Faculté des Sciences exactes, des Sciences de la nature et de la vie

Département: de Mathématiques

Module: Intro. Proc. Stocha. 2019/2020

Serie N^004

Exercice 01.

- 1. Calculer pour tout couple (s,t) les quantités $E(B_sB_t^2)$, $E(B_t|F_s)$.
- 2. Quelle est la loi de $B_t + B_s$?
- 3. Soit θ_s une variable aléatoire bornée F_s -mesurable. Calculer pour $t \geq s$, $E[\theta_s(B_t B_s)]$ et $E[\theta_s(B_t B_s)]$ $B_s)^2$].
- 4. Calculer $E\left[1_{\{B_t \leq a\}}\right]$ et $E\left[B_t 1_{\{B_t \leq a\}}\right]$. 5. Montrer que $E(f(B_t)) = E(f(G\sqrt{u} + B_{t-u}))$ avec G v.a. indépendante de B_{t-u} et de loi gaussienne centré réduite.

Exercice 02.

Montrer que les processus suivants sont des martingales.

- 1. $M_t = B_t^3 3 \int_0^t B_s ds$. 2. $Z_t = B_t^3 3tB_t$.
- 3. $X_t = tB_t \int_0^t B_s ds$.
- 4. $Y_t = t^2 B_t 2 \int_0^t B_s ds$.

Exercice 03.

- 1. Soit B_1 et B_2 deux MB indépendants. Montrer que le produit B_1B_2 est une martingale.
- 2. Montrer que le processus $Y_t = \int_0^t B_u du$ est gaussien. Calculer son espérance et sa covariance.
- 3. Montrer que $Z_t = B_t \int_0^t \frac{B_s}{s} ds$ est un processus gaussien. Calculer sa variance et sa covariance. En déduire que Z est un mouvement Brownien.

Exercice 04.

Soit n fixé et $t_j = \frac{j}{2^n}t$ pour j variant de 0 a 2^n . Montrer que

$$\sum_{j=1}^{2^n} [B(t_j) - B(t_{j-1})]^2 \to t,$$

quand $n \to \infty$, la convergence ayant lieu en moyenne quadratique et p.s.

Exercice 05.

On définit un pont Brownien par $Z_t = B_t - tB_1, 0 \le t \le 1$.

- 1. Montrer que Z est un processus gaussien indépendant de B_1 . Préciser sa loi, c'est-a-dire sa moyenne et sa fonction de covariance.
 - 2. Montrer que le processus \tilde{Z} avec $\tilde{Z} = Z_1 t$ a même loi que Z.
 - 3. Montrer que le processus Y avec $Y_t = (1-t)B_{\frac{t}{1-t}}$, 0 < t < 1 a même loi que Z.

Exercice 06.

Soit (Ω, F, F_t, P) et B un (F_t) -brownien sur cet espace. Pour tout λ réel, Montrer que le processus

$$exp(\lambda B_t - \frac{1}{2}\lambda^2 t), \ t \ge 0$$

est une martingale.

Si $X_t = \mu t + \sigma B_t$, Montrer que, pour tout β réel

$$exp(\beta X_t - (\mu \beta + \frac{1}{2}\sigma^2 \beta^2)t), \ t \ge 0.$$

est une (F_t) -martingale. Réciproquement, si X est un processus continu tel que $exp(\beta X_t - (\mu \beta + \frac{1}{2}\sigma^2 \beta^2)t)$, $t \geq 0$ est une F_t -martingale, montrer qu'il existe un F_t -brownien B tel que $X_t = \mu t + \sigma B_t$.