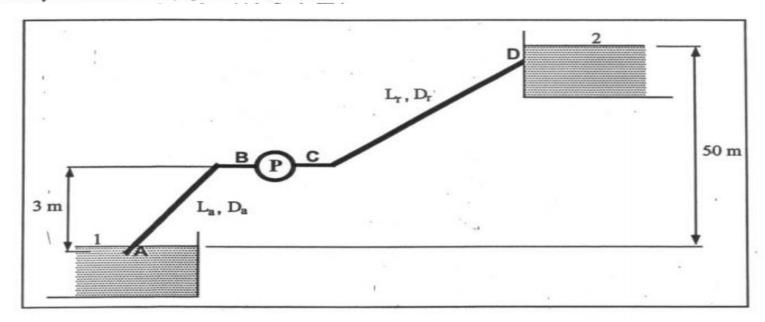
TP: 02 Machine Hydraulique M1 Hu

Application:

On considère une pompe aspirant de l'eau dans un réservoir pour la refouler dans un autre selon le schéma ci-après.

Les données sont les suivantes :


Viscosité cinématique de l'eau : v = 1,15. 10-6 m²/s,

Dimensions de la conduite d'aspiration : $D_a = 300 \text{ mm}$, $L_a = 800 \text{ m}$,

Dimensions de la conduite de refoulement : $D_r = 300$ mm, $L_r = 1500$ m,

Différence de niveau entre les 2 réservoirs : $z_2 - z_1 = 50 \text{ m}$,

Les tuyaux sont en fonte (rugosité k = 0,2 mm).

Les caractéristiques de la pompe à N= 2900 t/mn sont données dans le tableau qui suit:

H (m)	90	85	80	72	60	50	35
Q(l/s)	0	20	40	60	80	90	100
. η (%)		60	66	71	75,5	75	70
NPSHr (m)		0,5	0,8	1,2	1,8	2,2	3

6-2- Travail à effectuer

- 1- Tracer la courbe de rendement de la pompe en fonction du débit Q.
- 2- Tracer sur le même graphique en fonction du débit Q:
 - la caractéristique de la pompe.
 - la caractéristique de la conduite d'aspiration.
 - la caractéristique de la pompe minorée des pertes de charge à l'aspiration.
 - la caractéristique de la conduite de refoulement.
- 3- Déterminer le point de fonctionnement de la pompe et celui de l'installation.
- 4- Calculer la pression à l'entrée de la pompe. L'exprimer en hauteur ce qui définit le NPSHDISPONIBLE.
- 5- Tracer sur le même graphique les courbes de NPSHREQUIS et de NPSHDISPONIBLE.
 - Déterminer le point de début de la cavitation.
- Que se passe-t-il quand on augmente la hauteur géométrique d'aspiration? En déduire la hauteur limite d'aspiration.
- 6- Comment déduire les caractéristiques de la pompe à N=2000 tr/mn et N=1500 tr/mn connaissant celles à 2900 tr/mn (ou réciproquement).
- 7- Tracer sur le même graphique les caractéristiques de la pompe pour les vitesses de rotation suivantes:

N= 2900 t/mn

N= 2000 t/mn

N=1500 t/mn