1 MASTER- Caractérisation des Semi-conducteurs

TD 05 : DLTS Technique

Exo 01

Proof the following equations related to the deep level transient spectroscopy DLTS theory:

1.

$$
n_T(t) = N_T e^{-\epsilon_n t}
$$

2.

$$
e_n(T) = K_n T^2 \sigma_n e^{-\frac{B_C - B_T}{kT}} \qquad K_{n(p)} = \frac{2(2\pi)^{3/2} 3^{1/2} m_{n(p)}^* k^2}{h^3}.
$$

3.

$$
C(t) = C(\infty)[1 - \frac{N_T}{2N_D}e^{-t/\tau}]
$$
, with $1/\tau = \epsilon_n(T)$

4.

$$
\tau_{max}=\frac{t_2-t_1}{ln(t_2/t_1)}.
$$

5.

$$
ln(\tau_{max}T^2) = -ln(K_n\sigma_n) + \frac{E_C - E_T}{1000k} \frac{1000}{T}.
$$

6.

$$
N_T = \frac{C_{d/peak}}{C(\infty)} \frac{2N_D}{e^{-t_2/\tau_{max}} - e^{-t_1/\tau_{max}}}
$$

Exo 02

The deep-level transient spectroscopy (DLTS) curve in Figure 1 was obtained by the boxcar method on a Schottky barrier diode on an *n*-type Si substrate for $t_1 = 0.5$ ms, $t_2 = 1$ ms.

Other curves gave:

Determine $\Delta E = E_C - E_T$, N_T and the intercept σ_n for both peaks. $C_0 = 5 \times 10^{-12}F$, $N_D = 10^{15}$ cm⁻³, $\gamma_n = 1.07 \times 10^{21}$ cm⁻²s⁻¹K⁻².

Exo 03

The Arrhenius plot of a deep-level impurity in Si is shown in Figure 2. Determine *E^c* − *E^T* and σ_n . Use $\gamma_n = 1.07 \times 10^{21}$ cm⁻²s⁻¹K⁻¹, $k_B = 8, .617 \times 10^{-5}$ eV/K.

Exo 04

The deep-level transient spectroscopy data in Figure 3 were obtained by the boxcar method on a Schottky barrier diode on a p -type Si substrate. The diode area is 0.02 cm^2 and the diode bias voltage was varied from zero to reverse bias voltage of 5*V* during the measurement. *Ks* = 11.7*,* $\gamma_p = 1.78 \times 10^{21} \text{ cm}^{-2} \text{s}^{-1} \text{K}^{-2}$, $N_A = 10^{15} \text{ cm}^{-3}$, $V_{bi} = 0.87 \text{ V}$. Determine $E_T - E_V$, N_T , and the intercept σ_p for each of the impurities.

