Résolution des équations non linéaires

D'habitude on résout les équations $ax^2 + bx + c = 0$ en utilisant le discréminant \triangle qui nous informe sur l'existence des racines de cette équation, mais si on donne l'équation $e^x + -x^2 = 0$, il est possible que cette équation n'admet pas des racines exactes mais des racines approximatives, donc on est dans le cas des équations non linéaires.

Soit $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ une fonction continue.

Ce chapitre est consacré à résoudre l'équation nonlinéaire du type: f(x) = 0. Le problème est de trouver les valeurs de $x \in [a, b]$ qui sont solutions de l'équation f(x) = 0

En général les méthodes de résolution de l'équation non linéaire f(x) = 0 sont des méthodes itératives qui consistent à construire une suite (x_n) convergente vers la solution \bar{x} , qui s'appelle zéro ou racine de f.

Pour résoudre ces équations non linéaires on va utiliser quelques méthodes numériques

1) Méthode de Dichotomie (ou bissection)

Le principe de la méthode de Dichotomie est basé sur le théorème des valeurs intermédiaires

Théorème:

Soit f une fonction continue sur [a, b], telle que $f(a) \cdot f(b) < 0$ alors il existe $c \in]a, b[$ tel que f(c) = 0.

Pour déterminer la solution c de l'équation f(x) = 0, où f est une fonction continue sur [a; b], on suit la manière suivante:

Au rang zéro: On pose $a=a_0$, $b=b_0$, donc il existe $x_0\in]a_0,b_0[$ telle que $f\left(x_0\right)=0$

Au rang un: On divise l'intervalle $[a_0, b_0]$ en deux parties égales, et on va voir le signe de $f\left(\frac{a_0+b_0}{2}\right)$, alors on a deux cas:

1) Si
$$f(a_0) f\left(\frac{a_0 + b_0}{2}\right) < 0$$
, $\left(f\left(\frac{a_0 + b_0}{2}\right)\right)$ est du même signe que $f(b_0)$ on pose $a_1 = a_0$ et $b_1 = \frac{a_0 + b_0}{2}$,

2) Si
$$f(a_0) f\left(\frac{a_0 + b_0^2}{2}\right) > 0$$
, $\left(f\left(\frac{a_0 + b_0}{2}\right) \text{ est du même signe que } f(a_0)\right)$ on pose $a_1 = \frac{a_0 + b_0}{2}$ et $b_1 = b_0$. donc $\exists x_1 \in]a_1, b_1[$ telle que $f(x_1) = 0$,

Nous avons obtenu un intervalle de longueur moitié telle que l'équation f(x) = 0

On va itérer ce processus pour diviser de nouveau l'intervalle en deux.

On note ce nouveau intervalle contenant x_1 par $]a_1, b_1[$, et on va voir le signe de $f\left(\frac{a_1+b_1}{2}\right)$, alors on a deux cas:

1) Si
$$f(a_1) f\left(\frac{a_1+b_1}{2}\right) < 0$$
, $\left(f\left(\frac{a_1+b_1}{2}\right) \text{ est du même signe que } f(b_1)\right)$ on

pose
$$a_2 = a_1$$
 et $b_2 = \frac{a_1 + b_1}{2}$,

2) Si
$$f(a_1) f\left(\frac{a_1 + b_1}{2}\right) > 0$$
, $\left(f\left(\frac{a_1 + b_1}{2}\right) \text{ est du même signe que } f(a_1)\right)$ on pose $a_2 = \frac{a_1 + b_1}{2}$ et $b_2 = b_1$, d'où $\exists x_2 \in]a_2, b_2[$ telle que $f(x_2) = 0$,

En itérant ce processus n fois , on obtient une suite $(x_n)_{n\in\mathbb{N}}$ telle que

1) Si
$$f(a_n) f\left(\frac{a_n + b_n}{2}\right) < 0$$
, $\left(f\left(\frac{a_n + b_n}{2}\right)\right)$ est du même signe que $f(b_n)$ on use $a_{n+1} = a_n$ et $b_{n+1} = \frac{a_n + b_n}{2}$

pose
$$a_{n+1} = a_n$$
 et $b_{n+1} = \frac{a_n + b_n}{2}$

2) Si
$$f(a_n) f\left(\frac{a_n + b_n}{2}\right) > 0$$
, $\left(f\left(\frac{a_n + b_n}{2}\right) \text{ est du même signe que } f(a_n)\right)$ on

pose
$$a_{n+1} = \frac{a_n + b_n}{2}$$
 et $b_{n+1} = b_n$, donc $\exists x_{n+1} \in]a_{n+1}, b_{n+1}[$ telle que $f(x_{n+1}) = 0$,

Etude de la convergence de la méthode de Dichotomie

Posons
$$c_n = \frac{a_n + b_n}{2}$$
.

On a f est continue sur [a,b], vérifiant f(a).f(b) < 0 donc il existe $c \in$ a,b[telle que f(c)=0. (l'exitence de la solution est vérifiée).

Soit $c \in [a_n, b_n]$ de longueur $\frac{b-a}{2^n}$ l'unique solution de l'équation f(x) = 0. Si on fait n itérations, on obtient la majoration suivante

 $|c-c_n| \le \frac{b-a}{2^n} \le \epsilon$ où ϵ est la précision souhaitée, d'où on peut conclure

que $\lim_{n\to\infty}c_n=c$, et on arrête le processus dés que $b_n-a_n=\frac{b-a}{2^n}\leq\epsilon$, et le

nombre d'itérations n vérifie l'inégalité: $n \geq \frac{\ln{(b-a)} - \ln{\epsilon}}{\ln{2}}$

Exemple: Soit la fonction f définie par $f(x) = x^3 - 4x + 2$.

En appliquant la méthode de Dichotomie trouver le zéro de l'équation f(x) dans l'intervalle [0, 1] avec une précision où tolérence $\epsilon = 10^{-2}$.

La fonction f est continue sur [0,1], et de plus on a

f(1) f(0) = (-1)(2) = -2 < 0, donc d'aprés le théorème des valeurs intermédiaires l'exitence de la solution est vérifiée

Calculons le nombre d'itérations
$$n$$

 $n \ge \frac{2 \ln \epsilon}{\ln 2} \Rightarrow n \ge \frac{2 \ln 10}{\ln 2} = 6.6439$, donc on prend $n = 7$
Posons $c_n = \frac{a_n + b_n}{2}$

Posons
$$c_n = \frac{a_n + b_r}{2}$$

On construit le tableau suivant

Donc $\exists c \in [0.53907, 0.54688]$ solution de l'équation f(x) = 0On a $b_n - a_n = 0.54688 - 0.53907 = 0.00781 \le \epsilon = 10^{-2}$.

Exemple: Soit la fonction f définie par $f(x) = e^x + x$

Même questions que l'exemple précédent en prenant l'intervalle [-1,0]et $\epsilon = 10^{-2}$.

La fonction f est continue sur [-1,0], et de plus on a f(-1) f(0) = -0.632 12 < 0, donc d'aprés le théorème des valeurs intermédiaires l'exitence de la solution est vérifiée

Calculons le nombre d'itérations
$$n$$

$$n \ge \frac{2 \ln \epsilon}{\ln 2} \Rightarrow n \ge \frac{2 \ln 10}{\ln 2} \Rightarrow n \ge 7, \text{ donc on prend } n = 7$$
Posons $c_n = \frac{a_n + b_n}{2}$
On construit le tableau suivant

n	a_n	b_n	c_n	$f\left(a_{n}\right)$	$f\left(b_{n}\right)$	$f\left(c_{n}\right)$
0	-1	0	-0.5	-0.63212	-1	0.10653
1	-1	-0.5	-0.75	-0.63212	0.10653	-0.27763
2	-0.75	-0.5	-0.625	-0.27763	0.10653	-9.0006×10^{-2}
3	0.625	-0.5	-0.5625	-9.0006×10^{-2}	0.10653	7.2828×10^{-3}
4	0.625	-0.5625	-0.59375	-9.0006×10^{-2}	7.2828×10^{-3}	-4.1498×10^{-2}
5	-0.59375	-0.5625	-0.57813	-4.1498×10^{-2}	-7.2828×10^{-3}	-1.7184×10^{-2}
6	-0.57813	-0.5625	-0.57032	-4.1498×10^{-2}	-7.2828×10^{-3}	-4.9755×10^{-3}
7	-0.57032	-0.5625	-0.56641	-4.9755×10^{-3}	-7.2828×10^{-3}	1.1493×10^{-3}
Dong $\exists a \in [-0.57039, -0.569.5]$ solution do l'équation $f(x) = 0$						

Donc $\exists c \in [-0.57032, -0.5625]$ solution de l'équation f(x) = 0On a $b_n - a_n = -0.5625 - (-0.57032) = 0.00782 \le 0.01$

Méthode de point fixe:

Soit f(x) est une fonction continue strictement monotone sur [a, b] telle que f(a) f(b) < 0.

Parmi les méthodes de résolution des équations non linéaires f(x) = 0, la méthode de point fixe ou la méthode des approximations successives qui est basée sur la construction d'une suite (x_n) qui converge vers la racine unique \bar{x} de l'équation f(x) = 0.

Construction de la suite (x_n) :

On transforme l'équation non linéaire f(x) = 0 en un problème équivalent g(x) = x

où la fonction $g:[a;b]\to\mathbb{R}$ qui a la propriété suivante $\bar{x}=g(\bar{x})$ si et seulement si $f(\bar{x}) = 0$, le point \bar{x} est appelé le point fixe de la fonction g.

La fonction n'est pas unique.

La suite (x_n) est définie par recurrence de la manière suivante:

On donne la valeur initiale $x_0 \in [a, b]$

 $x_1 = g(x_0), x_2 = g(x_1), ..., x_{n+1} = g(x_n),$ où n est le nombre d'itérations.

Conditions de convergence de la suite (x_n) vers la racine unique \bar{x} . Théorème

Si la fonction q vérifie les deux conditions suivantes

i) $g(x) \in [a, b]$ pour tout $x \in [a, b]$,

ii)
$$\max_{x \in [a,b]} \left| g'(x) \right| \le k < 1$$
; alors

La suite (x_n) définie par $x_{n+1} = g(x_n)$ converge vers la racine unique \bar{x} de l'équation f(x) = 0.

L'erreur peut être évaluée par l'inégalité $|\bar{x} - x_n| \le |x_{n+1} - x_n| \le \epsilon$ où ϵ est une précision où tolérence, et le nombre d'itérations minimal n est calculé par:

$$n \ge \frac{\ln \epsilon - \ln (b - a)}{\ln k}$$

Soit la fonction $f(x) = x^3 - 3x + 1$, où $x \in [1, 2]$.

En appliquant la méthode de point fixe et en prenant $x_0 = 1$ trouver la racine de l'équation f(x) = 0 dans l'intervalle [1, 2] avec une précision où tolérence $\epsilon = 10^{-1}$.

La fonction f est continue sur [1,2], et de plus on a

f(1) f(2) = (-1)(3) = -3 < 0, donc d'aprés le théorème des valeurs intermédiaires l'exitence de la solution est vérifiée.

Vérifions la monotonie de la fonction f dans [1, 2]

 $f^{'}(x) = 3x^{2} - 3 = 3(x^{2} - 1) \ge 0 \text{ sur } [1, 2]$, donc f est continue et strictement croissante sur [1,2], ce qui prouve que le zéro de la fonction f est unique.

$$f(x) = x^3 - 3x + 1 = 0 \Leftrightarrow x = \frac{x^3 + 1}{3}$$
 ou $x = (3x - 1)^{1/3}$

Donc on note
$$g_1(x) = \frac{x^3 + 1}{3}$$
 et $g_2(x) = (3x - 1)^{1/3}$.
Vérifions les conditions de convergence de la méthode de point fixe pour

 $g_1(x)$ et $g_2(x)$

 $g_1(1) = 2/3 \notin [1,2]$ d'où $g_1([1,2]) \nsubseteq [1,2]$. Alors la méthode de point fixe

$$g_2(1) = 1.2599$$
 et $g_2(2) = 1.7100$ d'où $g_2([1,2]) \subset [1,2]$

$$q_2(x) = (3x-1)^{-2/3}$$

$$g_2^{(7)}(1) = 2^{-2/3} = 0.62996 < 1$$
, et $g_2^{(7)}(2) = 5^{-2/3} = 0.34200 < 1$,

 $g_{2}(1) = 1.2599 \text{ et } g_{2}(2) = 1.7100 \text{ d'où } g_{2}([1,2]) \subset [1,2]$ $g_{2}'(x) = (3x-1)^{-2/3}$ $g_{2}'(1) = 2^{-2/3} = 0.62996 < 1, \text{ et } g_{2}'(2) = 5^{-2/3} = 0.34200 < 1,$ D'autre part on a $g_{2}''(x) = -\frac{2}{(3x-1)^{\frac{5}{3}}} < 0,$ ce qui prouve que $g_{2}'(x)$ est

décroissante, donc $\max_{x \in [1,2]} \left| g_{2}^{'}(x) \right| \leq 0.62996 < 1.$

D'où la méthode de point fixe converge donc on définit la suite (x_n) par

 $x_{1}=g\left(x_{0}\right) ,\ x_{2}=g\left(x_{1}\right) ,...,x_{n+1}=g\left(x_{n}\right) ,$ où n est le nombre d'itérations.

$$n \ge \frac{-\ln 10 - \ln (2 - 1)}{\ln 0.629.96} = 4.9829$$
, donc on prend $n = 5$

Calculons le nombre d'itérations
$$n$$

 $n \ge \frac{-\ln 10 - \ln (2-1)}{\ln 0.629 \, 96} = 4.982 \, 9$, donc on prend $n = 5$.
On a $x_0 = 1$, $x_1 = g(1) = 1.259 \, 9$, $x_2 = g(1.2599) = 1.406$, $x_3 = g(1.406) = 1.4764$,

$$x_4 = g(1.4764) = 1.5080, x_5 = g(1.5080) = 1.5218.$$

Donc
$$\exists \bar{x} \in [1.5080, 1.5218]$$
 solution de l'équation $f(x) = 0$.

On a
$$|x_5 - x_4| = |1.5218 - 1.5080| = 0.0138 \le 0.1$$

Exemple:

Soit la fonction

$$f(x) = x^2 - 5, \ x \in [2, 3].$$

L'équation
$$f(x) = 0 \Leftrightarrow x^2 - 5 = 0 \Leftrightarrow$$

$$\begin{cases}
g_1(x) = x^2 + x - 5 \\
g_2(x) = \frac{5}{x} \\
g_3(x) = \frac{x+5}{x+1}
\end{cases}$$

Quelle est la fonction g_i $(1 \le i \le 3)$ qui vérifie les conditions de convergence de la méthode de point fixe.

Calculer le nombre d'itérations n en supposons que la précision $\epsilon = 10^{-1}$.

Construire la suite (x_n) qui est définie par $x_{n+1} = g(x_n)$ et converge vers la racine unique \bar{x} de l'équation f(x) = 0, en donnant $x_0 = 2$.

Méthode de Newton-Raphson:

Parmi les méthodes de résolution des équations non linéaires f(x) = 0, la méthode de Newton-Raphson qui est basée sur la construction d'une suite (x_n) qui converge vers la racine unique \bar{x} de l'équation f(x) = 0.

Supposons que f vérifie les hypothèses suivantes

- 1) f est une fonction continue strictement monotone sur [a, b] telle que
 - 2) f est dérivable sur [a, b], et $f'(x) \neq 0 \ \forall x \in [a, b]$.

L'hypothèse 1 vérifie l'existence et l'unicité de la racine \bar{x} de l'équation f(x) = 0.

Construction de la suite (x_n) :

L'idée principale de la méthode de Newton-Raphson est de prendre dans la méthode de point fixe la fonction $g(x) = x - \frac{f(x)}{f'(x)}$.

La suite (x_n) est définie par recurrence de la manière suivante:

On donne la valeur initiale $x_0 \in [a, b]$

$$x_{1} = g(x_{0}) = x_{0} - \frac{f(x_{0})}{f'(x_{0})}, \ x_{2} = g(x_{1}) = x_{1} - \frac{f(x_{1})}{f'(x_{1})}, ..., x_{n+1} = g(x_{n}) = x_{1} - \frac{f(x_{1})}{f'(x_{1})}, ..., x_{n+1} = x_{n} - \frac{f(x_{1})}{f'(x_{1})}, ..., x_{n} = x_{n} - \frac{f(x_{1})}{f'(x_{1})}, .$$

 $x_n - \frac{f(x_n)}{f'(x_n)}$, où n est le nombre d'itérations.

Conditions de convergence de la suite (x_n) vers la racine unique \bar{x} . Théorème:

Soit f une fonction qui vérifie les hypothèses 1 et 2, et de plus en supposant que f est deux fois dérivable sur [a, b], et $f''(x) \neq 0 \ \forall x \in [a, b]$.

Alors la suite des itérés de la méthode de Newton-Raphson

 $x_{n+1} = g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}$ converge vers la racine unique $\bar{x} \in [a, b]$ de l'équation f(x) = 0.

Le test d'arrét: On arrète les itérations dés que $|x_{n+1} - x_n| \le \epsilon$ où ϵ est une précision.

Exemple:

Soit la fonction $f(x) = x - \cos x$, $x \in [0.5, 1]$.

En utilisant la méthode de Newton-Raphson et en prenant $x_0 = 0.5$ trouver la racine de l'équation f(x) = 0 dans l'intervalle [0.5, 1] avec une précision où tolérence $\epsilon=10^{-4}$

On a
$$f'(x) = 1 + \sin x > 0 \ \forall x \in [0.5, 1].$$

$$f(1) = 1 - \cos 1 = 0.45970, \quad f(0.5) = 0.5 - \cos 0.5 = -0.37758$$

La fonction f est une fonction continue, dérivable et strictement croissante sur [0.5, 1], et on a de plus f(0.5) f(1) < 0 et $f''(x) = \cos x \neq 0 \ \forall x \in [0.5, 1]$.

Alors la suite de la méthode de Newton-Raphson $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ converge vers la racine unique $\bar{x} \in [a, b]$ de l'équation f(x) = 0.

f'
$$(0.5) = 1 + \sin 0.5 = 1.47940 \Rightarrow x_1 = 0.5 - \frac{-0.37758}{1.4794} = 0.75523$$

On a $|x_1 - x_0| = |0.75523 - 0.5| = 0.25523 > 10^{-4}$, done on continue

l'itération.

f'
$$(0.75523) = 1 + \sin 0.7552 = 1.6854$$
, et $f(0.75523) = 2.7116 \times 10^{-2}$
 $\Rightarrow x_2 = 0.75523 - \frac{2.7116 \times 10^{-2}}{1.6854} = 0.73914$
On a $|x_2 - x_1| = |0.73914 - 0.75523| = 0.01609 > 10^{-4}$, done on continue

l'itération.

Fraction:

$$f(0.73914) = 9.1827 \times 10^{-5}$$
, et $f'(0.73914) = 1.6737$
 $\Rightarrow x_3 = 0.73914 - \frac{9.1827 \times 10^{-5}}{1.6737} = 0.73909$
On a $|x_3 - x_2| = |0.73909 - 0.73914| = 0.00005 < \epsilon = 10^{-4}$

On a
$$|x_3 - x_2| = |0.73909 - 0.73914| = 0.00005 < \epsilon = 10^{-4}$$

Donc $\exists \bar{x} \in [0.73909, 0.73914]$ solution de l'équation f(x) = 0.