Faculté des Sciences Exactes et SNV

<u>1 MASTER- Caractérisation des Semi-conducteurs</u>

TD 05 : DLTS Technique

<u>Exo 01</u>

Proof the following equations related to the deep level transient spectroscopy DLTS theory:

1.

$$n_T(t) = N_T e^{-e_n t}$$

2.

$$e_n(T) = K_n T^2 \sigma_n e^{-\frac{B_C - B_T}{kT}}$$
, with $K_{n(p)} = \frac{2(2\pi)^{3/2} 3^{1/2} m_{n(p)}^* k^2}{h^3}$.

3.

$$C(t) = C(\infty) \left[1 - \frac{N_T}{2N_D} e^{-t/\tau}\right],$$
with $1/\tau = \epsilon_n(T)$

4.

$$\tau_{max}=\frac{t_2-t_1}{ln(t_2/t_1)}.$$

5.

$$ln(\tau_{max}T^2) = -ln(K_n\sigma_n) + \frac{E_C - E_T}{1000k} \frac{1000}{T}$$

6.

$$N_T = \frac{C_{d/peak}}{C(\infty)} \frac{2N_D}{e^{-t_2/\tau_{max}} - e^{-t_1/\tau_{max}}}$$

Exo 02

The deep-level transient spectroscopy (DLTS) curve in Figure 1 was obtained by the boxcar method on a Schottky barrier diode on an *n*-type Si substrate for $t_1 = 0.5$ ms, $t_2 = 1$ ms.

Other curves gave:

t_1 (ms)	t_2 (ms)	$T_{1\max}(K)$	$\delta C_{1\max}(F)$	$T_{2\max}(K)$	$\delta C_{2\max}(F)$
0.5	1	234	-1.25×10^{-15}	376	-3.125×10^{-15}
1	2	227	-1.25×10^{-15}	364	-3.125×10^{-15}
2	4	220	-1.25×10^{-15}	352	-3.125×10^{-15}
4	8	213	-1.25×10^{-15}	341	-3.125×10^{-15}
8	16	207	-1.25×10^{-15}	331	-3.125×10^{-15}

Determine $\Delta E = E_C - E_T$, N_T and the intercept σ_n for both peaks. $C_0 = 5 \times 10^{-12} F$, $N_D = 10^{15} \text{ cm}^{-3}$, $\gamma_n = 1.07 \times 10^{21} \text{ cm}^{-2} \text{s}^{-1} \text{K}^{-2}$.

<u>Exo 03</u>

The Arrhenius plot of a deep-level impurity in Si is shown in Figure 2. Determine $E_c - E_T$ and σ_n . Use $\gamma_n = 1,07 \times 10^{21}$ cm⁻²s⁻¹K⁻¹, $k_B = 8,.617 \times 10^{-5}$ eV/K.

<u>Exo 04</u>

The deep-level transient spectroscopy data in Figure 3 were obtained by the boxcar method on a Schottky barrier diode on a *p*-type Si substrate. The diode area is 0.02 cm² and the diode bias voltage was varied from zero to reverse bias voltage of 5*V* during the measurement. $K_s = 11.7$, $\gamma_p = 1.78 \times 10^{21}$ cm⁻²s⁻¹K⁻², $N_A = 10^{15}$ cm⁻³, $V_{bi} = 0.87$ V. Determine $E_T - E_V$, N_T , and the intercept σ_p for each of the impurities.

