
The UPPAAL tool

M1-GLSD
2017-2018

TOV
L.Kahloul

1

Outlines of the course

• What and why?
• Modelling language: templates, constants &

variables, synchronisation, locations:
committed & urgent, expressions: select,
guard, synchronisation, update, invariant

• Verification: TCTL
• Simulation

2

What and Why is Uppaal?

• Uppaal= developed jointly by
Basic Research in Computer Science at Aalborg University in
Denmark and the Department of Information Technology at
Uppsala University in Sweden.

• Tool: Specification+Verification+Simulation

• Implementation: Server (specification)+client (query language
for verification)

• Programming: Java, C++, xml

3

http://www.brics.dk/
http://www.it.uu.se/

Modelling language of Uppaal
“what is in?”

• Besides timed-automata, the Uppaal offers a rich language
that facilitates modelling;

• The language used by uppaal is similar to a programming
language based on C language;

• The language of uppaal introduces the concepts: Template,
constant, bounded integer variables, binary
synchronisation, broadcast channels, urgent
synchronisation, urgent or committed locations, arrays,
initialiser, record types, custom types, user function

4

Modelling language of Uppaal
“templates”

• Template: automaton is considered as a
template. It can be instantiated and
parameterised with some parameters.

5

Modelling language of Uppaal
 “templates”

6

Modelling language of Uppaal
 “templates”

7

Modelling language of Uppaal
 “templates”

8

Modelling language of Uppaal
 “templates”

9

Modelling language of Uppaal
 “constants and variables”

• constant: const name value;
 const int N=5; const int x=2;
• bounded integer variables:

Int[min, max] name;
-32768 to 32768

Example: Int [2, 4] x;

10

Modelling language of Uppaal
 “synchronisation”

• binary synchronisation: this requires the declaration of a
channel between two templates (or automata).

chan name;
Example: chan move;

Two edges labelled move? (to receive) and move! (to send)
must exist, respectively, in the two automata

• Send and receive are blocking actions

11

Modelling language of Uppaal
“synchronisation”

• broadcast channels: this requires the declaration of a broadcast
channel between several templates (or automata).

broadcast chan name;
Example: boradcast chan move;

An edge labelled move! (to send) and several move? (to receive)
must exist, respectively, in the sender and the receivers
automata

• send is not a blocking action

12

Modelling language of Uppaal
“synchronisation”

• urgent synchronisation: the declaration of the
channel is preceded by: urgent.

Example: urgent chan move;

• Edges using urgent channels for
synchronisation cannot have time constraints,
i.e., no clock guards.

13

Modelling language of Uppaal
“locations: urgent, commited”

• urgent locations: with a U inside the location. time is not allowed
to pass when the system is in an urgent location.

How can we model this using the usual TA?

• committed locations: with a C inside the location. It is an urgent
location & in a committed state (a state where at least one process
is in a committed location) the system must leave the committed
location in the next transition (i.e. the only possible transition is
the one that fires the edge outgoing from a committed location).

why we use these locations ?????????

14

Modelling language of Uppaal
“locations: urgent, commited”: example

• How can the following processes work?

• Consider the two cases: x is shared or local.
15

Modelling language of Uppaal

• arrays, : we can have arrays of clocks,
channels, constants and integer variables:

chan c[4];
clock a[2];
const int c[2]={0,2};
int[3,5] u[7];

16

Modelling language of Uppaal

• arrays of channels:
chan c[n]:
• The value i is then used both as an array index

when deciding what channel to synchronize
on,

• and as an argument that can be used after.

17

Modelling language of Uppaal

• Example: even the three processes p, p0, p1
use the same channel c, but c[1] synchronises,
only, p with p0

18

Modelling language of Uppaal
• initialiser, are used to initialise integer variables and arrays of

integer variables. Example:

int i = 2;
int i[3] = {1, 2, 3};

• record types : are declared with the struct construct like in C
struct {
int x;
int y;
} str;

19

Modelling language of Uppaal

• custom types : are defined with the C-like
typedef construct.

typedef struct {
int x;
int y;
} str_t;

str_t str;
str.x=1;

20

Modelling language of Uppaal

• User function : defined either globally or locally to
templates.

• Template parameters are accessible from local functions.
The syntax is similar to C except that there is no pointer.

int f(){
str_t str;
str.x=1;
return str.x;

}

21

Modelling language of Uppaal
“expressions”

• Expressions range over clocks and integer
variables.

• Four kinds of expressions: select, guard,
synchronisation, update, invariant

22

Modelling language of Uppaal
“expressions”

• Select: (on edges)
Syntax: name1: type1, name2:type2, …
Semantics: assign randomly a value form the

type to the name
Example:
• x:int; selects an integer random value;
• x:int[2,3]; selects an integer random value

inside the interval [2,3]

23

Modelling language of Uppaal
“expressions”

• Deduct the behaviour of this example

24

Modelling language of Uppaal
“expressions”

• Guard: (on edges)
Syntax: expression1 op value1 and expression2

op value2 and …
op in {==, <, >, <=, >=}
Example: x==2 and y<=3 and x-y<=0 and …

25

Modelling language of Uppaal
“expressions”

• Synchronisation: (on edges)
Syntax: chan_name!
 chan_name?
Semantics: synchronise with another transition in

another automaton
• Update: (on edges)
Syntax: var_name1:=value1, var_name2:=value2, ...
Example : x:=1, y:=2, z:=4, …

26

Modelling language of Uppaal
“expressions”

• Invariant: (on locations)
Syntax: expression1 op value1 and expression2

op value2 and …
op in {==, <, >, <=, >=}
Example: x==2 and y<=3 and and x==y and x-

y<=0 and …
Remarks: (1) x, y can be variables or clocks

27

Verification with Uppaal
“TCTL”

• Two kinds of formulae
1) State formulae describe individual states:

(name_proc.name_loc)
2) Futur (F) is written: <>, and Globaly (G) is writen []
3) Path formulae (quantify over paths or traces of the

model):
 - reachability: E<> ϕ
 - safety: something good is invariantly true. A[] ϕ
 - liveness: something will eventually happen A<> ϕ

28

Verification with Uppaal
“TCTL”: example

If proc is the name of this process,
• A<> proc.loc2 : the location loc2 is reachable eventually

(<>) in all paths (A),
• A[] proc.loc2 : the location loc2 is reachable gloably ([]) in

all paths (A)
• A<>proc.x>=1 ???
• E<>proc.x>=1 ???
• p-->q is equivalent to A[](p=>A<>q)

29

	Diapo 1
	Outlines of the course
	What and Why is Uppaal?
	Modelling language of Uppaal “what is in?”
	Modelling language of Uppaal “templates”
	Modelling language of Uppaal “templates”
	Modelling language of Uppaal “templates”
	Modelling language of Uppaal “templates”
	Modelling language of Uppaal “templates”
	Modelling language of Uppaal “constants and variables”
	Modelling language of Uppaal “synchronisation”
	Modelling language of Uppaal “synchronisation”
	Modelling language of Uppaal “synchronisation”
	Modelling language of Uppaal “locations: urgent, commited”
	Diapo 15
	Modelling language of Uppaal
	Modelling language of Uppaal
	Modelling language of Uppaal
	Modelling language of Uppaal
	Modelling language of Uppaal
	Modelling language of Uppaal
	Modelling language of Uppaal “expressions”
	Modelling language of Uppaal “expressions”
	Modelling language of Uppaal “expressions”
	Modelling language of Uppaal “expressions”
	Modelling language of Uppaal “expressions”
	Modelling language of Uppaal “expressions”
	Verification with Uppaal “TCTL”
	Verification with Uppaal “TCTL”: example

