Année Universitaire : 2019/2020 Module : Cristallographie 2 Enseignant : R. MAKHLOUFI Le : 07/10/2020, durée : 1 heure

Corrigé type EXAMEN

Exercice 01 (06 pts)

Compléter le texte avec les mots qui conviennent.

Les rayons X, découverts en **1895** par le physicien allemand Wilhelm Röntgen, sont des rayonnements **électromagnétiques** utilisés principalement en imagerie médicale (**Radiologie**) et en cristallographie (**Radiocristallographie**) pour l'étude des substances cristallines.

Les rayons X sont produits dans des dispositifs appelés **tubes à rayons X**. Dans ce dispositif, des électrons émis par un **filament** chauffé par effet Joule, sont **accélérés** sous l'effet d'un champ **électrique uniforme**. Ce champ est créé par une **tension électrique**. Les électrons se dirigent vers une cible métallique (**anticathode** ou **anode**), avec laquelle ils interagissent pour produire les rayons X (spectre **continu** et spectre de **raies caractéristiques**).

Exercice 02 (14 pts)

Le Cuivre (**Cu**) cristallise dans le système cubique. Son diagramme de diffraction sur poudre est réalisé en utilisant un faisceau de rayons X monochromatique de longueur d'onde $\lambda = 1,5418$ Å. Le tableau suivant rassemble la position (en **20**) des raies de diffraction.

On donne: masse atomique $M_{\text{Cu}} = 63.5 \text{ g.mol}^{-1}$ et $\mathcal{N}_A = 6.023.10^{23} \text{ mol}^{-1}$.

Raie	2θ (°)	θ (°)	$\sin^2 \theta$	$\frac{sin^2\theta_i}{sin^2\theta_1}$	x 2	x 3	Nhkl	hkl	a (Å)
1	43,34	21,67	0,1364	0,9997	1,9993	2,9990	3	(111)	3,6160
2	50,48	25,24	0,1818	1,3330	2,6661	3,9991	4	(200)	3,6158
3	74,2	37,1	0,3639	2,6676	5,3352	8,0028	8	(220)	3,6147
4	90,03	45,015	0,5003	3,6676	7,3352	11,0028	11	(311)	3,6149
5	95,25	47,625	0,5458	4,0011	8,0022	12,0033	12	(222)	3,6149
6	117,08	58,54	0,7276	5,3344	10,6689	16,0033	16	(400)	3,6150
7	136,75	68,375	0,8642	6,3357	12,6713	19,0070	19	(331)	3,6147
8	145,02	72,51	0,9097	6,6692	13,3384	20,0075	20	(420)	3,6147

1. Indexer ce diagramme puis déduire le mode de réseau de Bravais.

Pour indexer un diagramme de diffraction dans le cas d'un système cubique, on utilise la méthode dite $(\sin^2\theta)$. Il faut calculer les rapports $(\sin^2\theta_i/\sin^2\theta_1)$ puis les comparer avec les rapports théoriques caractérisant les modes cubiques primitif, centré et à faces centrées.

On obtient les valeurs h, k et l pour chaque raie de diffraction. D'après les résultats obtenus, les indices h, k et l obtenus ont tous même parité, c.-à-d. sont tous pairs ou tous impairs.

Ton peut déduire que le mode de réseau de Bravais est à faces centrées F.

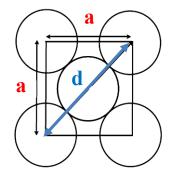
2. Calculer le paramètre de la maille.

L'espacement des plans cristallins est donné par l'équation: $\mathbf{d_{hkl}} = \frac{a}{\sqrt{(h^2 + k^2 + l^2)}}$

L'équation de Bragg : $\lambda = 2 d_{hkl} sin\theta_{hkl}$

La combinaison des deux équations donne : $a=\frac{\lambda}{2 \ sin\theta_{hkl}} \sqrt{(h^2+k^2+l^2)}=\frac{\lambda}{2 \ sin\theta_{hkl}} \sqrt{N_{hkl}}$ Puis, on calcule la moyenne des huit valeurs.

$$a_{moyen} = \frac{\sum_{i=1}^{8} a_i}{8} = \frac{28,9206}{8} = 3,615 \text{ Å}.$$


3. Calculer le rayon atomique (métallique) de Cuivre.

Les atomes sont en contact suivant la diagonale (d) de la face,

Donc:

$$4R_{Cu} = a\sqrt{2} \Rightarrow R_{Cu} = \frac{a\sqrt{2}}{4}$$

$$R_{Cu} = \frac{3,615\sqrt{2}}{4} = 1,278\,\text{Å}$$

4. Calculer la masse volumique du Cuivre.

Face d'une maille CFC

$$V_{maille} = a^3 = 3,615^3 = 47,2416^{\circ} A^3 = 47,2416.10^{-24} \text{ cm}^3$$

$$\rho = \left(\frac{m}{V}\right)_{maille} = \frac{Z \, x \, \mathcal{M}_W}{\mathcal{N}_A \, x \, V_{maille}} = \frac{4 \, x \, 63, 5}{6,023. \, 10^{23} \, x \, 47, 2416. \, 10^{-24}} = 08,927 \, g. \, cm^{-3}$$