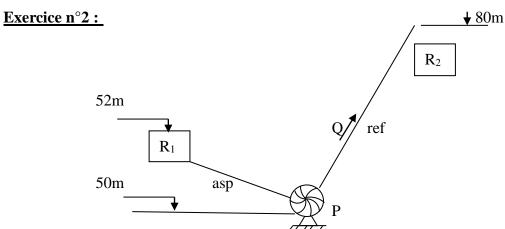

Exercice n°1:

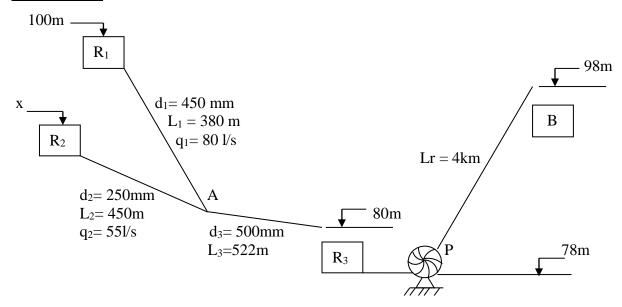

Le reservoir (R_1) alimente (R_2) par l'intermédiaire d'une conduite d'adduction gravitaire de longueur L = 4 Km, Q = 1001/s sachant que le régime est turbulent rugueux

1) Calculer le coefficient de frottement λ par l'équation de Nikuradse

$$\frac{1}{\sqrt{\lambda}} = 1.14 - 2\log\left(\varepsilon/\phi\right)$$

- 2) Determiner la pression de service au point (A) distant de 1Km de R₁
- 3) Si la perte de charge totale dans la conduite est de **5m** calculer le Q véhiculé par la conduite

$$\varepsilon = 1mm$$
 , $\emptyset = 383,5$ mm , $Z_A = 796$ m

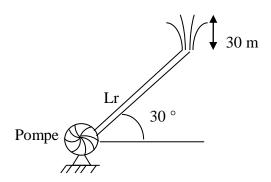

Une pompe en charge débite 40 l/s sur une conduite de refoulement de longueur L=450 mDéterminer la puissance utile de la pompe et tracer la ligne piezométrique

On donne
$$\frac{1}{\sqrt{\lambda}} = 1.14 - 2\log(\epsilon/D)$$
, $\epsilon = 0.1mm$

Longueur de la conduite d'aspiration La = 27 m

$$D_{asp} = 250 \text{ mm}, D_{ref} = 200 \text{ mm}$$

Exercice n°3:


Les reservoirs R₁ et R₂ alimentent le reservoir de stockage R₃

On donne
$$\varepsilon 1 = \varepsilon 2 = \varepsilon 3 = 1mm$$
, $\frac{1}{\sqrt{\lambda}} = 1{,}14 - 2\log(\varepsilon/D)$

- 1) Calculer la cote au R₂
- 2) Calculer la pression de service au point (A) si la cote du terrain naturel en ce point $C_A=82m$
- 3) A la sortie de la pompe on a mesuré la pression $Ps/\gamma = 4$ bars pour refouler un débit Q=95 l/s sachant que $\lambda r = 0.0213$

Dimensionner la conduite de refoulement sans tenir compte du diametre commercial

Exercice n°4:

Le jet d'eau ci après a une hauteur de 30~m et $Q=0.5~m^3/s$, la puissance utile de la pompe Pu=320~kw, les pertes de charges unitaires J=0.05~m et les pertes de charge singulières $\Delta Hs=1m$. On a l'angle $\alpha=30~$ ° et $g=9.81~m/s^2$

On demande de calculer la longueur Lr de refoulement.