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Outlines of the course

• What and why?
• Modelling language: templates, constants & 

variables, synchronisation, locations: 
committed & urgent, expressions: select, 
guard, synchronisation, update, invariant

• Verification: TCTL
• Simulation

2



What and Why is Uppaal?

• Uppaal= developed jointly by 
Basic Research in Computer Science at Aalborg University in 
Denmark and the Department of Information Technology at 
Uppsala University in Sweden.

• Tool: Specification+Verification+Simulation

• Implementation: Server (specification)+client (query language 
for verification)

• Programming: Java, C++, xml
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http://www.brics.dk/
http://www.it.uu.se/


Modelling language of Uppaal
“what is in?”

• Besides timed-automata, the Uppaal offers a rich language 
that facilitates modelling;

• The language used by uppaal is similar to a programming 
language based on C language;

• The language of uppaal introduces the concepts: Template, 
constant, bounded integer variables, binary 
synchronisation, broadcast channels, urgent 
synchronisation,  urgent or committed locations, arrays, 
initialiser, record types, custom types, user function
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Modelling language of Uppaal
“templates”

• Template: automaton is considered as a 
template. It can be instantiated and 
parameterised with some parameters.
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Modelling language of Uppaal
 “constants and variables”

• constant: const name value; 
                         const int N=5; const int x=2; 
• bounded integer variables:

Int[min, max] name;
-32768 to 32768

Example: Int [2, 4] x;
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Modelling language of Uppaal
 “synchronisation”

• binary synchronisation: this requires the declaration of a 
channel between two templates (or automata). 

chan name;
Example: chan move;

Two edges labelled move? (to receive) and move! (to send) 
must exist, respectively, in the two automata

• Send and receive are blocking actions
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Modelling language of Uppaal
“synchronisation”

• broadcast channels: this requires the declaration of a broadcast 
channel between several templates (or automata). 

broadcast chan name;
Example: boradcast chan move;

An edge labelled move! (to send) and several move? (to receive) 
must exist, respectively, in the sender and the receivers 
automata

• send is not a blocking action
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Modelling language of Uppaal 
“synchronisation”

• urgent synchronisation: the declaration of the 
channel is preceded by: urgent.

Example: urgent chan move;

• Edges using urgent channels for 
synchronisation cannot have time constraints, 
i.e., no clock guards.
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Modelling language of Uppaal
“locations: urgent, commited”

• urgent locations: with a U inside the location. time is not allowed 
to pass when the system is in an urgent location. 

How can we model this using the usual TA?

• committed locations: with a C inside the location. It is an urgent 
location & in a committed state (a state where at least one process 
is in a committed location) the system must leave the committed 
location in the next transition  (i.e. the only possible transition is 
the one that fires the edge outgoing from a committed location).

why we use these locations ?????????
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Modelling language of Uppaal
“locations: urgent, commited”: example

• How can the following processes work?

• Consider the two cases: x is shared or local.
15



Modelling language of Uppaal

• arrays, : we can have arrays of clocks, 
channels, constants and integer variables:

chan c[4];
clock a[2]; 
const int c[2]={0,2}; 
int[3,5] u[7];
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Modelling language of Uppaal

• arrays  of channels:
chan c[n]: 
• The value i is then used both as an array index 

when deciding what channel to synchronize 
on, 

• and as an argument that can be used after. 
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Modelling language of Uppaal

• Example:  even the three processes p, p0, p1 
use the same channel c, but c[1] synchronises, 
only, p with p0
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Modelling language of Uppaal
• initialiser, are used to initialise integer variables and arrays of 

integer variables. Example:  

int i = 2; 
int i[3] = {1, 2, 3};

• record types : are declared with the struct construct like in C
struct {
int x;
int y;
} str;
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Modelling language of Uppaal

• custom types : are defined with the C-like 
typedef construct.

typedef struct {
int x;
int y;
} str_t;

str_t str;
str.x=1;
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Modelling language of Uppaal

• User function : defined either globally or locally to 
templates. 

• Template parameters are accessible from local functions. 
The syntax is similar to C except that there is no pointer.

int f(){
str_t str;
str.x=1;
return str.x;

}
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Modelling language of Uppaal
“expressions”

• Expressions range over clocks and integer 
variables.

• Four kinds of expressions:  select, guard, 
synchronisation, update, invariant
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Modelling language of Uppaal
“expressions”

• Select: (on edges)
Syntax: name1: type1, name2:type2, …
Semantics: assign randomly a value form the 

type to the name
Example: 
• x:int; selects an integer random value;
• x:int[2,3]; selects an integer random value 

inside the interval [2,3]
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Modelling language of Uppaal
“expressions”

• Deduct the behaviour of this example
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Modelling language of Uppaal
“expressions”

• Guard: (on edges)
Syntax: expression1 op value1 and expression2 

op value2 and …
op in {==, <, >, <=, >=}
Example: x==2 and y<=3 and x-y<=0 and …

25



Modelling language of Uppaal
“expressions”

• Synchronisation: (on edges)
Syntax: chan_name! 
              chan_name?
Semantics: synchronise with another transition in 

another automaton
• Update: (on edges)
Syntax: var_name1:=value1, var_name2:=value2, ...
Example : x:=1, y:=2, z:=4, …
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Modelling language of Uppaal
“expressions”

• Invariant: (on locations)
Syntax: expression1 op value1 and expression2 

op value2 and …
op in {==, <, >, <=, >=}
Example: x==2 and y<=3 and and x==y and x-

y<=0 and …
Remarks: (1) x, y can be variables or clocks
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Verification with Uppaal
“TCTL”

• Two kinds of formulae
1) State formulae describe individual states: 

(name_proc.name_loc)
2) Futur (F) is written: <>, and Globaly (G) is writen []
3) Path formulae (quantify over paths or traces of the 

model):
    - reachability: E<> ϕ
    - safety: something good is invariantly true. A[] ϕ
    - liveness: something will eventually happen A<> ϕ
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Verification with Uppaal
“TCTL”: example

If proc is the name of this process, 
• A<> proc.loc2 : the location loc2 is reachable eventually 

(<>) in all paths (A),
• A[] proc.loc2 : the location loc2 is reachable gloably ([]) in 

all paths (A)
• A<>proc.x>=1 ???
• E<>proc.x>=1 ???
• p-->q is equivalent to A[](p=>A<>q)
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