Table des matières

Obje	ectifs de cours	1
Chá	pitre 1. Théorie de la complexité et mesure de performance	3
Pa	ortie 1. Théorie de la complexité et mesure de performance	4
1.	Généralités	4
	1.1. Quelques problèmes algorithmiques classiques	6
	1.2. Qualités d'un bon algorithme	
2.	Analyse et notions de complexité	
	2.1. Critères d'évaluation de performance de l'algorithme	8
	2.1.1. Calcul de nombre d'opérations	
	2.1.2. Mesure d'espace mémoire	
	2.2. Coût d'un algorithme	
	2.3. Complexité d'un algorithme	9
	2.4. Complexité d'un problème	
	2.5. Comment calculer la complexité d'un algorithme?	
	2.6. Type de complexité	
	2.6.1. Complexités temporelle et spatiale d'un algorithme	
	2.6.2. Complexités pratique et théorique	
	2.6. Notion d'optimalité	
Paı	rtie 2. Classes et complexité d'un problème	13
1.	Complexité d'un problème, Présentation et définitions	
2.	Trois méthodes pour trouver une borne inférieure	14
	2.1. Les méthodes dites d'oracle ou d'adversaire	14
	2.2. Les méthodes dites d'oracle ou d'adversaire	14
	2.3. Les Réductions	14
3.	Classes de complexité d'un problème	14
	3.1. Classes de complexité en temps	14
	3.1.1. Classe P	15
	3.1.2. NP	15
	3.1.3. EXPTIME	15
	3.2. Classes de complexité en espace	16
4.	NP-complétude	17
5.	Réduction d'un problème Q à un problème Π	17
	pitre 2. Evaluation des algorithmes récursifs, Grandeur des fonctions et la	
	nplexité Asymptotique	
1.	Structures de données	
2.	Qu'est ce que la récursivité ?	
3.	Types de récursivité	20

4.	Critères de terminaison pour un bon algorithme récursif	21
	Comment gérer la récursivité ?	
	5.1. Gestion de la récursivité sans la pile : Récursivité Terminale (RT)	22
	5.2. Gestion de la récursivité avec la pile : Récursivité Enveloppée (RE)	22
6.	Optimisation d'exécution de la récursivité	
	6.1. Comparaison d'algorithmes	
7.	C'est quoi les notions de Landau ?	
	7.1. Classes de complexité	25
	7.2. Notations asymptotique	26
	7.2.1. Domination asymptotique	26
	7.2.2. Notation Ω	26
	7.2.3. Equivalence asymptotique	
	7.3. Calcul de complexité asymptotique	27
	itre 3. Calcul de complexité des algorithmes itératifs et récursifs	
1.	Coût uniforme et coût logarithmique	
	1.1. A propos de la notation O	
2.	Calcul de complexité des algorithmes itératifs	31
3.	1 0	
	3.1. Master théorème et Équations de récurrences	
Chap	itre 4. La stratégie Diviser pour Régner (Divide&Conquer)	
1.	Méthode Diviser pour Régner	
2.	Diviser pour Régner : tri fusion	
3.	Diviser pour Régner : produit de deux matrices	
4.	L'élément majoritaire et la dichotomie	
_	itre 5. Algorithmes de tri et de recherche	
1.		
	1.1. Algorithme de Tri naïfs (tri par sélection)	
	1.2. Algorithme de Tri Fusion (Merge Sort)	
	1.3. Le tri rapide (quicksort)	
	1.4. Le tri par Tas (Heapsort)	52
2.	Présentation des différentes méthodes de recherche	
	2.1. Recherche séquentielle : recherche dans un tableau non trié	
	2.2. Recherche séquentielle : recherche dans un tableau trié	
	2.3. Recherche dichotomique	
_	itre 6. Exploration des graphes et algorithme des arbres	
	Structures de données pour les graphes	
2.	Parcours de graphe	
	2.1. Parcours en largeur	
_	2.2. Parcours en profondeur	
3.	Backtracking (retour sur trace)	
	3.1.1. Application du backtracking dans les arbres de jeux	
	3.1.1.1. Principe de MIN-MAX	61

4. Algorithmes des arbres recouvrant optimaux	64
Chapitre 7. Méthodes heuristiques d'optimisation	68
1.1. Définition d'optimisation	68
1.2. Problème d'optimisation	68
1.3. Optimisation combinatoire	69
1.3.1. Méthodes exactes, Branch and bound	69
1.3.2. Méthodes approchées: Algorithme Glouton	70
1.3.2. Quelques Méthodes heuristiques	72
1.3.2.1. Définitions	72
1.3.2.2. Algorithme Recherche Locale	74
1.3.2.2. Algorithme A*	75
1.3.2.2. Algorithme Hill Climbing	76
Č Č	

Table des figures

Figure 1. Calcul factorielle, f(3)	15
Figure 2. Notations asymptotique [5]	
Figure 3. Classes de complexité	
Figure 4. La fonction Divide pour éclater la donnée	35
Figure 5. La stratégie Diviser pour Régner (Divide&Conquer)	36
Figure 6. Comment Tri-Sélection trie le tableau [7, 1, 15, 8, 2]	
Figure 7. Exemple d'arbre	
Figure 8. Exemple de tas	53
Figure 9. Implémentation par un tableau	
Figure 10. Tri dans le pire des cas	
Figure 11. Arbre des niveaux de joue de la configuration de la figure 10	60
Figure 12. Réduction d'un problème Q à un problème Π	
Figure 13. Exemple d'un placement optimal de pièces 2D	
Figure 14. La fonction d'optimisation	
Figure 15. Exemple de fonction d'optimisation	