
Introduction
A Simplified Pipeline Model

A Simplified Pipeline Model

Vertex
Processing Rasterizer Fragment

Processing

Vertex
Shader

Fragment
Shader

GPU Data Flow Application Framebuffer

Vertices Vertices Fragments Pixels

A Simplified Pipeline Model
• Application will provide vertices, which are collections of data that

are composed to form geometric objects, to the OpenGL pipeline.
• The vertex processing stage uses a vertex shader to process each

vertex, doing any computations necessary to determine where in
the frame buffer each piece of geometry should go.

• The other shading stages we mentioned – tessellation and
geometry shading – are also used for vertex processing, but we’re
trying to keep this simple.

• After all the vertices for a piece of geometry are processed, the
rasterizer determines which pixels in the frame buffer are affected
by the geometry.

• and for each pixel, the fragment processing stage is employed,
where the fragment shader runs to determine the final color of the
pixel.

A Simplified Pipeline Model

• In your OpenGL applications, you’ll usually
need to do the following tasks:
– specify the vertices for your geometry
– load vertex and fragment shaders (and other

shaders, if you’re using them as well)
– issue your geometry to engage the OpenGL

pipeline for processing

OpenGL Programming

• Modern OpenGL programs essentially do the
following steps:
– Create shader programs
– Create buffer objects and load data into them
– “Connect” data locations with shader variables
– Render

Application Framework Requirements

• OpenGL applications need a place to render into
– usually an on-screen window

• Need to communicate with native windowing
system

• Each windowing system interface is different
• We use GLUT (more specifically, freeglut)

– simple, open-source library that works everywhere
– handles all windowing operations:

• opening windows
• input processing

Simplifying Working with OpenGL

• Operating systems deal with library functions differently
– compiler linkage and runtime libraries may expose different

functions

• Additionally, OpenGL has many versions and profiles
which expose different sets of functions
– managing function access is cumbersome, and window-system

dependent

• We use another open-source library, GLEW(the OpenGL
Extension Wrangler library), to hide those details
– (It removes all the complexity of accessing OpenGL functions,

and working with OpenGL extensions).

Representing Geometric Objects
• Geometric objects are represented using vertices
• A vertex is a collection of generic attributes

– positional coordinates
– colors
– texture coordinates
– any other data associated with that point in space

• Position stored in 4 dimensional homogeneous
coordinates

• Vertex data must be stored in vertex buffer objects
(VBOs)

• VBOs must be stored in vertex array objects (VAOs)

x
y
z
w

OpenGL’s Geometric Primitives

• All primitives are specified by vertices

GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

GL_LINES GL_LINE_LOOP GL_LINE_STRIP

GL_TRIANGLES

GL_POINTS

A First Program: Cube

• We’ll render a cube with colors at each vertex
• Our example demonstrates:

– initializing vertex data
– organizing data for rendering
– simple object modeling

• building up 3D objects from geometric primitives
• building geometric primitives from vertices

Initializing the Cube’s Data

• We’ll build each cube face from individual triangles
• Need to determine how much storage is required

– (6 faces)(2 triangles/face)(3 vertices/triangle)

 const int NumVertices = 36;

• To simplify communicating with GLSL, we’ll use a vec4
class (implemented in C++) similar to GLSL’s vec4 type
– we’ll also typedef it to add logical meaning

 typedef vec4 point4;
 typedef vec4 color4;

Initializing the Cube’s Data (cont’d)
• A Vertex Buffer Object (VBO) is an OpenGL feature that

provides methods for uploading vertex data (position,
normal vector, color, etc.) to the video device for non-
immediate-mode rendering.

• Before we can initialize our VBO, we need to stage the data
• Our cube has two attributes per vertex

– position
– color

• We create two arrays to hold the VBO data

 point4 vPositions[NumVertices];
 color4 vColors[NumVertices];

https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Vertex_(geometry)
https://en.wikipedia.org/wiki/Normal_vector

Cube data
• Vertices of a unit cube centered at origin

– sides aligned with axes
• In our example we’ll copy the coordinates of our cube model into a VBO

for OpenGL to use. Here we set up an array of eight coordinates for the
corners of a unit cube centered at the origin. We use a homogenous
coordinate
point4 positions[8] = {
 point4(-0.5, -0.5, 0.5, 1.0),
 point4(-0.5, 0.5, 0.5, 1.0),
 point4(0.5, 0.5, 0.5, 1.0),
 point4(0.5, -0.5, 0.5, 1.0),
 point4(-0.5, -0.5, -0.5, 1.0),
 point4(-0.5, 0.5, -0.5, 1.0),
 point4(0.5, 0.5, -0.5, 1.0),
 point4(0.5, -0.5, -0.5, 1.0)
};

Cube Data (cont’d)

• We’ll also set up an array of RGBA colors
• we’ll set up a matching set of colors for each of the model’s

vertices, which we’ll later copy into our VBO. Here we set up eight
RGBA colors. In OpenGL, colors are processed in the pipeline as
floating-point values in the range [0.0, 1.0]. normalizing values.
color4 colors[8] = {
 color4(0.0, 0.0, 0.0, 1.0), // black
 color4(1.0, 0.0, 0.0, 1.0), // red
 color4(1.0, 1.0, 0.0, 1.0), // yellow
 color4(0.0, 1.0, 0.0, 1.0), // green
 color4(0.0, 0.0, 1.0, 1.0), // blue
 color4(1.0, 0.0, 1.0, 1.0), // magenta
 color4(1.0, 1.0, 1.0, 1.0), // white
 color4(0.0, 1.0, 1.0, 1.0) // cyan
};

Generating a Cube Face from Vertices

• To simplify generating the geometry, we use a convenience
function quad()
– create two triangles for each face and assigns colors to the vertices

int Index = 0; // global variable indexing into VBO arrays

void quad(int a, int b, int c, int d)
{
 vColors[Index] = colors[a]; vPositions[Index] = positions[a]; Index++;
 vColors[Index] = colors[b]; vPositions[Index] = positions[b]; Index++;
 vColors[Index] = colors[c]; vPositions[Index] = positions[c]; Index++;
 vColors[Index] = colors[a]; vPositions[Index] = positions[a]; Index++;
 vColors[Index] = colors[c]; vPositions[Index] = positions[c]; Index++;
 vColors[Index] = colors[d]; vPositions[Index] = positions[d]; Index++;
}

Generating the Cube from Faces
• Generate 12 triangles for the cube

– 36 vertices with 36 colors
– generation of our cube’s VBO data by specifying the six faces using

index values into our original positions and colors arrays. It’s
worth noting that the order that we choose our vertex indices is
important, as it will affect something called backface culling later.

void colorcube()
{
 quad(1, 0, 3, 2);
 quad(2, 3, 7, 6);
 quad(3, 0, 4, 7);
 quad(6, 5, 1, 2);
 quad(4, 5, 6, 7);
 quad(5, 4, 0, 1);
}

Vertex Array Objects (VAOs)
• VAOs store the data of an geometric object
• Steps in using a VAO

– generate VAO names by calling glGenVertexArrays()
– bind a specific VAO for initialization by calling glBindVertexArray()
– update VBOs associated with this VAO
– bind VAO for use in rendering

• This approach allows a single function call to specify all the data for an
objects

– previously, you might have needed to make many calls to make all the data current

• Code: Create a vertex array object
 GLuint vao;

 glGenVertexArrays(1, &vao);
 glBindVertexArray(vao);

Storing Vertex Attributes
• Vertex data must be stored in a VBO, and associated

with a VAO
• The code-flow is similar to configuring a VAO

– generate VBO names by calling glGenBuffers()
– bind a specific VBO for initialization by calling

 glBindBuffer(GL_ARRAY_BUFFER, …)

– load data into VBO using

 glBufferData(GL_ARRAY_BUFFER, …)

– bind VAO for use in rendering glBindVertexArray()

VBOs in Code
• Create and initialize a buffer object

GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER,
 sizeof(vPositions) +
sizeof(vColors),
 NULL, GL_STATIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0,
 sizeof(vPositions), vPositions);
glBufferSubData(GL_ARRAY_BUFFER,
sizeof(vPositions),
 sizeof(vColors), vColors);

Connecting Vertex Shaders with
Geometric Data

• The final step in preparing you data for processing by OpenGL (i.e.,
sending it down for rendering) is to specify which vertex attributes
you’d like issued to the graphics pipeline. While this might seem
superfluous, it allows you to specify multiple collections of data, and
choose which ones you’d like to use at any given time.

• Each of the attributes that we enable must be associated with an “in”
variable of the currently bound vertex shader. You retrieve vertex
attribute locations was retrieved from the compiled shader by calling
glGetAttribLocation().

• Application vertex data enters the OpenGL pipeline through the vertex
shader

• Need to connect vertex data to shader variables
– requires knowing the attribute location

• Attribute location can either be queried by calling
glGetVertexAttribLocation()

Vertex Array Code
• Associate shader variables with vertex arrays

– do this after shaders are loaded

 GLuint vPosition =
 glGetAttribLocation(program, “vPosition");
 glEnableVertexAttribArray(vPosition);
 glVertexAttribPointer(vPosition, 4, GL_FLOAT,
 GL_FALSE, 0,BUFFER_OFFSET(0));

 GLuint vColor =
 glGetAttribLocation(program,"vColor");
 glEnableVertexAttribArray(vColor);
 glVertexAttribPointer(vColor, 4, GL_FLOAT,
 GL_FALSE, 0, BUFFER_OFFSET(sizeof(vPositions))
);

Drawing Geometric Primitives
• In order to initiate the rendering of primitives, you need to issue a drawing

routine. The simplest routine is glDrawArrays(), to which you specify what
type of graphics primitive you want to draw (e.g., here we’re rending a
triangle strip), which vertex in the enabled vertex attribute arrays to start
with, and how many vertices to send.

• This is the simplest way of rendering geometry in OpenGL Version 3.1. You
merely need to store you vertex data in sequence, and then
glDrawArrays() takes care of the rest. However, in some cases, this won’t
be the most memory efficient method of doing things.

• For contiguous groups of vertices

 glDrawArrays(GL_TRIANGLES, 0, NumVertices);

• Usually invoked in display callback
• Initiates vertex shader

	Introduction�A Simplified Pipeline Model
	A Simplified Pipeline Model
	A Simplified Pipeline Model
	A Simplified Pipeline Model
	OpenGL Programming
	Application Framework Requirements
	Simplifying Working with OpenGL
	Representing Geometric Objects
	OpenGL’s Geometric Primitives
	A First Program: Cube
	Initializing the Cube’s Data
	Initializing the Cube’s Data (cont’d)
	Cube data
	Cube Data (cont’d)
	Generating a Cube Face from Vertices
	Generating the Cube from Faces
	Vertex Array Objects (VAOs)
	Storing Vertex Attributes
	VBOs in Code
	Connecting Vertex Shaders with Geometric Data
	Vertex Array Code
	Drawing Geometric Primitives

