Chapitre 1

Théorème des résidus et ses applications

1.1 Théorème des résidus.

Proposition 1.1.1 Soit f une fonction holomorphe dans la couronne

$$\Delta = \{ z \in \mathbb{C} / R_2 < |z - z_0| < R_1 \}$$

et γ un lacet contenu dans Δ . Alors

$$\int_{\gamma} f(z)dz = 2\pi i a_{-1} I(\gamma, z_0)$$

où $a_{-1}est$ le coefficient de $\frac{1}{z-z_0}$ dans le développement de Laurent de f dans Δ .

Preuve. Soit $\sum_{n\in\mathbb{Z}} a_n(z-z_0)^n$ le développement de Laurent de f dans Δ . On a alors, pour $z\in\Delta$,

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n$$

Pour tout $z \in \Delta$, posons

$$g(z) = f(z) - \frac{a_{-1}}{z - z_0}.$$

Alors, si $z \in \Delta$, on a

$$g(z) = f_1(z) + f_2(z)$$

avec

$$f_1(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 et $f_2(z) = \sum_{n=2}^{+\infty} a_{-n} (z - z_0)^{-n}$.

La fonction $z \mapsto \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}$ est une primitive de f_1 dans le disque $\{z \in \mathbb{C} \ / \ |z-z_0| < R_1\}$.

La fonction $z \longmapsto \sum_{n=2}^{+\infty} \frac{a_{-n}}{-n+1} (z-z_0)^{-n+1}$ est une primitive de f_2 dans l'ouvert $\{z \in \mathbb{C} \ / \ R_2 < |z-z_0|\}.$

Par suite g possède une primitive dans Δ ; or γ est un lacet, donc

$$\int_{\gamma} g(z)dz = 0.$$

Il en résulte que,

$$\int_{\gamma} f(z)dz = a_{-1} \int_{\gamma} \frac{dz}{z - z_0} + \int_{\gamma} g(z)dz = a_{-1} \int_{\gamma} \frac{dz}{z - z_0} = a_{-1}(2\pi i I(\gamma, z_0)).$$

Définition 1.1.1 Soit f une fonction holomorphe dans le disque pointé

$$\Delta_R(z_0) = \{ z \in \mathbb{C} / 0 < |z - z_0| < R \}.$$

On appelle résidu de f au point z_0 et on note $R\acute{e}s(f,z_0)$, le coefficient a_{-1} de $\frac{1}{z-z_0}$ dans le développement de Laurent $\sum_{n\in\mathbb{Z}}a_n(z-z_0)^n$ de f dans $\Delta_R(z_0)$.

Remarque 1.1.1 Soit z_0 un point de \mathbb{C} qui n'est pas un point singulier de f, alors le résidu de f au point z_0 est nul.

Exemple 1.1.1 - $f(z) = e^{1/z}$

 $z_0=0$ est un point singulier essentiel isolé et $f(z)=\sum_{n\geq 0}\frac{1}{n!}\frac{1}{z^n}$ d'où $R\acute{e}s(f,0)=1.$

$$-f(z) = \cos(\frac{1}{z})$$

 $z_0 = 0$ est un point singulier essentiel isolé et $f(z) = \sum_{n \geq 0} \frac{(-1)^n}{(2n)!} \frac{1}{z^{2n}}$ d'où $R\acute{e}s(f,0) = 0$.

Proposition 1.1.2 Si $z_0 \in \mathbb{C}$, si 0 < r < R, si f est une fonction holomorphe dans le disque pointé $\Delta_R(z_0) = \{z \in \mathbb{C} \ / \ 0 < |z - z_0| < R\}$ et si γ est le bord orienté du disque $D_r(z_0)$, alors on a:

$$\int_{\gamma} f(z)dz = 2\pi i R\acute{e}s(f,z_0).$$

Preuve. On a,

$$\int_{\gamma} f(z)dz = 2\pi i a_{-1} I(\gamma, z_0)$$

mais $a_{-1} = R\acute{e}s(f, z_0)$ et $I(\gamma, z_0) = 1$.

Théorème 1.1.1 (Théorème des résidus).

Soit U un ouvert de \mathbb{C} , f une fonction holomorphe dans U sauf peut-être en des points isolés qui sont singuliers pour f. Soit K un compact de U dont le bord γ ne rencontre aucun point singulier de f. On note $z_1, z_2, ..., z_p$ les points singuliers de f contenus dans K.

Alors, on a:

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{p} R\acute{e}s(f, z_k).$$

Preuve. Pour tout entier k tel que $1 \le k \le p$, soit D_k ouvert de centre z_k contenudans K et soit γ_k son bord orienté. On suppose que pour $k \ne k'$, on a $\overline{D}_k \cap \overline{D}_{k'} = \emptyset$, car les z_k sont isolés. Alors

l'ensemble $K' = K - \bigcup_{1 \le k \le p} D_k$ est un compact de $\mathbb C$ dont le bord $\partial K'$ est la réunion de γ et des γ_k ($1 \le k \le p$) orientés dans le sens indirect.

La fonction f étant holomorphe dans K', ona :

$$\int_{\partial K'} f(z)dz = 0.$$

Soit encore

$$\int_{\gamma} f(z)dz - \sum_{k=1}^{p} \int_{\gamma_k} f(z)dz = 0$$

et par suite

$$\int_{\gamma} f(z)dz - \sum_{k=1}^{p} \int_{\gamma_k} f(z)dz = 2\pi i \sum_{k=1}^{p} R\acute{e}s(f, z_k).$$

1.2 Calcul des résidus.

1) Pôle simple.

Soient $z_0 \in \mathbb{C}$, R > 0 et f une fonction holomorphe dans le disque pointé $\Delta_R(z_0)$ admettant z_0 comme pôle simple. Alors il existe une fonction holomorphe g dans le disque ouvert $D_R(z_0)$ vérifiant $g(z_0) \neq 0$ et telle que $g(z) = (z - z_0)f(z)$ pour $z \in \Delta_R(z_0)$. La fonction g est développable en série de Taylor au voisinage de z_0 et on a pour $|z - z_0|$ assez petit

$$g(z) = \sum_{n=0}^{+\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^n$$

Par suite, le développement de Laurent de f dans le disque pointé $\Delta_R(z_0)$

est donné par,

$$f(z) = \sum_{n=0}^{+\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n-1} = \frac{g(z_0)}{z - z_0} + g'(z_0) + \sum_{n=2}^{+\infty} \frac{g^{(n)}(z_0)}{n!} (z - z_0)^{n-1}$$

on a donc

$$R\acute{e}s(f, z_0) = g(z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

En particulier, si f est donnée sous la forme d'un quotient $\frac{P}{Q}$ où P et Q sont deux fonctions holomorphes au voisinage de z_0 , z_0 étant un zéro simple de la fonction Q et P vérifiant $P(z_0) \neq 0$, on a

$$R\acute{e}s(f,z_0) = \lim_{z \to z_0} (z - z_0) \frac{P(z)}{Q(z)} = \frac{P(z)}{\lim_{z \to z_0} \frac{Q(z) - Q(0)}{z - z_0}} = \frac{P(z)}{Q'(z_0)}$$

2) Pôle d'ordre k > 1.

Si z_0 est un pôle d'ordre $k \geq 2$ de f, alors on a, $g(z_0) \neq 0$ et

$$g(z) = (z - z_0)^k f(z)$$
, pour $z \in \Delta_R(z_0)$

Par un raisonnement analogue à celui fait ci-dessus on voit que $R\acute{e}s(f,z_0)$ est égal au coefficient de $(z-z_0)^{k-1}$ dans le développement de Taylor de g au voisinage de z_0 et on a,

$$R\acute{e}s(f,z_0) = \frac{g^{(k-1)}(z_0)}{(k-1)!} = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1}}{dz^{k-1}} \left[(z-z_0)^k f(z) \right]$$

3) Point singulier essentiel.

Si z_0 est un point singulier essentiel isolé pour f, en général on doit effectivement calculer le développement de Laurent de f.

Le coefficient a_{-1} est donné par,

$$R\acute{e}s(f, z_0) = a_{-1} = \frac{r}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{i\theta}) e^{i\theta} d\theta$$

-La fonction rationnelle définie sur $\mathbb{C}-\{0,i,-i\}$ par

$$f(z) = \frac{z^2 + z + 1}{z(z^2 + 1)^2}$$

admet 0 comme pôle simple et i et -i comme pôles doubles.

On pose $P(z) = z^2 + z + 1$ et $Q(z) = z(z^2 + 1)^2$ et on a :

- $z_0 = 0$ pôle simple.

$$R\acute{e}s(f,0) = \frac{P(0)}{Q'(0)} = 1$$

- $z_0 = i$ pôle d'ordre2

$$R\acute{e}s(f,i) = \frac{1}{(2-1)!} \lim_{z \to i} \frac{d}{dz} \left[(z-i)^2 f(z) \right] = \lim_{z \to i} \frac{d}{dz} \left[\frac{z^2 + z + 1}{z(z^2 + 1)^2} \right] = -\frac{1}{2} - \frac{1}{4}i$$

- $z_0 = -i$ pôle double.

$$R\acute{e}s(f,-i) = \lim_{z \to -i} \frac{d}{dz} \left[\frac{z^2 + z + 1}{z(z^2 + 1)^2} \right] = -\frac{1}{2} + \frac{1}{4}i.$$

Exercice

Soit
$$f(z) = e^{z + \frac{1}{z}}$$
,

 $z_0 = 0$ est un point singulier essentiel de f.

Montrer que
$$R\acute{e}s(f,0) = \sum_{p=0}^{+\infty} \frac{1}{p!(p+1)!}$$
.

1.2.1 Application au calcul intégral.

Lemme 1.2.1 (*Lemme1*)

Soient θ_1 , θ_2 deux réels tels que $\theta_1 < \theta_2$. Posons $S = \{z = re^{i\theta} / r > 0, \theta_1 \le \theta \le \theta_2\}$. Soit f une fonction définie sur S. Pour chaque R > 0, notons Γ_R la portion du cercle de centre 0, de rayon R contenue dans S. Alors

i) s'il existe a > 0 tel que f soit continue pour |z| > a et si $\lim_{|z| \to +\infty} zf(z) = 0$, on a,

$$\lim_{R \to +\infty} \int_{\Gamma_R} f(z)dz = 0$$

ii) s'il existe a > 0 tel que f soit continue pour |z| < a et si $\lim_{z \to 0} z f(z) = 0$, on a,

$$\lim_{R \to 0} \int_{\Gamma_R} f(z) dz = 0.$$

Preuve. Si on pose $M(R) = \sup_{z \in \Gamma_R} |f(z)|$, pour chaque R il existe $z_R \in \Gamma_R$ tel que $M(R) = |f(z_R)|$ (car f est continue et Γ_R compacte), on a :

$$\left| \int_{\Gamma_R} f(z) dz \right| = \left| \int_{\theta_1}^{\theta_2} iRf(\operatorname{Re}^{i\theta}) e^{i\theta} d\theta \right| \le M(R)R(\theta_2 - \theta_1).$$

Dans le cas (i), on a $\lim_{R\to+\infty}RM(R)=\lim_{R\to+\infty}|z_Rf(z_R)|=0$ et dans le cas (ii), on a $\lim_{R\to0}RM(R)=\lim_{R\to0}|z_Rf(z_R)|=0$. D'où le lemme1.

Lemme 1.2.2 (*Lemme 2*)

Soient θ_1 , θ_2 tels que $0 \le \theta_1 < \theta_2 \le \pi$ et $S = \{z = re^{i\theta} / r \ge 0, \ \theta_1 \le \theta \le \theta_2\}$. Soit f une fonction définie sur S et continue pour |z| > a et telle que $\lim_{|z| \to +\infty} f(z) = 0$. Pour chaque R > 0, notons Γ_R la portion du cercle de centre 0, de rayon R contenue dans S. Alors, si $\alpha \in \mathbb{R}_+^*$, on a:

$$\lim_{R \to +\infty} \int_{\Gamma_R} f(z)e^{i\alpha z}dz = 0.$$

Preuve. Notons $M(R) = \sup_{z \in \Gamma_R} |f(z)|$. On a :

$$\left| \int_{\Gamma_R} f(z) e^{i\alpha z} dz \right| = \left| \int_{\theta_1}^{\theta_2} iR f(\operatorname{Re}^{i\theta}) e^{i\alpha R(\cos\theta + i\sin\theta)} e^{i\theta} d\theta \right| \le M(R) \int_{\theta_1}^{\theta_2} \operatorname{Re}^{-\alpha R\sin\theta} d\theta$$
$$\le M(R) \int_{0}^{\pi} \operatorname{Re}^{-\alpha R\sin\theta} d\theta = 2M(R) \int_{0}^{\pi/2} \operatorname{Re}^{-\alpha R\sin\theta} d\theta.$$

Mais, on sait que, $\forall \theta \in [0, \pi/2], \quad \frac{2}{\pi}\theta \leq \sin \theta \leq \theta.$

On en déduit que,

$$\int_{0}^{\pi/2} \operatorname{Re}^{-\alpha R \sin \theta} d\theta \le \int_{0}^{\pi/2} \operatorname{Re}^{-\alpha R \frac{2}{\pi} \theta} d\theta = \frac{\pi}{2\alpha} (1 - e^{-\alpha R}) \le \frac{\pi}{2\alpha}.$$

Par suite, on a:

$$\left| \int_{\Gamma_R} f(z)e^{i\alpha z}dz \right| \le \frac{\pi}{\alpha}M(R).$$

Comme $\lim_{R\to +\infty} M(R)=0$, on a $\lim_{R\to +\infty} \int_{\Gamma_R} f(z)e^{i\alpha z}dz=0$.

Remarque 1.2.1 Si $\alpha < 0$, la fonction $z \longmapsto e^{i\alpha z}$ est bornée dans le demi-plan inférieur $\{z = x + iy \in \mathbb{C} \ / \ y \leq 0\}$. Alors si S est un secteur de ce demi-plan i.e.si $\pi \leq \theta \leq 2\pi$, le lemme2 est encore vrai.

Lemme 1.2.3 (*Lemme3*)

Soit f une fonction holomorphe dans le disque pointé $\Delta_R(0) = \{z \in \mathbb{C} \ / \ 0 < |z| < R\}$ et admettant 0 comme pôle simple. Soient $\epsilon > 0$ tel que $0 < \epsilon < R$ et γ_{ϵ} le chemin dont le support est $\{z = \epsilon e^{i\theta} \ / \ 0 \le \theta \le \pi\}$ et qui est orienté dans le sens des arguments croissants. Alors on a,

$$\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} f(z)dz = \pi i R\acute{e}s(f,0).$$

Preuve. Posons $R\acute{e}s(f,0)=a$. La fonction f admettant 0 comme pôle simple, il existe une fonction g holomorphe dans le disque ouvert $D_R(0)$ telle que si $z\in\Delta_R(0)$, on ait :

$$f(z) = \frac{a}{z} + g(z)$$

on a donc,

$$\int\limits_{\gamma_{\epsilon}} f(z)dz = a \int\limits_{\gamma_{\epsilon}} \frac{dz}{z} + \int\limits_{\gamma_{\epsilon}} g(z)dz.$$

La fonction g étant holomorphe dans un disque fermé $\overline{D}_{R'}(0)$ tel que 0 < R' < R, elle est bornée dans ce disque par un réel M et si $0 < \epsilon < R'$, on a :

$$\left| \int_{\gamma_{\epsilon}} g(z)dz \right| \le \pi \epsilon M.$$

Par suite, on a $\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} g(z)dz = 0$.

D'autre part, on a $\int_{\gamma_{\epsilon}} \frac{dz}{z} = \int_{0}^{\pi} \frac{i\epsilon e^{i\theta}}{\epsilon e^{i\theta}} d\theta = \int_{0}^{\pi} id\theta = i\pi$ et $a = R\acute{e}s(f, 0)$, d'où le lemme. Intégrales trigonométriques.

On se propose de calculer les intégrales de la forme :

$$I = \int_{0}^{2\pi} R(\sin t, \cos t) dt$$

où R(x,y) est une fonction rationnelle à coefficients réels des deux variables x et y, n'admettant pas de pôle sur le cercle unité

$$\{(x,y) \in \mathbb{R}^2 / x^2 + y^2 = 1\}.$$

Pour tout $t \in [0, 2\pi]$, posons $z = e^{it}$. On a alors,

$$\sin t = \frac{1}{2i}(z - \frac{1}{z}), \quad \cos t = \frac{1}{2}(z + \frac{1}{z}) \text{ et } dz = izdt.$$

Par suite, en désignant par Γ le bord du disque $D_1(0)$, on a :

$$I = \int_{\Gamma} \frac{1}{iz} R(\frac{1}{2i}(z - \frac{1}{z}), \frac{1}{2}(z + \frac{1}{z})) dz$$

L'intégrale I est donc égale au produit par $2\pi i$ de la somme des résidus de la fonction $z \longmapsto \frac{1}{iz} R(\frac{1}{2i}(z-\frac{1}{z}), \frac{1}{2}(z+\frac{1}{z}))$, cette somme étant étendue aux pôles contenus dans l'intérieur du disque $D_1(0)$.

Exemple 1.2.1

$$I = \int_{0}^{2\pi} \frac{dt}{2 - \cos t}.$$

On a, $f(z) = \frac{2i}{z^2 - 4z + 1}$ après changement de variable. f admet des pôles simples $(2 + \sqrt{3})$ et $(2 - \sqrt{3})$ le seul pôle à l'intérieur du disque unité $D_1(0)$ est $(2 - \sqrt{3})($ car $|2 + \sqrt{3}| > 1$ et $|2 - \sqrt{3}| < 1$). En calculant le $Rés(f, 2 - \sqrt{3})$ on trouve, $Rés(f, 2 - \sqrt{3}) = -\frac{i}{\sqrt{3}}$. Par suite on a: $I = 2\pi i Rés(f, 2 - \sqrt{3}) = \frac{2\pi}{\sqrt{3}}$.

Intégrales impropres de fonctions rationnelles.

On se propose de calculer les intégrales de la forme :

$$I = \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx$$

où P et Q sont deux polynômes à coefficients réels de degrés respectifs p et q. On suppose, pour assurer la convergence d'une telle intégrale, que Q n'a pas de zéro réel et que $q-p\geq 2$.

Pour calculer cette intégrale, nous allons appliquer le théorème des résidus à la fonction $f: z \longmapsto \frac{P(z)}{Q(z)}$ qui est méromorphe dans $\mathbb C$ et au compact K défini par :

$$K = \{ z = x + iy \in \mathbb{C} \ / \ y \ge 0 \text{ et } x^2 + y^2 \le R^2 \}$$

où R est un nombre réel strictement positif, assez grand pour que tous les zéros de Q contenus dans le demi-plan supérieur se trouvent à l'intérieur de K.

On note par $z_1, z_2, ..., z_m$ les zéros de Q situés dans le demi-plan supérieur et soit Γ_R le demi-cercle de centre 0, de rayon R situé dans ce même demi-plan, orienté dans le sens direct. On a donc,

$$\int_{\partial K} \frac{P(z)}{Q(z)} dz = \int_{-R}^{R} \frac{P(x)}{Q(x)} dx + \int_{\Gamma_R} \frac{P(z)}{Q(z)} dz = 2\pi i \left(\sum_{k=1}^{m} R\acute{e}s(f, z_k)\right)$$

Comme $q-p\geq 2$, on a $\lim_{|z|\to +\infty}\left|z\frac{P(z)}{Q(z)}\right|=0$, donc en appliquant le lemme1, on a,

$$\lim_{R \to +\infty} \int_{\Gamma_R} \frac{P(z)}{Q(z)} dz = 0$$

on en déduit que,

$$I = \lim_{R \to +\infty} \int_{-R}^{R} \frac{P(x)}{Q(x)} dx = \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \left(\sum_{k=1}^{m} R\acute{e}s(f, z_k)\right)$$

Exemple 1.2.2

$$I = \int_{0}^{+\infty} \frac{dx}{1+x^4} = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{dx}{1+x^4}$$

 $f(z) = \frac{1}{1+z^4}$ a deux pôles simples situés dans le demi-plan supérieur $z_1 = e^{i\pi/4}$ et $z_2 = e^{i3\pi/4}$.

Par suite,
$$I = \frac{2\pi i}{2} (R\acute{e}s(f, z_1) + R\acute{e}s(f, z_2)) = \pi i (-\frac{z_1}{4} - \frac{z_2}{4}) = \frac{\pi}{4} \sqrt{2}$$
.

Intégrales de la forme

$$I = \int_{-\infty}^{+\infty} f(x)e^{i\alpha x}dx$$

où $\alpha > 0$ et où f est une fonction holomorphe sauf peut-être en un nombre

fini de points, sur un ouvert contenant le demi-plan supérieur. On suppose que les points singuliers de f n'appartiennent pas à l'axe réel, que $f(x) \in \mathbb{R}$, si $x \in \mathbb{R}$, que $\lim_{|z| \to +\infty} f(z) = 0$ et que l'intégrale I converge. Alors, pour tout R > 0, l'intégrale

$$\int_{-R}^{R} f(x)e^{i\alpha x}dx$$

a un sens et nous allons appliquer le théorème des résidus à la fonction $g: z \longmapsto f(z)e^{i\alpha z}$ qui est holomorphe dans le demi-plan supérieur sauf peut-être en un nombre fini et au compact utilisé dans l'exemple précédent où R a été choisi assez grand pour que K contienne tous les points singuliers de f situés dans le demi-plan supérieur. On obtient ainsi :

$$\int_{\partial K} f(z)e^{i\alpha z}dz = \int_{-R}^{R} f(x)e^{i\alpha x}dx + \int_{\Gamma_R} f(z)e^{i\alpha z}dz = 2\pi i \left(\sum_{k=1}^{p} R\acute{e}s(g,z_k)\right)$$

D'après le lemme 2, on a $\lim_{R\to +\infty}\int\limits_{\Gamma_R}f(z)e^{i\alpha z}dz=0.$

Par suite, l'intégrale $\int_{-R}^{R} f(x)e^{i\alpha x}dx$ a une limite lorsque R tend vers $+\infty$. Comme l'intégrale I est convergente, on a :

$$I = \int_{-\infty}^{+\infty} f(x)e^{i\alpha x}dx = 2\pi i \left(\sum_{k=1}^{p} R\acute{e}s(g, z_k)\right)$$

- a) L'intégrale I a été supposée convergente. En pratique, on doit prouver la convergence des intégrales proposées.
- b) Si $\alpha < 0$, on doit intégrer dans le demi-plan inférieur.

$$I = \int_{0}^{+\infty} \frac{\cos \alpha x}{1 + x^4} dx , \qquad \alpha > 0$$

L'intégrale I est absolument convergente, car

$$|I| \le \int_{0}^{+\infty} \left| \frac{\cos \alpha x}{1 + x^4} \right| dx \le \int_{0}^{+\infty} \frac{1}{1 + x^4} dx < +\infty.$$

La fonction f définie par $f(z) = \frac{1}{1+z^4}$ a des pôles simples $z_1 = e^{i\pi/4}, \ z_2 = e^{i3\pi/4}, \ z_3 = e^{i5\pi/4}$ et $z_4 = e^{i7\pi/4}$, elle est holomorphe sur $\mathbb{C} - \{z_1, z_2, z_3, z_4\}$ et on a $\lim_{|z| \to +\infty} f(z) = 0. \text{ Soit } R > 1 \text{ et } \Gamma_R \text{ le demi-cercle de centre 0}$ et de rayon R situé dans le demi-plan supérieur et orienté dans le sens direct. On a :

$$\int_{-R}^{R} \frac{e^{i\alpha x}}{1+x^4} dx + \int_{\Gamma_R} \frac{e^{i\alpha z}}{1+z^4} dz = 2\pi i (R\acute{e}s(g, z_1) + R\acute{e}s(g, z_2)) \tag{*}$$

où g est la fonction définie par $g(z) = \frac{e^{i\alpha z}}{1+z^4}$. Mais

$$\int_{-R}^{0} \frac{e^{i\alpha x}}{1+x^4} dx = \int_{0}^{R} \frac{e^{-i\alpha x}}{1+x^4} dx$$

donc

$$\int_{-R}^{R} \frac{e^{i\alpha x}}{1+x^4} dx = 2 \int_{0}^{R} \frac{\cos \alpha x}{1+x^4} dx$$

En faisant tendre R vers $+\infty$ dans l'égalité (*), on trouve,

$$I = \frac{1}{2} \left[2\pi i (R\acute{e}s(g, z_1) + R\acute{e}s(g, z_2)) \right]$$
$$= \frac{\pi\sqrt{2}}{4} (\cos\frac{\alpha\sqrt{2}}{2} + \sin\frac{\alpha\sqrt{2}}{2})e^{-\frac{\alpha\sqrt{2}}{2}}.$$

Calcul de l'intégrale

$$I = \int_{0}^{+\infty} \frac{\sin x}{x} dx$$

Soit f la fonction définie sur \mathbb{C}^* par $f(z) = \frac{e^{iz}}{z}$.

f est holomorphe sur \mathbb{C}^* et admet 0 comme pôle simple. Soient R et ϵ tels que $0 < \epsilon < R$ et K le compact défini par :

$$K = \{z = x + iy \in \mathbb{C} / y \ge 0 \text{ et } \epsilon^2 \le x^2 + y^2 \le R^2 \}$$

Le bord orienté de K est constitué par les les segments $[-R, -\epsilon]$ et $[\epsilon, R]$ orientés dans le sens des x croissants et des deux demi-cercles γ_{ϵ} et Γ_{R} de centre 0, de rayon ϵ et R situés dans le demi-plan supérieur, γ_{ϵ} étant orienté dans le sens indirect Γ_{R} dans le sens direct. En appliquant le théorème des résidus à f et à K, il vient

$$\int_{\partial K} f(z)dz = \int_{-R}^{-\epsilon} \frac{e^{ix}}{x}dx + \int_{\gamma_{\epsilon}} \frac{e^{iz}}{z}dz + \int_{\epsilon}^{R} \frac{e^{ix}}{x}dx + \int_{\Gamma_{R}} \frac{e^{iz}}{z}dz = 0$$

car f est holomorphe à l'intérieur de K.

D'autre part, on a :

$$\int_{-R}^{-\epsilon} \frac{e^{ix}}{x} dx + \int_{\epsilon}^{R} \frac{e^{ix}}{x} dx = \int_{\epsilon}^{R} \frac{e^{ix} - e^{-ix}}{x} dx = 2i \int_{\epsilon}^{R} \frac{\sin x}{x} dx$$

On sait que

$$\lim_{R \to +\infty} \int_{\Gamma_R} \frac{e^{iz}}{z} dz = 0$$

et que

$$\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} \frac{e^{iz}}{z} dz = -\pi i R\acute{e}s(f, 0)$$

et on a:

$$R\acute{e}s(f,0) = \lim_{z \to 0} \frac{ze^{iz}}{z} = 1$$

On en déduit que :

$$\lim_{\substack{R \to +\infty \\ \epsilon \to 0}} \int_{\epsilon}^{R} \frac{\sin x}{x} dx = \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

1.2.2 Application à la sommation des séries.

Proposition 1.2.1 Soit f une fonction méromorphe admettant un nombre fini de pôles n'appartenant pas à \mathbb{Z} . De plus, supposons que

$$|f(z)| < \frac{M}{|z|^p}$$

pour p > 1 et M une contante positive. Alors

$$\sum_{n=-\infty}^{n=+\infty} f(n) = -\sum R\acute{e}s\left(\pi\cot(\pi z)f(z), z_k\right)$$

où z_k sont les pôles de f.

Preuve. Considérons l'intégrale

$$I = \int_{C_N} \pi \cot(\pi z) f(z) dz$$

où le chemin C_N est le carré.

La fonction $g(z) = \pi \coth(\pi z) f(z)$ a des pôles simples en z = n avec

$$R\acute{e}s(g(z)), n) = f(n)$$

pour tout $n \in \mathbb{Z}$.

D'après le théorème des résidus,

$$\int_{C_N} \pi \cot(\pi z) f(z) dz = 2\pi i \left[\sum_{n=-N}^{n=N} f(n) + \sum_k R\acute{e}s \left(\pi \cot(\pi z) f(z), z_k \right) \right],$$

où z_k sont les pôles de f.

Posons z = x + iy, on a

$$\left|\cos(\pi z)\right|^2 = \cos^2(\pi x) + \sinh^2(\pi y)$$

et

$$\left|\sin(\pi z)\right|^2 = \cosh^2(\pi y) - \cos^2(\pi x).$$

D'où

$$\left|\cot g(\pi z)\right|^2 = \frac{\left|\cos(\pi z)\right|^2 = \cos^2(\pi x) + \sinh^2(\pi y)}{\left|\sin(\pi z)\right|^2 = \cosh^2(\pi y) - \cos^2(\pi x)}.$$

Sur les cotés verticaux de C_N , on a

$$x = \pm (N + \frac{1}{2})$$

donnant

$$\cos((N+\frac{1}{2})\pi)=0$$

donc

$$|\cot g(\pi z)| = |th(\pi y)| \le 1.$$

Sur les cotés horizontaux,

$$0 \le \cos^2(\pi x) \le 1$$

donc

$$|\cot g(\pi z)|^2 \le \frac{\sinh^2(\pi y) + 1}{\cosh^2(\pi y) - 1} = \frac{\cosh^2(\pi y)}{\sinh^2(\pi y)} = \coth^2(\pi y).$$

On a, alors

$$|\cot g(\pi z)| \le |\coth(\pi z)| = \coth(\pi(N + \frac{1}{2})) \le \coth(\frac{\pi}{2}).$$

Donc sur C_N , on a

$$|\cot g(\pi z)| \le \max(1, \coth(\frac{\pi}{2})) = \coth(\frac{\pi}{2}).$$

Par conséquent,

$$\left| \int_{C_N} \pi \cot(\pi z) f(z) dz \right| \leq \pi \int_{C_N} \left| \cot(\pi z) f \right| \left| (z) \right| dz$$

$$\leq \pi M \coth(\frac{\pi}{2}) \int_{C_N} \frac{dz}{\left| z \right|^p}$$

$$\leq \frac{\pi M}{N^p} \coth(\frac{\pi}{2}) \int_{C_N} dz$$

$$= \frac{4\pi M}{N^p} (2N+1) \coth(\frac{\pi}{2}).$$

D'où

$$\lim_{N \to +\infty} \int_{C_N} \pi \cot(\pi z) f(z) dz = 0.$$

On a, donc

$$2\pi i \left[\sum_{n=-\infty}^{n=+\infty} f(n) + \sum_{k} \operatorname{Re} s \left(\pi \cot(\pi z) f(z), z_{k} \right) \right] = 0.$$

Ce qui donne

$$\sum_{n=-\infty}^{n=+\infty} f(n) = -\sum_{k} \operatorname{Re} s \left(\pi \cot(\pi z) f(z), z_{k} \right)$$

où z_k sont les pôles de f.

Exemple 1.2.3 Soit $a \succ 0$. Montrer que

$$\sum_{n=-\infty}^{n=+\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \coth(\pi a)$$

On a $f(z) = \frac{1}{z^2 + a^2}$, cette fonction admet deux pôles simples en $z_1 = -ai$ et $z_2 = +ai$. Les résidus $\pi \cot(\pi z) f(z)$ sont

$$R\acute{e}s\left(\pi\cot(\pi z)f(z),\pm ai\right)=\lim_{z\to\pm ai}(z\mp ai)\frac{\pi\cot(\pi z)}{z^2+a^2}=-\frac{\pi}{2a}\coth(\pi a).$$

D'où

$$\sum_{n=-\infty}^{n=+\infty} \frac{1}{n^2 + a^2} = -\left[R\acute{e}s\left(\pi\cot(\pi z)f(z), z_1\right) + R\acute{e}s\left(\pi\cot(\pi z)f(z), z_2\right)\right] = \frac{\pi}{a}\coth(\pi a).$$

Sous les mêmes hypothèses, on obtient aussi

$$\sum_{n=-\infty}^{n=+\infty} (-1)^n f(n) = -\sum_k R\acute{e}s\left(\frac{\pi}{\sin(\pi z)} f(z), z_k\right)$$

où z_k sont les pôles de f.

Exemple 1.2.4 Montrer que

$$\sum_{n=1}^{n=+\infty} (-1)^n \frac{1}{n^4} = -\frac{7\pi^4}{720}.$$

Utiliser

$$\sum_{n=-\infty, n\neq 0}^{n=+\infty} (-1)^n \frac{1}{n^4} = 2 \sum_{n=1}^{n=+\infty} (-1)^n \frac{1}{n^4}.$$

1.3 Principe de l'argument.

Ce principe énnonce une propriété géométrique de base des fonctions analytiques : il détermine le nombre de fois qu'une fonction analytique f décrit un petit cercle centré à l'origine, lorsque z décrit un chemin fermé γ .

Proposition 1.3.1 Soit U un ouvert de \mathbb{C} et z_0 un point de U. Si f est une fonction analytique dans U et si z_0 est un zéro d'ordre α de f, alors la fonction $\frac{f'}{f}$ a un pôle simple en z_0 et $Rés(\frac{f'}{f}, z_0) = \alpha$. Si f est une fonction analytique dans $U - \{z_0\}$ et si z_0 est un pôle d'ordre α de f, alors la fonction $\frac{f'}{f}$ a un pôle simple en z_0 et $Rés(\frac{f'}{f}, z_0) = -\alpha$.

Preuve. Si z_0 est un zéro d'ordre α de f, celle-ci s'écrit au voisinage de z_0 :

$$g(z) = (z - z_0)^{\alpha} f(z)$$

où g est une fonction analytique non nulle en z_0 . Par suite,

$$\frac{f'(z)}{f(z)} = \frac{\alpha}{z - z_0} + \frac{g'(z)}{g(z)}$$

ce qui montre, puisque $\frac{g'}{g}$ est analytique dans un voisinage de z_0 , que z_0 est un pôle simple $\frac{f'}{f}$ et que

$$R\acute{e}s(\frac{f'}{f},z_0)=\alpha.$$

Si z_0 est un pôle d'ordre α de f, le prolongement g de la fonction

$$z \longmapsto (z - z_0)^{\alpha} f(z)$$

à U est une fonction analytique non nulle en z_0 ($g(z_0)=f^{\alpha-1}(z_0)$),

et sa dérivée logarithmique satisfait,

$$\frac{g'(z)}{g(z)} = \frac{\alpha}{z - z_0} + \frac{f'(z)}{f(z)}.$$

D'où l'on déduit que le point z_0 est un pôle simple de $\frac{f'}{f}$ et que le résidu de $\frac{f'}{f}$ en z_0 est

$$R\acute{e}s(\frac{f'}{f},z_0)=-\alpha.$$

Théorème 1.3.1 (Principe de l'argument)

Soit f une fonction méromorphe non constante dans un ouvert U de \mathbb{C} , et soit γ le bord orienté d'un compact K contenu dans U. On suppose que la fonction f n'a ni zéro ni pôle sur γ . On a:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = Z - P$$

où Z (resp. P) est la somme des ordres de multiplicité des zéros (resp. des pôles) de la fonction f contenus dans l'intérieur de K.

Preuve.

Notons $z_1, z_2, ..., z_r$ (resp. $w_1, w_2, ..., w_s$) les zéros (resp. les pôles) de f dans le compact K et $\alpha_1, \alpha_2, ..., \alpha_r$ (resp. $\beta_1, \beta_2, ..., \beta_s$) leurs ordres de multiplicité respectifs. Les points $z_1, z_2, ..., z_r$ et $w_1, w_2, ..., w_s$ étant d'après la proposition des pôles simples de

la fonction $\frac{f'}{f}$, on déduit alors par le théorème des résidus,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{r} R\acute{e}s(\frac{f'}{f}, z_j) + \sum_{j=1}^{s} R\acute{e}s(\frac{f'}{f}, w_j)$$
$$= \sum_{j=1}^{r} \alpha_j - \sum_{j=1}^{s} \beta_j.$$

Remarque 1.3.1 Soit f une fonction méromorphe dans un ouvert U et γ un chemin fermé homotope à un point dans U, et ne passant ni par 0, ni par aucune singularité de f. On a alors,

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 2\pi i \sum_{j=1}^{r} R\acute{e}s(\frac{f'}{f}, z_j) I(\gamma, z_j)$$

où z_j désigne soit un pôle, soit un zéro de f.

Exemple 1.3.1 Soit

$$f(z) = \frac{(z-1)(z-3+4i)}{(z+2i)^2}$$

et soit γ le chemin illustré par la figure suivante :

Le zéro z=1 et le pôle z=-2i sont à l'intérieur du chemin γ , on trouve :

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = -1.$$

Géométriquement, lorsque z décrit γ dans le sens directe, les arguments de z-1 et z+2i augmentent de 2π , tandis que l'argument de z-3+4i reste inchangé. Soit, l'argument de f(z) lorsque z décrit une fois γ , est $2\pi-2(2\pi)=-2\pi$, ce qui revient à dire que la fonction f décrit une seule fois le cercle centré à l'origine dans le sens négatif.

1.4 Théorème de Rouché.

Théorème 1.4.1 (Théorème de Rouché)

Soit γ un chemin fermé homotope à un point dans un ouvert U. On suppose que γ est d'intérieur non vide. Soient f et g deux fonctions analytiques dans U telles que :

$$|f(z) - g(z)| < |f(z)|$$
, $\forall z \in \gamma$.

Alors f et g ont le même nombre de zéros dans l'intérieur de γ .

Preuve. La fonction h définie par $h(z) = \frac{g(z)}{f(z)}$ est non nulle sur γ et l'image de γ par h est strictement contenue dans $D_1(1)$. Il s'ensuit que $h \circ \gamma$ est un chemin fermé dans le disque $D_1(1)$ et comme $0 \notin D_1(1)$ et que ce dernier est simplement connexe, font que $I(h \circ \gamma, 0) = 0$. Si γ est définie sur [a, b], alors

$$I(h \circ \gamma, 0) = \frac{1}{2\pi i} \int_{h \circ \gamma} \frac{1}{z} dz = \frac{1}{2\pi i} \int_{a}^{b} \frac{h'(\gamma(t))}{h(\gamma(t))} d\gamma(t)$$
$$= \frac{1}{2\pi i} \int_{\gamma} \frac{h'(z)}{h(z)} dz$$

soit

$$\int_{\gamma} \frac{h'(z)}{h(z)} dz = 0.$$

Or, cette dernière équation s'écrit:

$$\int_{\gamma} \left(\frac{g'(z)}{g(z)} - \frac{f'(z)}{f(z)}\right) dz = 0$$

d'où par le théorème
7, f et g ont le même nombre de zéros. \blacksquare

Exemple 1.4.1 Soit le polynôme

$$P(z) = z^{17} + 15z^{11} - 7z^7 + 13z^4 - 14$$

et trouvons en utilisant le théorème de Rouché le nombre de zéros de P dans le disque $D_r(0)$, avec r > 49. Posons

$$g(z) = z^{17}$$

Si |z| = r, on a:

$$|P(z) - g(z)| = |15z^{11} - 7z^7 + 13z^4 - 14|$$

 $< 49r^{11}$
 $< |P(z)|$.

Donc g et P ont le même nombre de zéros dans le disque $D_r(0)$ d'après le théorème de Rouché et comme f a un zéro d'ordre 17, alors P a un zéro d'ordre 17 dans $D_r(0)$.