
Transformations

Camera Analogy

• 3D is just like taking a photograph (lots of
photographs!)

camera

tripod model

viewing
volume

Transformations

• Transformations take us from one “space” to
another
– All of our transforms are 4×4 matrices

Model-View
Transform

Projection
Transform

Perspective
Division

(w)
Viewport

Transform

Modeling
Transform

Modeling
Transform

Object Coords.

World Coords. Eye Coords. Clip Coords.
Normalized

Device
Coords.

Vertex
Data

2D Window
Coordinates

Camera Analogy and Transformations

• Projection transformations
– adjust the lens of the camera

• Viewing transformations
– tripod–define position and orientation of the

viewing volume in the world
• Modeling transformations

– moving the model
• Viewport transformations

– enlarge or reduce the physical photograph

=

151173

141062

13951

12840

mmmm
mmmm
mmmm
mmmm

M

• A vertex is transformed by 4×4 matrices
– all affine operations are matrix multiplications

• All matrices are stored column-major in OpenGL
– this is opposite of what “C” programmers expect

• Matrices are always
post-multiplied
– product of matrix and

vector is

3D Transformations

Specifying What You Can See

• Set up a viewing frustum to specify how much of
the world we can see

• Done in two steps
– specify the size of the frustum (projection transform)
– specify its location in space (model-view transform)

• Anything outside of the viewing frustum is
clipped
– primitive is either modified or discarded (if entirely

outside frustum)

Specifying What You Can See (cont’d)

• OpenGL projection model uses eye
coordinates
– the “eye” is located at the origin
– looking down the -z axis

• Projection matrices use a six-plane model:
– near (image) plane and far (infinite) plane

• both are distances from the eye (positive values)
– enclosing planes

• top & bottom, left & right

Orthographic vs Perspective Projection

• Orthographic Projection
– Parallel projection
– Preserve size

• Good for determining relative size

• Perspective Projection
– Projection along rays
– Closer objects appears larger
– Human vision!

• Only work with: Perspective Projection

Specifying What You Can See (cont’d)
Orthographic View Perspective View

Coordonate Transformation Pipeline

Chapter 14

• Recall:

• Transforms

– World Transform (MW)
• Object Space (OC) To World Space (WC)

– View Transform (MV)
• WC to Eye (Camera) Space (EC)

– Projection Transform (MP)
• EC To NDC (Normalize Device)

Example

Chapter 14

View Frustum to NDC Cube

Viewing Transformations

• Position the camera/eye in the scene
– place the tripod down; aim camera

• To “fly through” a scene
– change viewing transformation and

redraw scene
• LookAt(eyex, eyey, eyez,
 lookx, looky, lookz,
 upx, upy, upz)
– up vector determines unique orientation
– careful of degenerate positions

tripod

Creating the LookAt Matrix

Translation
• Move the origin to a new

location

Scale
• Stretch, mirror or decimate a

coordinate direction

Note, there’s a translation applied here to make
things easier to see

Rotation

• Rotate coordinate system about an axis in space

Note, there’s a translation applied here
to make things easier to see

Rotation (cont’d)

M

Vertex Shader for Rotation of Cube
in vec4 vPosition;
in vec4 vColor;
out vec4 color;
uniform vec3 theta;

void main()
{
 // Compute the sines and cosines of theta for
 // each of the three axes in one computation.
 vec3 angles = radians(theta);
 vec3 c = cos(angles);
 vec3 s = sin(angles);

Vertex Shader for Rotation of Cube
(cont’d)

// Remember: these matrices are column-major

mat4 rx = mat4(1.0, 0.0, 0.0, 0.0,
 0.0, c.x, s.x, 0.0,
 0.0, -s.x, c.x, 0.0,
 0.0, 0.0, 0.0, 1.0);

mat4 ry = mat4(c.y, 0.0, -s.y, 0.0,
 0.0, 1.0, 0.0, 0.0,
 s.y, 0.0, c.y, 0.0,
 0.0, 0.0, 0.0, 1.0);

Vertex Shader for Rotation of Cube
(cont’d)

 mat4 rz = mat4(c.z, -s.z, 0.0, 0.0,
 s.z, c.z, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0);

 color = vColor;
 gl_Position = rz * ry * rx *
vPosition;
}

Sending Angles from Application
• Here, we compute our angles (Theta) in our mouse callback

GLuint theta; // theta uniform location
vec3 Theta; // Axis angles

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glUniform3fv(theta, 1, Theta);
 glDrawArrays(GL_TRIANGLES, 0, NumVertices);

 glutSwapBuffers();
}

Lighting

Lighting Principles

• Lighting simulates how objects reflect light
– material composition of object
– light’s color and position
– global lighting parameters

• Usually implemented in
– vertex shader for faster speed
– fragment shader for nicer shading

Modified Phong Model

• Computes a color for each vertex using
– Surface normals
– Diffuse and specular reflections
– Viewer’s position and viewing direction
– Ambient light
– Emission

• Vertex colors are interpolated across polygons by
the rasterizer
– Phong shading does the same computation per pixel,

interpolating the normal across the polygon
• more accurate results

Surface Normals

• Normals define how a surface reflects light
– Application usually provides normals as a vertex

atttribute
– Current normal is used to compute vertex’s color
– Use unit normals for proper lighting

• scaling affects a normal’s length

Material Properties

• Define the surface properties of a primitive

– you can have separate materials for front and back

Property Description

Diffuse Base object color

Specular Highlight color

Ambient Low-light color

Emission Glow color

Shininess Surface smoothness

Adding Lighting to Cube
// vertex shader

in vec4 vPosition;
in vec3 vNormal;
out vec4 color;

uniform vec4
 AmbientProduct, DiffuseProduct,
SpecularProduct;
uniform mat4 ModelView;
uniform mat4 Projection;
uniform vec4 LightPosition;
uniform float Shininess;

Adding Lighting to Cube (cont’d)

void main()
{
 // Transform vertex position into eye
coordinates
 vec3 pos = vec3(ModelView * vPosition);

 vec3 L = normalize(LightPosition.xyz - pos);
 vec3 E = normalize(-pos);
 vec3 H = normalize(L + E);

 // Transform vertex normal into eye coordinates
 vec3 N = normalize(vec3(ModelView * vNormal));

Adding Lighting to Cube (cont’d)

 // Compute terms in the illumination equation
 vec4 ambient = AmbientProduct;

 float Kd = max(dot(L, N), 0.0);
 vec4 diffuse = Kd*DiffuseProduct;

 float Ks = pow(max(dot(N, H), 0.0), Shininess);
 vec4 specular = Ks * SpecularProduct;
 if(dot(L, N) < 0.0)
 specular = vec4(0.0, 0.0, 0.0, 1.0)

 gl_Position = Projection * ModelView * vPosition;

 color = ambient + diffuse + specular;
 color.a = 1.0;
}

	Transformations
	Camera Analogy
	Transformations
	Camera Analogy and Transformations
	3D Transformations
	Specifying What You Can See
	Specifying What You Can See (cont’d)
	Orthographic vs Perspective Projection
	Specifying What You Can See (cont’d)
	Coordonate Transformation Pipeline
	Example
	View Frustum to NDC Cube
	Viewing Transformations
	Creating the LookAt Matrix
	Translation
	Scale
	Rotation
	Rotation (cont’d)
	Vertex Shader for Rotation of Cube
	Vertex Shader for Rotation of Cube (cont’d)
	Vertex Shader for Rotation of Cube (cont’d)
	Sending Angles from Application
	Lighting
	Lighting Principles
	Modified Phong Model
	Surface Normals
	Material Properties
	Adding Lighting to Cube
	Adding Lighting to Cube (cont’d)
	Adding Lighting to Cube (cont’d)

