
Transformations 



Camera Analogy 

• 3D is just like taking a photograph (lots of 
photographs!) 
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Transformations 

• Transformations take us from one “space” to 
another 
– All of our transforms are 4×4 matrices  
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Camera Analogy and Transformations 

• Projection transformations 
– adjust the lens of the camera 

• Viewing transformations 
– tripod–define position and orientation of the 

viewing volume in the world 
• Modeling transformations 

– moving the model 
• Viewport transformations 

– enlarge or reduce the physical photograph 
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• A vertex is transformed by 4×4 matrices 
– all affine operations are matrix multiplications 

• All matrices are stored column-major in OpenGL 
– this is opposite of what “C” programmers expect 

 

• Matrices are always  
post-multiplied 
– product of matrix and  

vector is  

 

3D Transformations 



Specifying What You Can See 

• Set up a viewing frustum to specify how much of 
the world we can see 

• Done in two steps 
– specify the size of the frustum (projection transform) 
– specify its location in space (model-view transform) 

• Anything outside of the viewing frustum is 
clipped 
– primitive is either modified or discarded (if entirely 

outside frustum) 



Specifying What You Can See (cont’d) 

• OpenGL projection model uses eye 
coordinates 
– the “eye” is located at the origin 
– looking down the -z axis 

• Projection matrices use a six-plane model: 
– near (image) plane and far (infinite) plane 

• both are distances from the eye (positive values) 
– enclosing planes 

• top & bottom, left & right 



Orthographic vs Perspective Projection 

• Orthographic Projection 
– Parallel projection 
– Preserve size 

• Good for determining relative size 

• Perspective Projection 
– Projection along rays 
– Closer objects appears larger 
– Human vision! 

• Only work with: Perspective Projection 



Specifying What You Can See (cont’d) 
Orthographic View Perspective View 



Coordonate Transformation Pipeline 

Chapter 14 

• Recall: 
 

• Transforms 
 

– World Transform (MW) 
• Object Space (OC) To World Space (WC)  

– View Transform (MV) 
• WC to Eye (Camera) Space (EC) 

– Projection Transform (MP) 
• EC To NDC (Normalize Device) 



Example 

Chapter 14 



View Frustum to NDC Cube 



Viewing Transformations 

• Position the camera/eye in the scene 
– place the tripod down; aim camera 

• To “fly through” a scene 
– change viewing transformation and 

redraw scene 
• LookAt( eyex, eyey, eyez, 
        lookx, looky, lookz, 
        upx, upy, upz ) 
– up vector determines unique orientation 
– careful of degenerate positions 

tripod 



Creating the LookAt Matrix 



Translation 
• Move the origin to a new 

location 



Scale 
• Stretch, mirror or decimate a 

coordinate direction 

Note, there’s a translation applied here to make 
things easier to see 



Rotation 

• Rotate coordinate system about an axis in space 

Note, there’s a translation applied here 
to make things easier to see 



Rotation (cont’d) 

M 



Vertex Shader for Rotation of Cube 
in vec4 vPosition; 
in vec4 vColor; 
out vec4 color; 
uniform vec3 theta; 
 
void main()  
{ 
    // Compute the sines and cosines of theta for 
    // each of the three axes in one computation. 
    vec3 angles = radians( theta ); 
    vec3 c = cos( angles ); 
    vec3 s = sin( angles ); 
 



Vertex Shader for Rotation of Cube 
(cont’d) 

// Remember: these matrices are column-major 
 
mat4 rx = mat4( 1.0,  0.0,  0.0, 0.0, 
                0.0,  c.x,  s.x, 0.0, 
                0.0, -s.x,  c.x, 0.0, 
                0.0,  0.0,  0.0, 1.0 ); 
 
mat4 ry = mat4( c.y, 0.0, -s.y, 0.0, 
                0.0, 1.0,  0.0, 0.0, 
                s.y, 0.0,  c.y, 0.0, 
                0.0, 0.0,  0.0, 1.0 ); 
 



Vertex Shader for Rotation of Cube 
(cont’d) 

 
    mat4 rz = mat4( c.z, -s.z, 0.0, 0.0, 
                    s.z,  c.z, 0.0, 0.0, 
                    0.0,  0.0, 1.0, 0.0, 
                    0.0,  0.0, 0.0, 1.0 ); 
 
    color = vColor; 
    gl_Position = rz * ry * rx * 
vPosition; 
}  
 



Sending Angles from Application 
• Here, we compute our angles (Theta) in our mouse callback 

  
GLuint theta;  // theta uniform location 
vec3  Theta;   // Axis angles 
 
void display( void ) 
{ 
   glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); 
 
   glUniform3fv( theta, 1, Theta ); 
   glDrawArrays( GL_TRIANGLES, 0, NumVertices ); 
 
   glutSwapBuffers(); 
} 
 



Lighting 



Lighting Principles 

• Lighting simulates how objects reflect light 
– material composition of object 
– light’s color and position 
– global lighting parameters 

• Usually implemented in 
– vertex shader for faster speed 
– fragment shader for nicer shading 



Modified Phong Model 

• Computes a color for each vertex using  
– Surface normals 
– Diffuse and specular reflections 
– Viewer’s position and viewing direction 
– Ambient light 
– Emission 

• Vertex colors are interpolated across polygons by 
the rasterizer 
– Phong shading does the same computation per pixel, 

interpolating the normal across the polygon 
• more accurate results 



Surface Normals 

• Normals define how a surface reflects light 
– Application usually provides normals as a vertex 

atttribute 
– Current normal is used to compute vertex’s color 
– Use unit normals for proper lighting 

• scaling affects a normal’s length 



Material Properties 

• Define the surface properties of a primitive 
 
 
 
 
 
 

 
– you can have separate materials for front and back 

Property Description 

Diffuse Base object color 

Specular Highlight color 

Ambient Low-light color 

Emission Glow color 

Shininess Surface smoothness 



Adding Lighting to Cube 
// vertex shader  
 
in vec4 vPosition; 
in vec3 vNormal; 
out vec4 color; 
 
uniform vec4  
    AmbientProduct, DiffuseProduct, 
SpecularProduct; 
uniform mat4 ModelView; 
uniform mat4 Projection; 
uniform vec4 LightPosition; 
uniform float Shininess; 



Adding Lighting to Cube (cont’d) 

void main() 
{ 
   // Transform vertex  position into eye 
coordinates 
   vec3 pos = vec3(ModelView * vPosition); 
         
   vec3 L = normalize(LightPosition.xyz - pos); 
   vec3 E = normalize(-pos); 
   vec3 H = normalize(L + E); 
 
   // Transform vertex normal into eye coordinates 
   vec3 N = normalize(vec3(ModelView * vNormal));  



Adding Lighting to Cube (cont’d) 

 // Compute terms in the illumination equation 
    vec4 ambient = AmbientProduct; 
 
    float Kd = max( dot(L, N), 0.0 ); 
    vec4  diffuse = Kd*DiffuseProduct; 
 
    float Ks = pow( max(dot(N, H), 0.0), Shininess ); 
    vec4  specular = Ks * SpecularProduct; 
    if( dot(L, N) < 0.0 )  
        specular = vec4(0.0, 0.0, 0.0, 1.0)  
 
    gl_Position = Projection * ModelView * vPosition; 
 
    color = ambient + diffuse + specular; 
    color.a = 1.0; 
} 
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