
Shaders and GLSL

GLSL Data Types

• Scalar types: float, int, bool
• Vector types: vec2, vec3, vec4
 ivec2, ivec3, ivec4
 bvec2, bvec3, bvec4
• Matrix types: mat2, mat3, mat4
• Texture sampling: sampler1D, sampler2D,
 sampler3D, samplerCube

• C++ Style Constructors
 vec3 a = vec3(1.0, 2.0, 3.0);

Operators
• Standard C/C++ arithmetic and logic operators
• Overloaded operators for matrix and vector operations
• The vector and matrix classes of GLSL are first-class types,

with arithmetic and logical operations well defined. This
helps simplify your code, and prevent errors.

• Note in the above example, overloading ensures that both
a*m and m*a are defined although they will not in general
produce the same result.

mat4 m;
vec4 a, b, c;

b = a*m;
c = m*a;

Components and Swizzling
• Access vector components using either:

– [] (c-style array indexing)
– xyzw, rgba or strq (named components)

• For example:

 vec3 v;
 v[1], v.y, v.g, v.t - all refer to the same element

• Component swizzling:
 vec3 a, b;
 a.xy = b.yx;

• Swizzles allow components within a vector to be accessed by name. For
example, the first element in a vector – element 0 – can also be
referenced by the names “x”, “s”, and “r”. Why all the names – to clarify
their usage. If you’re working with a color, for example, it may be clearer
in the code to use “r” to represent the red channel, as compared to “x”,
which make more sense as the x-positional coordinate

Qualifiers
• in, out

– Copy vertex attributes and other variable into and out of shaders

in vec2 texCoord;
out vec4 color;

• in qualifiers that indicate the shader variable will receive data flowing into
the shader, either from the application, or the previous shader stage.

• out qualifier which tag a variable as data output where data will flow to the
next shader stage, or to the framebuffer

uniform

– shader-constant variable from application

uniform float time;
uniform vec4 rotation;

• uniform qualifiers for accessing data that doesn’t change across a draw
operation

Functions
• GLSL also provides a rich library of functions supporting common

operations. While pretty much every vector- and matrix-related
function available you can think of, along with the most common
mathematical functions are built into GLSL,

• there’s no support for operations like reading files or printing values.
• Shaders are really data-flow engines with data coming in, being

processed, and sent on for further processing.
• Built in

– Arithmetic: sqrt, power, abs
– Trigonometric: sin, asin
– Graphical: length, reflect

• User defined

Built-in Variables
• vertex data, which can be processed by up to four shader

stages in OpenGL, are all ended by setting a positional
value into the built-in variable, gl_Position.

• gl_Position
– (required) output position from vertex shader

• gl_FragCoord is a read-only variable, while gl_FragDepth
is a read-write variable.

• gl_FragCoord
– input fragment position

• gl_FragDepth
– input depth value in fragment shader

Simple Vertex Shader for Cube
Example

#version 430

in vec4 vPosition;
in vec4 vColor;

out vec4 color;

void main()
{
 color = vColor;
 gl_Position = vPosition;
}

The Simplest Fragment Shader
#version 430

in vec4 color;

out vec4 fColor; // fragment’s final color

void main()
{
 fColor = color;
}

Getting Your Shaders into OpenGL

• Shaders need to be
compiled and linked to
form an executable
shader program

• OpenGL provides the
compiler and linker

• A program must contain
– vertex and fragment

shaders
– other shaders are

optional

Create
Shader

Load Shader
Source

Compile
Shader

Create
Program

Attach Shader
to Program

Link Program

glCreateProgram()

glShaderSource()

glCompileShader()

glCreateShader()

glAttachShader()

glLinkProgram()

Use Program glUseProgram()

These
steps need
to be
repeated
for each
type of
shader in
the shader
program

Getting Your Shaders into OpenGL
• Shaders need to be compiled in order to be used in your program. As compared to

C programs, the compiler and linker are implemented in the OpenGL driver, and
accessible through function calls from within your program.

• The diagram illustrates the steps required to compile and link each type of shader
into your shader program. A program can contain either a vertex shader (which
replaces the fixed-function vertex processing), a fragment shader (which replaces
the fragment coloring stages), or both.

• If a shader isn’t present for a particular stage, the fixed-function part of the
pipeline is used in its place.

• Just a with regular programs, a syntax error from the compilation stage, or a
missing symbol from the linker stage could prevent the successful generation of
an executable program.

• There are routines for verifying the results of the compilation and link stages of
the compilation process, but are not shown here. Instead, we’ve provided a
routine that makes this process much simpler, as demonstrated on the next slide.

A Simpler Way

• We’ve created a routine for this course to make it easier to
load your shaders

• InitShaders() accepts two parameters, each a filename to be loaded as source
for the vertex and fragment shader stages, respectively.

• The value returned from InitShaders() will be a valid GLSL program id that you
can pass into glUseProgram().

 GLuint InitShaders(const char* vFile,
 const char* fFile);
• InitShaders takes two filenames

– vFile path to the vertex shader file
– fFile for the fragment shader file

• Fails if shaders don’t compile, or program doesn’t link

Associating Shader Variables and Data

• Need to associate a shader variable with an
OpenGL data source
– vertex shader attributes → app vertex attributes
– shader uniforms → app provided uniform values

• OpenGL relates shader variables to indices for the
app to set

• Two methods for determining variable/index
association
– specify association before program linkage
– query association after program linkage

Initializing Uniform Variable Values

• Uniform Variables

glUniform4f(index, x, y, z, w);

GLboolean transpose = GL_TRUE;

// Since we’re C programmers
GLfloat mat[3][4][4] = { … };
glUniformMatrix4fv(index, 3, transpose,
mat);

Finishing the Cube Program
int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE |GLUT_DEPTH);
 glutInitWindowSize(512, 512);
 glutCreateWindow("Color Cube");

 glewInit();
 init();

 glutDisplayFunc(display);
 glutKeyboardFunc(keyboard);
 glutMainLoop();

 return 0;
}

Cube Program’s GLUT Callbacks
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);
 glutSwapBuffers();
}

void keyboard(unsigned char key, int x, int y)
{
 switch(key) {
 case 033: case 'q': case 'Q':
 exit(EXIT_SUCCESS);
 break;
 }
}

Vertex Shader Examples

• A vertex shader is initiated by each vertex
output by glDrawArrays()

• A vertex shader must output a position in clip
coordinates to the rasterizer

• Basic uses of vertex shaders
– Transformations
– Lighting
– Moving vertex positions

	Shaders and GLSL
	GLSL Data Types
	Operators
	Components and Swizzling
	Qualifiers
	Functions
	Built-in Variables
	Simple Vertex Shader for Cube Example
	The Simplest Fragment Shader
	Getting Your Shaders into OpenGL
	Getting Your Shaders into OpenGL
	A Simpler Way
	Associating Shader Variables and Data
	Initializing Uniform Variable Values
	Finishing the Cube Program
	Cube Program’s GLUT Callbacks
	Vertex Shader Examples

