Université: Mohamed Khieder

Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématiques Module: Lois de Proba. 2018/2019

Niveau: 1er année master

Serie d'exercice N03

Exercice 01.

Sient X et $(X_n)_{\mathbb{N}}$ une famille de v.a.

1) Montrer les égalités entre événements

$$\{(X_n)_{\mathbb{N}} \text{ ne converge pas vers } X\} = \bigcup_{\varepsilon \in]0,+\infty[} \limsup_n \left\{ |X_n - X| > \varepsilon \right\},$$

$$= \bigcup_{p \in \mathbb{N}^*} \limsup_n \left\{ |X_n - X| > \frac{1}{p} \right\}.$$

2) Montrer que $(X_n)_{\mathbb{N}}$ converge p.s. vers X si, et seulement si, pour tout $\varepsilon > 0$,

$$\mathbf{P}\left(\limsup_{n} \left\{ |X_n - X| > \varepsilon \right\} \right) = 0.$$

3) Montrer que si, pour tout $\varepsilon > 0$, la série $\sum_{n \geq 0} \mathbf{P}(|X_n - X| > \varepsilon)$ converge alors la suite $(X_n)_{\mathbb{N}}$ converge p.s. vers X.

Exercice 02.

Soit f une application de [0,1] dans \mathbb{R} de carré intégrable au sens de Lebesgue sur [0,1]. On considère une suite indépendante $(U_n)_{\mathbb{N}}$ de v.a.r. de loi uniforme sur [0,1]. Démontrer en utilisant l'inégalité de Bienaymé-Tchebycheff, que la suite des moyennes empiriques $I_n = \frac{1}{n} \sum_{k=1}^n f(U_k)$ associée à la suite de v.a.r. $(f(U_n))_{\mathbb{N}}$ converge en probabilité vers l'intégrale au sens de Lebesgue $\int_{[0,1]} f d\lambda$.

Exercice 03.

Soient (X_n) une suite de v.a.r. de carré intégrable non corrélées. On suppose qu'il existe un réel μ et un réel positif C tels que, pour tout $n \ge 1$, $E[X_n] = \mu$ et $var(X_n) \le 0$. Montrer que la suite $\frac{1}{n} \sum_{i=1}^{n} X_i$ converge vers μ dans L_2 et en probabilité.

Exercice 04.

Montrer à l'aide de la loi forte des grands nombres que

$$\lim_{n \to +\infty} \int_{[0,1]^n} f\left(\frac{x_1 + \dots + x_n}{n}\right) d\lambda^{(n)}\left(x_1, \dots, x_n\right) = f\left(\frac{1}{2}\right),$$

où $\lambda^{(n)}$ est la mesure de Lebesgue dans \mathbb{R}^n et f une application continue bornée de \mathbb{R} dans \mathbb{R} . Indication: On pourra considérer une suite indépendante de v.a.r. $(X_i)_{i\geq 1}$ de même loi uniforme U([0,1]).

$$\lim_{n \to +\infty} \sum_{k > 0} e^{-\alpha n} \frac{(\alpha n)^k}{k!} f\left(\frac{k}{n}\right) = f(\alpha),$$

où α est un réel strictement positif et f une application continue bornée de $\mathbb R$ dans $\mathbb R$.

Indication: On pourra considérer une suite indépendante de v.a.r. $(Y_i)_{i\geq 1}$ de même loi de Poisson $P(\alpha)$.

Exercice 05.

Soient f une application continue de [0,1] dans \mathbb{R} et $x \in [0,1]$. Pour tout $n \in \mathbb{N}^*$, notons S_n une v.a.r. binomiale de loi B(n,x).

1) Montrer que $p_n(x) := E\left[f\left(\frac{1}{n}S_n\right)\right]$ est un polynôme en x appelé polynôme de Bernstein de f.

2) En utilisant l'uniforme continuité de f sur [0,1] montrer que, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [0,1]$,

$$|p_{n}(x) - f(x)| \leq E\left[\left|f\left(\frac{1}{n}S_{n}\right) - f(x)\right|\right]$$

$$\leq \varepsilon P\left(\left|\frac{1}{n}S_{n} - x\right| < \delta\right) + 2P\left(\left|\frac{1}{n}S_{n} - x\right| \ge \delta\right) \sup_{0 \le x \le 1} |f(x)|$$

En déduire que, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in [0,1]$,

$$|p_n(x) - f(x)| \le \varepsilon + 2 \frac{x(1-x)}{n\delta^2} \sup_{0 \le x \le 1} |f(x)|$$

3) Démontrer le théorème de Weierstrass: Tous application continue de [0,1] dans \mathbb{R} est limite uniforme sur [0,1] d'une suite de polynômes.

Exercice 06.

Etudier la convergence étroite de la suite de probabilités $(\mu_n)_{n\geq 1}$ de densités respectives $(f_n)_{n\geq 1}$ où pour tout $n\geq 1$, f_n est définie par $f_n(x):=nx^{n-1}\mathbf{1}_{[0,1]}(x)$.

Exercice 07.

Soit $(p_n)_{\mathbb{N}}$ une suite de réels de]0,1[telle que

$$\lim_{n} (np_n) = \alpha \in]0, +\infty[.$$

Montrer que la suite de probabilités $(B(n, p_n))_{\mathbb{N}}$ converge étroitement vers la probabilité de Poisson $P(\alpha)$

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.r définies sur un espace (Ω, F, \mathbf{P}) et f une application continue de \mathbb{R} dans \mathbb{R} . On suppose que la suite $(X_n)_{n\in\mathbb{N}}$ converge en loi vers une v.a.r X. Montrer que la suite $(f(X_n))_{n\in\mathbb{N}}$ converge en loi vers f(X).

Exercice 09.

- 1. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.r qui converge en loi vers une v.a.r constante a (i.e. la suite $(\mathbf{P}_{X_n})_{n\geq 1}$ converge étroitement vers δ_a). Montrer que la convergence a lieu également en probabilité.
- 2. Soit $(X_n)_{n\geq 1}$ une suite indépendante de v.a.r de même loi de Cauchy C(1). Pour tout $n\geq 1$, on pose $S_n:=\sum\limits_{k=1}^{k=n}X_k$. Etudier les convergence en probabilité et en loi des suites $\left(\frac{1}{\sqrt{n}}S_n\right)_{n\geq 1}$, $\left(\frac{1}{n}S_n\right)_{n\geq 1}$ et $\left(\frac{1}{n^2}S_n\right)_{n\geq 1}$.

Exercice 10.

Soient X une v.a.r. et $(X_n)_{\mathbb{N}}$ une suite de v.a.r., on suppose que, pour tout $n \in \mathbb{N}$, $P_{X_n} := \delta_{x_n}$ où $x_n \in \mathbb{R}$. 1) Si $P_X = \delta_x$, $x \in \mathbb{R}$, montrer que la suite $(X_n)_{\mathbb{N}}$ converge en loi vers X si et seulement si $(x_n)_{\mathbb{N}}$ converge vers x.

2) Montrer que si la suite $(X_n)_{\mathbb{N}}$ converge en loi vers X, alors il existe $x \in \mathbb{R}$ tel que $P_X = \delta_x$.