Timed Automata: Automates Temporisés

Cours TOV

M1: GLSD

L.Kahloul 2017

Outlines

- 1. Introduction: motivation (why?): actions, clocks, co-actions, reset, guards, invariants;
- 2. Definition: informal, formal
- 3. Semantics of Timed Automata: the use of LTSs (Labelled transition systems)
- 4. Networks of TA and their semantics

Timed Automata why? (1)

- To give more **expressiveness** for models;
- Example:

Modelling a train which serves three stations S1, S2, S3. The train can move from S1 to S2, from S2 to S3, from S2 to S1, and from S3 to S1:

Timed automata why? (2): actions and co-actions

 Then: in order to move from station to station, the train <u>needs to receive a command</u>: "move". The model must be as following.

move? Is <u>an action</u> and move! Is called its <u>co-action</u> (and vice versa)

Timed automata why? (3)

- Next: in order to move from station to station the train uses a clock c.
- If the train is in the s1 and it receives the command "move", it **resets c** and moves to s2.
- In s2, if the train receives the command **before 5 seconds** then it will return to S1 else it will go to S3.
- In s3, the train waits the command to return to S1.

Timed automata why? (4): guards and resets

- C:=0 is called a reset action;
- C<5, c>=5 are called **guards**. They are the conditions to be fulfilled to transit the edge;

Timed automata why? (6): Invariants

- Finally:
- -On the stations S2, we have always $c \ge 0$,
- -On the station S3, we have always $c \ge 5$.

These two logic expressions are called

invariants.

Timed automata why?(7): synchronisation

 The previous automaton can be, now, synchronized with the following one:

Timed automata Definition

- A timed automaton (informally):
 - a **finite-state** machine;
 - extended with clock variables (real values);
 - All the clocks **progress synchronously**.

Timed automata: Formal Definition (1)

A timed automaton is a tuple:

 $TA=(L, I_{o}, C, A, E, Inv)$, suh that:

- L is a set of locations,
- $l_0 \in L$ is the initial location,
- C is the set of clocks,

Formal Definition (2)

$$TA=(L, I_o, C, A, E, Inv),$$

- A is a set of <u>actions</u>, <u>co-actions</u> and the internal <u>τ-action</u>,
- E \(\subseteq L \times A \times B(C) \times 2^c \times L \times a set of edges between locations with an action, a guard and a set of clocks to be reset,
- $Inv: L \rightarrow B(C)$ assigns invariants to locations.

Timed automata: Formal Definition (3)

Remark:

B(C) is the set of <u>conjunctions</u> over simple conditions of the form $c \alpha n$ or $c_1-c_2 \alpha n$, where:

- c, c₁, c₂ \in C (i.e. c, c₁ and c₂ are clocks)
- n ∈ N (n is a natural number)
- $\alpha \in \{<, \le, =, \ge, >\}$

Semantics: How the automaton is executed? (1)

- The semantics of a timed automaton is given through an LTS (<u>Labelled Transitions System</u>),
- An LTS is an infinite automaton and it represents the execution of the Timed Automaton,
- Each state of the LTS represents a "state of the TA" with a
 "valuation of the set of clocks" (i. e: values of the clocks at this state),
- The "initial state" of the LTS represents the "initial location" of the TA with the "initialisation" of the set of clocks,
- Each edge in the LTS will be labelled

Semantics: How the automaton is executed? (2)

Semantics: How the automaton is executed? (3)

- The execution of the automaton means to update the values of the clocks → clocks will have values by a function u
- The function u (the valuation of clocks) is defined as: $u: C \rightarrow R_{>0}$
- We have:

 $u_0(c)=0$ for each clock c in C R^c is the set of all clock valuations

Formal Semantics

If $TA=(L, I_0, C, A, E, Inv)$ is a timed automaton,

then its LTS is the triple: (S, s_0, \rightarrow) , where:

- $S \subseteq L \times R^c$ (each state in the LTS is a location in the AT with the valuation of clocks at this location)
- $s_o = (l_o, u_o)$ (the initial state in the the LTS is the initial location in te AT with the initialisation of all the clocks)
- $\rightarrow \subseteq S \times (R_{\geq 0} \cup A) \times S$ (a triple composed of a source state, a destination state, and a label of the edge. The label is a couple: values of clocks and an action)

Formal Semantics

The transition relation → is defined for each clock **x** <u>as</u>:

(1) A delay transition: The clock x changes in the same location:

$$(I, u(x)) \rightarrow^d (I, u(x)+d)$$

if $\forall d' : 0 \le d' \le d \Rightarrow (u(x) + d') \in Inv(I)$,

Formal Semantics

(2) An action transition: The location changes from I to I':

$$(I, u(x)) \rightarrow^{\alpha} (I', u'(x))$$

if there exists an edge *e=(I, a, g, r, I') EE*

(I for source location, a for action, g for guard, r for clocks to be reset, and l' for destination location) such that:

- $u(x) \in g$: means u(x) satisfies the guard g
- $u'(x) \in Inv(I')$: means u'(x) satisfies the invariant in I'
- $u'(x)=u_0(x)$: resets the clock x to be reset (x in r)

Network of Timed Automata

 The real systems require the use of <u>several</u> synchronised automata;

These automata <u>share</u> a set of actions and clocks;

 How the <u>semantics</u> of a network of automata will be defined?

Network of Timed Automata

« composition »

Let A1=(
$$L_1$$
, I_{01} , C_1 , A_1 , E_1 , Inv_1) and A2= (L_2 , I_{02} , C_2 , A_2 , E_2 , Inv_2).

The composition of A1 and A2 is the TA:

$$A3=(L_1xL_2, (I_{01}, I_{02}), C_1\cup C_2, A_1\cup A_2, E, Inv),$$

Network of Timed Automata

« composition »

such that:

- E: for each two edges: e1=(l1, a1, g1, r1, l'1), e2=(l2, a2, g2, r2, l'2), we have two cases:
- Progression in one automaton

- Synchronisation

$$e=((l1,l2), a1a2, g1 \land g2, r1 \cup r2, (l'1,l'2))$$

• For all (I, I') in L_1xL_2 : $Inv((I,I'))=Inv(I) \land Inv(I')$

Networks of Timed Automata

« Semantics: Formally»

- Let $A_i = (L_i, I_i^0, C, A, E_i, I_i)$ be a network of n timed automata. Let $I_0 = (I_{01}, \ldots, I_{0n})$ be the initial locations vector.
- The semantics is defined as a transition system (S, s_0, \rightarrow) , where:
 - •S = $(L_1 \times ... \times L_n) \times R^C$ is the set of states,
 - • $s_o = (l_o, u_o)$ is the initial state,
 - • $\rightarrow \subseteq S \times S$ is the transition relation defined by:

Networks of Timed Automata

« Semantics: informally»

Informally, Three cases are possible

- A delay transition: where the network does not change location. Only a progression in the clocks. This progression must satisfy the invariants of the location;
- A silent transition: one location is changed in the vector of locations. The silent transition must reset the necessary clocks;
- 3) A synchronisation transition: two locations will be updated in the vector. This change must respect the invariant of the new location.

Networks of Timed Automata

« Semantics: Formally»

```
-delay transition: (I, u) \rightarrow^d (I, u + d)

if \forall d' : 0 \le d' \le d \Rightarrow u + d' \in Inv(I).
```

- Silent Action transition: $(I, u) \rightarrow \tau (I[I'_i / I_i], u')$

if there exists $I_i \rightarrow {}^{\tau}I'_i$ such that $u \in g$, $u' = [r \rightarrow 0]u$ and $u' \in Inv(I[I'_i/I_i])$.

- Synchronisation Action transition : (I, u) $\Rightarrow^{\alpha?\alpha!}$ ($I[I'_j/I_j, I'_i/I_i]$, u')

if there exist
$$I_i \rightarrow a^? I'_i$$
 and $I_j \rightarrow a^! I'_j$ such that : $u \in (g_i \land g_i)$, $u' = [r_i \cup r_i \rightarrow 0]u$ and $u' \in Inv(I[I'_i / I_i, I'_i / I_i])$.

Example 1

+ resets and updates

Example 2

Example 2: execution

$$(I,u)=(S_i, x, y)$$

$$(s0,0,0) \longrightarrow^{3} (s0,3,3) \longrightarrow^{a} (s1,3,0) \longrightarrow^{4} (s1,7,4) \longrightarrow^{b} (s0,0,4) \longrightarrow^{1} (s0,1,5)$$

$$\xrightarrow{a} (s1, 1, 0) \dots$$

Fin

Questions