1.1.6 Soit D un ouvert de \mathbb{C} et γ_1, γ_2 deux chemins dans D définis sur le même intervalle I = [a, b]. On dit que γ_1 est homotope à γ_2 dans D, s'il existe une fonction continue $\varphi : I \times J \longrightarrow D$ $(J = [c, d] \subset \mathbb{R})$ telle que :

$$\varphi(t,c) = \gamma_1(t)$$
 et $\varphi(t,d) = \gamma_2(t)$, $\forall t \in [a,b]$.

Définition 1.1.7 Si γ_1 et γ_2 sont deux lacets dans D définis sur le même I = [a, b]. On dit que γ_1 est homotope à γ_2 dans D, s'il existe une fonction continue

$$\varphi: I \times J \longrightarrow D \qquad (J = [c, d] \subset \mathbb{R})$$

telle que,

$$-\varphi(t,c) = \gamma_1(t) \qquad et \qquad \varphi(t,d) = \gamma_2(t), \qquad \forall t \in [a,b]$$
$$-\varphi(a,t) = \varphi(b,t), \qquad \forall t \in [c,d].$$

On dit qu'un lacet γ_1 dans D est homotope à un point $e \in D$, s'il est homotope dans D à un lacet constant γ .

$$(\gamma: [a,b] \longmapsto D, t \longmapsto \gamma(t) = e).$$

Remarque 1.1.2 L'homotopie des chemins dans D est une relation d'équivalence.

Exemple 1.1.5 Soit D un ouvert convexe et γ_1 , γ_2 deux chemins dans D. La fonction φ définie par,

$$\varphi(t, u) = u\gamma_2(t) + (1 - u)\gamma_1(t)$$

 $où u, t \in [0, 1]$ est une homotopie.

* La fonction φ est continue.

$$\varphi(t,0) = \gamma_1(t)$$
 et $\varphi(t,1) = \gamma_2(t),$ $\forall t \in [0,1]$

* Les chemins $\varphi(.,u)$ sont dans D. $(\varphi(.,u):[0,1]\longrightarrow D)$.

* Les chemins γ_1 et γ_2 sont homotopes comme chemins et comme lacets.

Définition 1.1.8 Un ouvert connexe D (domaine) est dit simplement connexe si tout lacet dans D est homotope à un point dans D.

Exemple 1.1.6 Tout ouvert étoilé D par rapport à un point $\omega \in D$ de \mathbb{C} est simplement connexe.

$$\varphi(t,u) = (1-u)\gamma_1(t) + u\gamma_2(t), \quad u \in [0,1]$$

$$\gamma_1: [a,b] \longrightarrow D \qquad \gamma_2: [a,b] \longrightarrow D$$

$$t \longmapsto \gamma_1(t) = \omega \qquad t \longmapsto \gamma_2(t)$$

$$\gamma_1(a) = \gamma_1(b) \quad et \quad \gamma_2(a) = \gamma_2(b).$$

* La fonction φ est continue.

$$\varphi(t,0) = \omega \ et \ \varphi(t,1) = \gamma_2(t)$$

 $\varphi(a,u) = (1-u)\gamma_1(a) + u\gamma_2(a) = (1-u)\gamma_1(b) + u\gamma_2(b) = \varphi(b,u).$

Donc tout lacet dans D est homotope à un point de D et par suite D est simplement connexe.

Un ouvert $D \subset \mathbb{C}$ est étoilé par rapport à $\omega \in D$, si $\forall z \in D$, $[\omega, z] \subset D$ où

$$[\omega,z] = \left\{ h \in \mathbb{C} \ / \quad \ h = (1-t)\omega + tz, \quad t \in \ [0,1] \right\}.$$

Soit γ un chemin de [a,b] dans D continûment dérivable par morceaux et f une fonction complexe continue dans D.

La fonction composée $t \longmapsto f(\gamma(t))\gamma'(t)$ est continue par morceaux dans [a,b]. L'intégrale de cette fonction dans [a,b] est bien définie.

Définition 1.1.9 Le nombre complexe,

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

est dit intégrale de f le long du chemin γ , ou intégrale curviligne de f le long de γ .

Exemple 1.1.7 Soit $\gamma:[0,2\pi]\longrightarrow \mathbb{C}$

$$t \longmapsto \gamma(t) = e^{it}$$

et.

$$f: \mathbb{C}^* \longrightarrow \mathbb{C}$$

$$z \longmapsto f(z) = \frac{1}{z}$$

 $on \ a :$

$$\int\limits_{\gamma} f(z)dz = \int\limits_{0}^{2\pi} f(e^{it})ie^{it}dt = i\int\limits_{0}^{2\pi} dt = 2\pi i.$$

Proposition 1.1.3 Soient $\gamma_1 : [a, b] \longrightarrow D$ et $\gamma_2 : [c, d] \longrightarrow D$ deux chemins équivalents continûment dérivables par morceaux, alors

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz.$$

Preuve.

$$\int_{\gamma_2} f(z)dz = \int_c^d f(\gamma_2(t))\gamma_2'(t)dt = \int_c^d f(\gamma_1(\varphi(t)))\gamma_1'(\varphi(t))\varphi'(t)dt$$

$$= \int_{\varphi(c)}^{\varphi(d)} f(\gamma_1(u))\gamma_1'(u)du = \int_a^b f(\gamma_1(u))\gamma_1'(u)du$$

$$= \int_{\gamma_1} f(z)dz$$

avec $\varphi:[c,d] \longrightarrow [a,b]$ bijection strictement croissante continue et continûment dérivable par morceaux telle que $\gamma_2 = \gamma_1 \circ \varphi$.

Propriétés

 $1- \text{Si } \forall z \in \gamma [a, b], |f(z)| \leq M, \text{ alors}$

$$\left| \int_{\gamma} f(z) dz \right| \le ML$$

où L est la longueur de γ .

2-

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$$

3-

$$\int_{\gamma_1 \vee \gamma_2} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$$

4- Si γ est constant, alors

$$\int_{\gamma} f(z)dz = 0$$

Définition 1.1.10 Soit D un ouvert de \mathbb{C} et f une fonction holomorphe dans D. La fonction F de D dans \mathbb{C} est appelée primitive de f si F est holomorphe dans D et $F'(z) = f(z), \forall z \in D$.

Proposition 1.1.4 Soit f une fonction complexe holomorphe sur un ouvert connexe D de \mathbb{C} . Si F est une primitive de f et γ un chemin différentiable par morceaux dans D définie sur un segment [a,b]. Alors

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$$

En particulier, $\int_{\gamma} f(z)dz = 0$, si de plus γ est fermé (un lacet).

Preuve. Si F est une primitive de f dans D. Alors pour tout chemin $\gamma:[a,b]\longrightarrow D,$ on a :

$$\frac{d}{dt}F(\gamma(t)) = f(\gamma(t))\gamma'(t)$$

d'où

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} dF(\gamma(t)) = F(\gamma(b)) - F(\gamma(a))$$

en particulier si γ est fermé ($\gamma(a)=\gamma(b)$), $\int\limits_{\gamma}f(z)dz=0$.

Remarque 1.1.3

$$\int_{z_0}^{z} f(z)dz = F(z) - F(z_0).$$

Si Γ est un chemin ayant mêmes extrémités que γ ($\Gamma(a)=\gamma(a)$, $\Gamma(b)=\gamma(b)$),

alors,

$$\int_{\Gamma} f(z)dz = F(\Gamma(b)) - F(\Gamma(a))$$
$$= F(\gamma(b)) - F(\gamma(a))$$
$$= \int_{\gamma} f(z)dz.$$

Par conséquent, si f admet une primitive, alors son intégrale le long d'un chemin γ ne dépend pas de ce chemin, elle ne dépend que de ses extrémités.

Exemple 1.1.8
$$1-\gamma: \left[0,\frac{1}{2}\right] \longrightarrow \mathbb{C}$$
 $t \longmapsto \gamma(t) = e^{2\pi i t}$
$$\int\limits_{\gamma} z dz = F(\gamma(\frac{1}{2})) - F(\gamma(0)) = F(-1) - F(1) = 0$$

$$F(z) = \frac{1}{2} z^2 + c \quad \text{primitive de } f(z) = z.$$

$$2-\gamma: \left[0,2\pi\right] \longrightarrow \mathbb{C}$$

$$t \longmapsto \gamma(t) = e^{it}$$

$$\int\limits_{\gamma} \frac{1}{z} dz = \int\limits_{0}^{2\pi} \frac{i e^{it}}{e^{it}} dt = 2\pi i \neq 0$$

$$La \ fonction \ f: \mathbb{C}^* \longrightarrow \mathbb{C}; \ z \longmapsto f(z) = \frac{1}{z}, \ n'admet \ pas \ de \ primitive \ sur \ \mathbb{C}^*.$$

Primitive locale

Théorème 1.1.1 Soit f une fonction holomorphe définie sur un disque $D_r(z_0)$. Alors f a une primitive sur $D_r(z_0)$ et l'intégrale de f le long d'un chemin fermé dans $D_r(z_0)$ est nulle.

Le théorème est une conséquence des deux lemmes suivants.

Lemme 1.1.1 Soit T un rectangle contenu dans un ouvert D. Pour toute fonction

 $holomorphe \ f \ sur \ D, \ on \ a$

$$\int_{\partial T} f(z)dz = 0$$

où ∂T est la frontière de T (le bord de T, le périmètre de T).

Preuve. On partage le rectangle T en quatre rectangles égaux T_1, T_2, T_3 et T_4 . Alors

$$\int_{\partial T} f(z)dz = \sum_{1 \le i \le 4} \int_{\partial T_i} f(z)dz$$

et par suite,

$$\left| \int_{\partial T} f(z) dz \right| \le \sum_{1 \le i \le 4} \left| \int_{\partial T_i} f(z) dz \right|.$$

Or, parmi les quatre rectangles, il en est un, notons le $T^{(1)}$ tel que,

$$\left| \int\limits_{\partial T^{(1)}} f(z)dz \right| \ge \frac{1}{4} \left| \int\limits_{\partial T} f(z)dz \right|.$$

De nouveau, on partage le rectangle $T^{(1)}$ en quatre rectangles égaux $T_1^{(1)}, T_2^{(1)}, T_3^{(1)}$ et $T_4^{(1)}$, et comme précédemment, on trouve un rectangle $T^{(2)}$ tel que,

$$\left| \int_{\partial T^{(2)}} f(z)dz \right| \ge \frac{1}{4} \left| \int_{\partial T^{(1)}} f(z)dz \right|.$$

En répétant ce processus indéfiniment, nous obtenons une suite de rectangle ($T^{(n)}, n \ge 1$) telles que,

i)
$$T^{(1)} \supset T^{(2)} \supset T^{(3)} \supset \dots \supset T^{(n)} \supset \dots$$

ii)
$$\left| \int_{\partial T^{(n+1)}} f(z) dz \right| \ge \frac{1}{4} \left| \int_{\partial T^{(n)}} f(z) dz \right|$$

On déduit alors,

$$\left| \int_{\partial T^{(n)}} f(z)dz \right| \ge \frac{1}{4^n} \left| \int_{\partial T} f(z)dz \right|.$$

D'autre part, désignons par V_n la longueur du plus grand côté du rectangle $T^{(n)}$. On a alors, $V_{n+1} = \frac{1}{2}V_n$ donc $V_n = \frac{1}{2^n} V_0$, V_0 étant la longueur du plus grand côté de T. On constate ainsi que le diamètre de $T^{(n)}$ tend vers 0 quand $n \to +\infty$. ($diam(T^{(n)}) = \sup_{z \in T^{(n)}} |z - z_0|$). Comme la suite $(T^{(n)})_{n \in \mathbb{N}}$, $(T^{(0)} = T)$ est une suite strictement décroissante de compacts de \mathbb{R}^2 dont le diamètre tend vers 0, son intersection se réduit à un point. Posons $z_0 = \bigcap_{n \in \mathbb{N}} T^{(n)}$. La fonction f étant holomorphe au point z_0 , il existe une fonction $\epsilon: D \longrightarrow \mathbb{C}$ telle que,

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \epsilon(z)|z - z_0|$$
 et $\lim_{z \to z_0} \epsilon(z) = 0$

et on a pour tout entier n,

$$\int_{\partial T^{(n)}} f(z)dz = f(z_0) \int_{\partial T^{(n)}} dz + f'(z_0) \int_{\partial T^{(n)}} (z - z_0)dz + \int_{\partial T^{(n)}} \epsilon(z) |z - z_0| dz.$$

Les deux premières intégrales du second membre sont nulles (car 1 et $(z-z_0)$ admettent des primitives et $\partial T^{(n)}$ est un lacet). On a donc,

$$\int_{\partial T^{(n)}} f(z)dz = \int_{\partial T^{(n)}} \epsilon(z) |z - z_0| dz.$$

Par définition, la fonction ϵ est continue sur $D - \{z_0\}$ et a pour limite 0 quand z tend vers z_0 , elle est donc bornée sur $T^{(n)} - \{z_0\}$ pour chaque entier n, et en posant :

$$\epsilon_n = \sup_{z \in T^{(n)} - \{z_0\}} |\epsilon(z)|$$

on a:

$$\lim_{n\to 0} \epsilon_n = 0.$$

Notons que:

$$\sup_{z \in T^{(n)}} |z - z_0| \le 2V_n.$$

Par suite, on a,

$$\left| \int_{\partial T^{(n)}} \epsilon(z) |z - z_0| dz \right| \leq \int_{\partial T^{(n)}} \sup_{z \in T^{(n)} - \{z_0\}} |\epsilon(z)| \sup_{z \in T^{(n)}} |z - z_0| dz$$

$$\leq 2\epsilon_n V_n \int_{\partial T^{(n)}} dz$$

$$\leq 8\epsilon_n V_n^2$$

(car la longueur de $\partial T^{(n)} \leq 4V_n$).

On a donc pour tout $n \in \mathbb{N}$,

$$\left| \int_{\partial T^{(n)}} f(z)dz \right| = 8\frac{V_0^2}{2^{2n}} \epsilon_n.$$

Mais,

$$\left| \int_{\partial T^{(n)}} f(z)dz \right| \ge \frac{1}{4^n} \left| \int_{\partial T} f(z)dz \right|, \quad \forall n \in \mathbb{N}$$

on obtient donc,

$$\forall n \in \mathbb{N}, \qquad \int_{\partial T} f(z)dz \le 8V_0^2 \epsilon_n.$$

Comme $\lim_{n\to+\infty} \epsilon_n = 0$, on en déduit que,

$$\int_{\partial T} f(z)dz = 0.$$

Lemme 1.1.2 Soient $D_r(z_0)$ un disque ouvert de \mathbb{C} et f une fonction holomorphe dans $D_r(z_0)$. On suppose que pour chaque rectangle T contenu dans $D_r(z_0)$

dont les côtés sont parallèles aux axes, on a $\int_{\partial T} f(z)dz = 0$. Alors la fonction $z \longmapsto F(z) = \int_{z_0}^{z} f(t)dt$ est holomorphe sur le disque $D_r(z_0)$ et F'(z) = f(z).

Preuve. Soient $x_0 + iy_0 = z_0$ le centre de $D_r(z_0)$ et x + iy un point quelconque de $D_r(z_0)$. Soit T le rectangle dont les côtés sont parallèles aux axes et dont deux sommets opposés sont les points $z_0 = x_0 + iy_0$ et x = x + iy. Pour tout $(z_1, z_2) \in D_r^2(z_0)$,notons $[z_1, z_2]$ le segment orienté d'origine z_1 et d'extrémité z_2 . Posons :

$$\Gamma_1 = [x_0 + iy_0, x + iy_0] \cup [x + iy_0, x + iy]$$
$$\Gamma_2 = [x_0 + iy_0, x_0 + iy] \cup [x_0 + iy, x + iy].$$

Comme $\int_{\partial T} f(z)dz = 0$, on a : $\int_{\Gamma_1} f(z)dz = \int_{\Gamma_2} f(z)dz$. pour tout z = x + iy de $D_r(z_0)$, appelons F(x,y) la valeur commune des intégrales $\int_{\Gamma_1} f(z)dz$ et $\int_{\Gamma_2} f(z)dz$ et posons :

$$f(z)dz = (P(x,y) + iQ(x,y))(dx + idy)$$
$$= (P(x,y)dx - Q(x,y)dy) + i(Q(x,y)dx + P(x,y)dy).$$

Alors, on a:

$$F(z) = F(x,y) = \int_{\Gamma_1} f(z)dz = \int_{z_0}^z f(z)dz$$

$$= \int_{x_0}^x P(t,y_0)dt + i \int_{x_0}^x Q(t,y_0)dt - \int_{y_0}^y Q(x,t)dt + i \int_{y_0}^y P(x,t)dt$$

$$= \int_{x_0}^x A(t,y_0)dt + \int_{y_0}^y B(x,t)dt$$

et

$$F(z) = F(x,y) = \int_{\Gamma_2} f(z)dz = \int_{x_0}^x A(t,y)dt + \int_{y_0}^y B(x_0,t)dt.$$

Pour chaque nombre réel h tel que $(x+h,y) \in D_r(z_0)$, il résulte que

$$F(x+h,y) - F(x,y) = \int_{x}^{x+h} A(t,y)dt$$

et par suite, que

$$\frac{F(x+h,y) - F(x,y)}{h} = \frac{1}{h} \int_{x}^{x+h} A(t,y)dt.$$

La fonction F est donc dérivable par rapport à x pour tout $(x,y) \in D_r(z_0)$, et on a :

$$\frac{\partial F}{\partial x}(x,y) = A(x,y).$$

En utilisant l'autre égalité, on montre que F admet une dérivée partielle par rapport à y et que

$$\frac{\partial F}{\partial y}(x,y) = B(x,y)$$

en chaque point (x, y) de $D_r(z_0)$. Les fonctions A et B étant continues, on en déduit que F est différentiable sur $D_r(z_0)$ et que F'(z) = f(z).

1.2 Théorème de Cauchy

Théorème 1.2.1 (Cauchy)

Soient D un ouvert connexe, γ_1, γ_2 deux lacets homotopes dans D. Pour toute fonction f holomorphe dans D, on a:

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz.$$

En particulier, si γ_1 est homotope à un point dans D, alors

$$\int_{\gamma_1} f(z)dz = 0.$$

Lemme 1.2.1 Soient γ_1 et γ_2 deux lacets dans D, définis sur le même segment [0,1] et satisfaisant la propriété (P): il existe une subdivision $\{u_j, 0 \leq j \leq n\}$ de [0,1] et pour tout $j = \overline{0, n-1}$, il existe un disque D_j dans D tel que $\gamma_i([u_j, u_{j+1}]) \subset D_j$, $i = \overline{1,2}$. On a alors pour toute fonction f holomorphe dans D, $\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$.

Preuve. Pour tout $j = \overline{0, n-1}$, on choisit un disque $D_j \subset D$ tel que $\gamma_i([u_j, u_{j+1}]) \subset D_j$, $i = \overline{1, 2}$.

Notons F_j la primitive de f sur D_j , $z_j = \gamma_1(u_j)$ et $\omega_j = \gamma_2(u_j)$. On a :

$$\int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz = \sum_{0 \le j \le n-1} \left\{ (F_j(z_{j+1}) - F_j(z_j)) - (F_j(\omega_{j+1}) - F_j(\omega_j)) \right\}
= \sum_{0 \le j \le n-1} \left\{ (F_j(z_{j+1}) - F_j(\omega_{j+1})) - (F_j(z_j) - F_j(\omega_j)) \right\}.$$

Et comme l'intersection $D_j \cap D_{j+1}$ est non vide et est connexe, et que la dérivée de $F_{j+1} - F_j$ est nulle, il en résulte, que $F_{j+1} - F_j$ est constante sur $D_j \cap D_{j+1}$ et l'égalité ci-dessus devient :

$$\int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz = (F_{n-1}(z_n) - F_{n-1}(\omega_n)) - (F_0(z_0) - F_0(\omega_0)).$$

De plus, comme γ_1 et γ_2 sont fermés, on a $z_n = z_0$ et $\omega_n = \omega_0$, soit il existe un disque Ω contenant z_0 et ω_0 et la primitive $F_{n-1} - F_0$ est constante sur

ce disque $\Omega \subset D$. Ainsi, le membre de droite est nul et donc,

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz.$$

Preuve. du théorème

D'aprés le lemme 3, il suffit de montrer que les chemins γ_1 et γ_2 vérifient la propriété (P). Soit φ l'homotopie de $[0,1]^2$ dans D. Puisque φ est continue et $[0,1]^2$ compact, $\varphi([0,1]^2)$ est une partie compacte de D. Par conséquent, le réel,

$$\mu = d(\varphi([0,1]^2), D^c) = Inf \left\{ d(z,\omega) \ / \ z \in \varphi([0,1]^2) \ \text{et} \ \omega \in D^c \right\}$$
est strictement positif.

D'autre part, φ étant uniformément continue, on peut trouver pour $\epsilon = \frac{\mu}{2}$ par exemple, deux subdivisions $\{t_j, \ 0 \le j \le n\}$ et $\{u_k, \ 0 \le k \le m\}$ de [0,1] telles que

$$|t_{j+1} - t_j| < \delta_{\epsilon} \text{ et } |u_{k+1} - u_k| < \delta_{\epsilon}$$

ce qui assure que l'image par φ de chaque rectangle plein $[t_j, t_{j+1}] \times [u_k, u_{k+1}]$ est incluse dans un disque D_{jk} qui lui même est entièrement inclu dans D.

Alors les chemins $\varphi_k = \varphi(., u_k)$ dans D, sont tels que pour tout $0 \le k \le m-1$, les chemins φ_k et φ_{k+1} satisfont la propriété (P) et il vient alors du lemme 3 que,

$$\int_{\varphi_k} f(z)dz = \int_{\varphi_{k+1}} f(z)dz$$

et comme $\gamma_1 = \varphi_0$ et $\gamma_2 = \varphi_n$, on en déduit que, $\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$. En particulier, si γ_1 est homotope à un point, alors $\int_{\gamma_1} f(z)dz = 0$.

Primitive globale

Théorème 1.2.2 Soit D un ouvert simplement connexe. Toute fonction holomorphe f admet une primitive sur D et la fonction,

$$z \longmapsto F(z) = \int_{z_0}^{z} f(t)dt$$

où z_0 et $z \in D$ et z_0 fixé, ne dépend pas du chemin dans D de z_0 vers z.

Preuve. D étant un ouvert simplement connexe, il existe toujours un chemin différentiable par morceaux de z_0 vers un autre point z de D. Soit γ_1 et γ_2 deux chemins dans D de z_0 vers z et soit $(-\gamma_2)$ l'opposé de γ_2 . Alors le raccordement γ de γ_1 et $(-\gamma_2)$ est un chemin fermé dans D. On a alors (Théorème de Cauchy),

$$0 = \int\limits_{\gamma} f(z)dz = \int\limits_{\gamma_1} f(z)dz + \int\limits_{-\gamma_2} f(z)dz = \int\limits_{\gamma_1} f(z)dz - \int\limits_{\gamma_2} f(z)dz$$

soit,
$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$
.

Ce qui montre que F est indépendante du chemin dans D de z_0 vers z.

Montrons que F est différentiable. Soit $z_1 \in \Omega$ et r > 0 tel que $D_r(z_1) \subset D$. Si $z \in D_r(z_1)$, alors on peut choisir un chemin de z_0 vers z

en passant par z_1 . D'ici,

$$F(z) = \int_{z_0}^{z} f(t)dt = \int_{z_0}^{z_1} f(t)dt + \int_{z_1}^{z} f(t)dt = F(z_1) + \int_{z_1}^{z} f(t)dt.$$

Le lemme 2 montre alors, que l'intégrale $\int_{z_1}^{z} f(t)dt$ définit une primitive locale pour f au voisinage de z_1 . Soit, F'(z) = f(z).

Indice d'un point par rapport à un chemin fermé

Définition 1.2.1 Soit $\gamma:[a;b]\to\mathbb{C}$ un lacet dans $\mathbb{C},$ et z_0 un point de \mathbb{C} n'appartenant

pas à $\gamma([a;b])$. On appelle indice de z_0 par rapport au lacet γ et on note $I(z_0,\gamma)$, la valeur de l'intégrale,

$$I\left(z_{0},\gamma
ight)=rac{1}{2\pi i}\int\limits_{\gamma}rac{dz}{z-z_{0}}.$$

Proposition 1.2.1 L'indice $I(z_0, \gamma)$ est un nombre entier rationnel.

Preuve. On a,

$$I\left(z_{0},\gamma\right) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_{0}} = \frac{1}{2\pi i} \int_{a}^{b} \frac{\gamma'\left(t\right)}{\gamma\left(t\right) - z_{0}} dt.$$

Posons, pour tout $u \in [a, b]$,

$$F(u) = \int_{a}^{u} \frac{\gamma'(t)}{\gamma(t) - z_0} dt$$

d'où, $I(z_0, \gamma) = \frac{1}{2\pi i} F(b)$.

Comme F est une primitive d'une fonction continue $\left(\frac{\gamma'(t)}{\gamma(t)-z_0}\right)$, on a, $\forall u \in [a,b]$, $F'(u) = \frac{\gamma'(u)}{\gamma(u)-z_0}$. Posons : $G(u) = e^{-F(u)} \left(\gamma(u) - z_0\right)$. On a, $\forall u \in [a,b]$,

$$G'(u) = -F'(u) e^{-F(u)} (\gamma(u) - z_0) + \gamma'(u) e^{-F(u)} = 0.$$

Par conséquent, la fonction continue G est constante dans [a;b] et en particulier, on a G(a)=G(b). Mais F(a)=0; d'où $G(a)=\gamma(a)-z_0$ et on a donc,

$$e^{-F(b)} (\gamma(b) - z_0) = \gamma(a) - z_0.$$

Mais par hypothèse γ est fermé, donc $\gamma\left(a\right)=\gamma\left(b\right)$ et il vient pour le nombre

complexe F(b) la relation $e^{-F(b)} = 1$, d'où

$$F(b) = 2k\pi i; \quad k \in \mathbb{Z}$$

et par suite, $I(z_0, \gamma) = k$.

Proposition 1.2.2 i) $I(z_0, -\gamma) = -I(z_0, \gamma)$

$$ii) \ I\left(z_{0},\gamma_{1}\vee\gamma_{2}\right)=I\left(z_{0},\gamma_{1}\right)+I\left(z_{0},\gamma_{2}\right).$$

Preuve. Conséquence des propriétés de l'intégrale curviligne.

Proposition 1.2.3 Soit γ un chemin fermé de \mathbb{C} , pour tout ensemble ouvert connexe $D \subset \mathbb{C} - \gamma([a,b])$, la fonction $z_0 \longmapsto I(z_0,\gamma)$ est constante dans D.

Preuve. La fonction $z_0 \mapsto I(z_0, \gamma)$ est continue sur D et est à valeurs entières sur D et comme D est connexe elle est nécessairement constante sur D.

Proposition 1.2.4 Si γ est un chemin fermé contenu dans un ouvert simplement connexe D. Alors, pour tout $z_0 \notin D$, $I(z_0, \gamma) = 0$.

Preuve. Conséquence du théorème de Cauchy.

La fonction $z \longmapsto \frac{1}{z-z_0}$ est holomorphe dans D et γ est fermé dans D.

Exemple 1.2.1 Si γ est le bord orienté dans le sens direct d'un disque D, on a :

$$I\left(z_{0},\gamma\right)=\left\{\begin{array}{lll}1 & si & z_{0} & est \ intérieur \ \grave{a} \ D\\ 0 & si & z_{0} & est \ extérieur \ \grave{a} \ D\end{array}\right.$$

 $Si z_0$ est intérieur à D, alors

$$I(z_0, \gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0} = \frac{1}{2\pi i} \int_{D_2(z_0)} \frac{dz}{z - z_0} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{ire^{it}}{re^{it}} dt = 1$$

(γ est homotope à $D_r(z_0)$).

Si z_0 est extérieur à D, la fonction $z \longmapsto \frac{1}{z-z_0}$ est holomorphe dans D et d'après (théorème de Cauchy)

$$I(z_0, \gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0} = 0$$

1.3 Formule intégrale de Cauchy

Théorème 1.3.1 Soit f une fonction holomorphe dans un ouvert D, z_0 un point de D et γ un chemin fermé dans D, ne passant pas par z_0 et homotope à un point de D.

On a alors,

$$\int_{\gamma} \frac{f(z)dz}{z-z_0} = 2\pi i I(z_0, \gamma) f(z_0).$$

La formule ci-dessus s'appelle formule intégrale de Cauchy.

Preuve. Considérons la fonction g définie dans D par :

$$g(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0} & \text{si } z \neq z_0 \\ f'(z_0) & \text{si } z = z_0 \end{cases}$$

La fonction g est continue dans D, et analytique dans $D-\{z_0\}$ et le chemin γ est homotope à un point de D, on a alors $\int_{\gamma} g(z)dz = 0$ et par suite,

$$\int_{\gamma} \frac{f(z)}{z - z_0} dz = \int_{\gamma} \frac{f(z_0)}{z - z_0} dz = 2\pi i I(z_0, \gamma) f(z_0).$$

Corollaire 1.3.1 Soit f une fonction holomorphe dans un ouvert Ω de \mathbb{C} et soit D un disque fermé contenu dans Ω dont le bord est noté γ . On a :

$$\int_{\gamma} \frac{f(z)}{z - z_0} dz = \begin{cases} 2\pi i f(z_0) & \text{si } z_0 \text{ est int\'erieur \`a } D \\ 0 & \text{si } z_0 \text{ est ext\'erieur \`a } D \end{cases}$$

Remarque 1.3.1 Le corollaire montre que les valeurs de f à l'intérieur de D sont entièrement déterminées par la donnée de ses valeurs sur le bord de D.

1.4 Formule de la moyenne

Définition 1.4.1 On dit qu'une fonction f définie, continue sur un ouvert Ω de \mathbb{C} vérifie la formule de la moyenne,

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt$$

si pour tout disque fermé D contenu dans Ω , la valeur de f au centre de D est égale à la valeur moyenne de f sur le bord de D, où $D=\overline{D}_r(z_0)$. L'intégrale $\frac{1}{2\pi}\int\limits_0^{2\pi}f(z_0+re^{it})dt$ est appelée valeur moyenne de f sur le bord de D.

Proposition 1.4.1 Toute fonction holomorphe f sur un ouvert Ω vérifie la formule de la moyenne.

Preuve. Soit $z_0 \in \Omega$. Considérons un disque fermé $D = \overline{D}_r(z_0)$ de centre z_0 et de rayon r > 0, contenu dans Ω , alors on a :

$$f(z_0) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + re^{it})}{re^{it}} (ire^{it}) dt = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt.$$

1.5 Formule intégrale de Cauchy pour les dérivées.

Théorème 1.5.1 Soit f une fonction holomorphe dans un ouvert simplement connexe D, z un point de D et γ un chemin fermé ne passant pas par z. Alors f est indéfiniment dérivable dans D et ses dérivées sont données

pour tout $n \ge 1$ par :

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(u)}{(u-z)^{n+1}} du.$$
 (*)

Preuve. Montrons par récurrence que f est indéfiniment dérivable en un point quelconque de D. En effet, on peut écrire :

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(u)}{(u-z)} du$$

et par suite,

$$\frac{f(z+h) - f(z)}{h} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(u)}{(u-z)^2} du + \frac{h}{2\pi i} \int_{\gamma} \frac{f(u)}{(u-z)^2 (u-z-h)} du$$

Etudions le deuxième terme du membre de droite lorsque h tend vers 0. La quantité $d=\min\left\{\left|u-z\right|,\ u\in\gamma\right\}$ est strictement positive, et donc pour tout h tel que $\left|h\right|<\frac{d}{2}$, et pour tout $u\in\gamma$, on a,

$$|u-z-h| \ge |u-z|-h > d-\frac{d}{2} = \frac{d}{2}.$$

Par ailleurs, f est continue sur γ , il existe alors M > 0 tel que

$$|f(u)| \le M, \forall u \in \gamma.$$

D'où, $\left|\frac{h}{2\pi i}\int_{\gamma}\frac{f(u)}{(u-z)^2(u-z-h)}du\right| \leq 2\left|h\right|\frac{ML}{d^3}$ où L est la longueur de γ . Lorsque h tend vers 0 le terme $\frac{h}{2\pi i}\int_{\gamma}\frac{f(u)}{(u-z)^2(u-z-h)}du$ tend vers 0, et par conséquent on obtient par passage à la limite quand h tend vers 0, $f'(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(u)}{(u-z)^2}du$. Supposons que f est dérivable jusqu'à l'ordre n et que sa dérivée

d'ordre n en un point z de D satisfait la relation (*). Alors le raisonnement ci-dessus appliqué à la fonction

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(u)}{(u-z)^{n+1}} du$$

permet de montrer que,

$$f^{(n+1)}(z) = \frac{(n+1)!}{2\pi i} \int_{\gamma} \frac{f(u)}{(u-z)^{n+2}} du.$$

Ainsi f est est indéfiniment dérivable et ses dérivées d'ordre n sont holomorphes et satisfont la formule intégrale (*).

Exemple 1.5.1 Calculer: $I = \int_{\gamma} (1+z+\frac{1}{z}) \frac{e^z}{z} dz$ où $\gamma: t \longmapsto e^{it}, t \in [0, 2\pi]$. On a:

$$I = 2 \int_{\gamma} \frac{e^z}{z} dz + \int_{\gamma} e^z dz + \int_{\gamma} \frac{e^z}{z^2} dz = 2\pi i (2e^0 + 0 + (e^z)'_{z=0}) = 2\pi i (2+1) = 6\pi i.$$

1.6 Inégalités de Cauchy

Théorème 1.6.1 Soient D un ouvert de \mathbb{C} , Ω le disque fermé de centre z_0 et de rayon r > 0 contenu dans D et f une fonction holomorphe dans D. Alors pour tout $n \in \mathbb{N}$, on a:

$$|f^{(n)}(z_0)| \le \frac{n!M}{r^n}, \quad où M = \sup_{|z-z_0|=r} |f(z)|.$$

Preuve. En apppliquant les formules intégrales de Cauchy à f, on obtient :

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(z)}{(z - z_0)^{n+1}} dz, \quad \forall n \in \mathbb{N}$$

et donc,

$$|f^{(n)}(z_0)| = \frac{n!}{2\pi} \left| \int\limits_{\partial\Omega} \frac{f(z)}{(z-z_0)^{n+1}} dz \right| \le \frac{n!M}{2\pi} \int\limits_{\partial\Omega} \frac{1}{|z-z_0|^{n+1}} dz = \frac{n!M}{2\pi r^{n+1}} \int\limits_{\partial\Omega} dz = \frac{n!M}{r^n}$$

car
$$|z - z_0| = r$$
 sur $\partial \Omega$ et $\int_{\partial \Omega} dz = 2\pi r$.

1.7 Théorème de Liouville

Théorème 1.7.1 (Liouville)

Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction holomorphe et bornée sur \mathbb{C} , alors f est constante sur \mathbb{C} .

Preuve. En utilisant les inégalités de Cauchy pour n=1 et $z_0=z\in\mathbb{C}$, on obtient :

$$|f'(z)| \le \frac{M}{r}, \quad \forall r > 0$$

et donc, en faisant tendre r vers $+\infty$, f'(z)=0, $\forall z\in\mathbb{C}$, d'où f est constante sur \mathbb{C} .

Théorème 1.7.2 (fondamentale de l'algèbre) (D'Alembert)

Tout polynôme P non constant dans \mathbb{C} admet au moins un zéro.

Preuve. Supposons que $P(z) \neq 0$, $\forall z \in \mathbb{C}$, alors $f(z) = \frac{1}{P(z)}$ est holomorphe dans \mathbb{C} . De plus f est bornée $(\lim_{|z| \to +\infty} |f(z)| = 0)$. Alors d'après le théorème de Liouville f est constante et par suite P est constant ce qui conduit à une contradiction et on en conclut que P admet au moins un zéro.

Corollaire 1.7.1 Tout polynôme P non constant dans \mathbb{C} de degré $n \geq 1$, a exactement n zéros.

Preuve. Conséquence du théorème de D'alembert.

1.8 Théorème de Morera.

C'est la réciproque du théorème de Cauchy.

Théorème 1.8.1 (Morera)

Soit f une fonction continue sur un ouvert Ω de \mathbb{C} . Si $\int_{\gamma} f(z)dz = 0$ pour tout lacet γ dans Ω , alors f est holomorphe dans Ω .

Preuve. Pour tout $z_0 \in \Omega$, il existe un disque ouvert $D_r(z_0)$ de centre z_0 et de rayon r > 0 tel que sur $D_r(z_0)$, f admette une primitive F. Alors pour tout $z \in D_r(z_0)$, on a F'(z) = f(z). La fonction F étant holomorphe sur $D_r(z_0)$, sa dérivée f est holomorphe sur $D_r(z_0)$ et par suite f est holomorphe en z_0 . Comme z_0 est quelconque dans Ω , il s'ensuit que f est holomorphe dans tout Ω .