Université Mohamed Khider Biskra Master 1 d'informatique FSE&SNV Module : CO 2019-2020

TD 1 : GRANDEUR DES FONCTIONS ET COMPLEXITE DES ALGORITHMES ITÉRATIFS

Exercice 1 -

[Emma, 2018] Soit un algorithme en $O(n^2)$. Un ordinateur X permet de traiter en 1mn des données de taille n_0 . Quelle est la taille des problèmes que l'on pourra traiter en 1mn avec un ordinateur 100 fois plus rapide ? Même question pour $O(2^n)$.

Exercice 2 -

[Emma, 2018] Lesquelles des assertions suivantes sont vraies. Justifiez votre réponse.

1. 1000∈O(1)	6. $n^3+3n^2+n+2019 \in O(n^3)$
$2. n^2 \in \Omega (n^3)$	7. $n^{2*}n^3 \in O(n^3)$
$3. n^3 \in \Omega (n^2)$	$8. \ 2^{2^n} \in O(2^n)$
4. 2 ⁿ⁺¹ ∈ O(2 ⁿ)	9. $\frac{1}{2}$ n ² -3n∈ θ (n ²)
5. $(n+1)^2 \in \theta(n^2)$	10. $\frac{1}{2}$ n ^{2*} Ω (n) $\in \Omega$ (n ³)

Exercice 3 -

[Emma, 2018] Est-ce que les propositions suivantes sont vraies pour tout f, g? Pour chacune, prouvez-le ou trouvez un contre-exemple.

1.
$$f(n) \in \Omega(g(n))$$
 alors $g(n) \in O(f(n))$
2. $f(n) \in O(g(n))$ ou $g(n) \in O(f(n))$

Exercice 4 - Ordre de grandeur

Quel est l'ordre de grandeur de ces fonctions suivantes ?

- 1. $f(n)=5n^4+3n^3+2n^2+4n+1$
- 2. $f(n)=5n^2+3n.\log n+2n+5$
- 3. $f(n)=2^{n+2}$

Exercice 5 -

- a. Ecrivez une relation de récurrence pour chacune des expressions :
 - y = (x1 + x2 + ... + xn)
 - y = (x1x2 ... xn)
 - $y = 1 x + x^2/2 x^3/6 + x^4/24 + ... + (-1)^n x^n/n!$
- b. Soit la définition de relation de récurrence suivante :

H (n) =
$$\begin{cases} 1 & \text{si } n = 1 \\ H (n-1) + 1/n & \text{si } n > 1 \end{cases}$$

- 1. Décrivez le calcul que réalise la définition, pour n∈N.
- 2. La fonction est-elle récursive terminale ? Si oui, pourquoi ? Sinon, précisez pourquoi elle ne l'est pas et proposez une version récursive terminale.

Exercice 6 -

1. Que retournent les fonctions ci-dessous ? Evaluer l'ordre de grandeur de leur complexité.

```
Algorithme: f1(n)
                                            Algorithme: f2(n)
Données: un entier n≥ 0
                                           Données: un entier n \ge 0
Résultat: ?
                                           Résultat: ?
r,i,j: entier;
                                           r,i: entier;
début
                                           début
    r←0;
                                               i←n; r←0;
    pour i allant de 1 à n faire
                                               tant que i>1 faire
       pour j allant de i+1 à n faire
                                                  pour j allant de i+1 à n faire
           r←r+1;
                                                      r←r+1;
    retourner(r);
                                                      i←i/2;
fin.
                                               retourner(r);
```

2. Prouver que la complexité temporelle de l'algorithme de tri classique (tri par sélection) et l'algorithme de tri avancé (tri par fusion) est $O(n^2)$ et O(nlogn) respectivement?

Exercice 7 -

```
Quelle est la complexité de la boucle suivante ?

début

r←0;

pour i allant de 1 à n-1 faire

pour j allant de i+1 à n faire

pour k allant de 1 à j faire

Instruction;

retourner(r);

fin.
```

Exercice 8 -

Déterminer la complexité des algorithmes **itératifs** suivants, **en fonction de deux paramètres**, où m et n sont deux entiers positifs ? (justifier)

- 1. Par rapport au nombre d'itérations effectuées pour les algms A, B, C et D.
- 2. Par rapport au nombre d'opérations arithmétiques pour les algms E et F.

2. Tal tapport du nombre à operations aritimienques pour les aignis E et 1.		
Algorithme B	Algorithme C	
Début	Début	
$i \leftarrow 1; j \leftarrow 1;$	$i \leftarrow 1; j \leftarrow 1;$	
tant que $(i \le m)$ ou $(j \le n)$	tant que j≤n faire	
faire	si i ≤ m alors i \leftarrow i + 1;	
$i \leftarrow i + 1;$	sinon $j \leftarrow j + 1$;	
j ← j + 1 ;	fin si ;	
fin tant que ;	fintantque ;	
fin.	fin.	
<u>Algorithme E</u>	Algorithme F	
Début	Début	
s←0;	Pour i de 1 à n-1faire	
i←1 ;	tmp←i ;	
tan que i≤n faire	pour j de i+1 à n faire	
pour j ← n^2 à 5 faire	Si T[j] <t[tmp] alors<="" td=""></t[tmp]>	
s ←s+1;	tmp←j;	
finpour ;	finpour ;	
i ←i+2;	$T[i] \leftrightarrow T[tmp]$;	
fintantque;	finpour;	
return s	Fin.	
Fin.		
	Algorithme B Debut $i \leftarrow 1; j \leftarrow 1;$ $tant que (i \le m) ou (j \le n)$ faire $i \leftarrow i + 1;$ $j \leftarrow j + 1;$ fin tant que; fin. Algorithme E Debut $s \leftarrow 0;$ $i \leftarrow 1;$ $tan que i \le n faire$ $pour j \leftarrow n^2 à 5 faire$ $s \leftarrow s + 1;$ finpour; $i \leftarrow i + 2;$ fintantque; return s	