

Faculté des Sciences Exactes et SNV

السنة الثالثة ليسانس: تحليل و توصيف المواد

3 LICENCE- Analyse et Caractérisation des Matériaux

TD 1: NOTIONS DE BASE

EX 01

- 1. Déterminer les relations de passage entre les unités spectroscopiques usuelles : énergie ΔE (eV), longueur d'onde λ (A°) et nombre d'onde $\bar{\nu}$ (cm⁻¹)?
- 2. Etablir un tableau de correspondance entre les unités énergétiques : erg, eV, cm⁻¹, Hz?
- 3. Dire à quel domaine du spectre appartiennent les radiations d'énergie, de nombre d'onde, de longueur d'onde ou de fréquence suivantes :

$$E = 2eV$$
; $\bar{v} = 100 \text{ cm}^{-1}$, 2500 cm⁻¹, 50000 cm⁻¹. $\lambda = 25$. 10^4 A° , $v = 6.10^7 \text{Hz}$

4. Classer par ordre croissant, les encarts énergétiques entre deux niveaux électroniques, deux niveaux vibrationnels et deux niveaux rotationnels ?

EX 02

Calculer la fréquence v en Hz et le nombre d'onde σ en cm^{-1} correspondant aux longueurs d'onde suivantes : 300 nm, $10 \mu \text{m}$ 10 cm?

EX 03

Le spectre d'émission de l'atome d'Hydrogène comporte des séries de raies, dont les nombres d'onde sont donnés par la formule suivante :

$$\overline{v} = R_H \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

Avec $R_H = 109670 \text{ cm}^{-1}$

n=1, m=2,3,...: série de Lyman;

n=2, m=3,4,...: série de Balmer;

n=3, $m=4,5,\ldots$: série de Paschen.

- 1. Calculer les longueurs d'onde de la première raie et de la raie limite de chaque série ?
- 2. Représenter sur un diagramme énergétique les transitions électroniques correspondantes ?
- 3. Situer ces différentes séries dans le spectre électromagnétique ?
- 4. La première raie de la série Balmer se situe à $6562~A^{\circ}$ et la seconde à $4861A^{\circ}$; en déduire la différence d'énergie (en~eV) entre les niveaux 4 et 3 de l'atome d'hydrogène ?

EX 04

- 1. Calculer la différence d'énergie entre les deux niveaux de rotation $(E_j > E_i)$ impliqués dans la transition de nombre d'onde $\sigma = 5 \text{ cm}^{-1}$?
- 2. Quel est le rapport de leur population n_j/n_i à 25°C si le rapport des poids statistiques de ces états est $g_j/g_i=3$?

EX 05

- 1. Calculer la différence d'énergie entre les deux niveaux de vibration $(E_j > E_i)$ impliqués dans la transition de nombre d'onde $\sigma = 3000 \text{ cm}^{-1}$?
- 2. Quel est le rapport de leur population n_j/n_i à 25°C si le rapport des poids statistiques de ces états est $g_i/g_i=1$?

EX 06

- 1. Calculer la différence d'énergie entre les deux niveaux électroniques $(E_j > E_i)$ impliqués dans la transition de longueur d'onde $\lambda = 500 \text{ nm}$?
- 2. Quel est le rapport de leur population n_j/n_i à 25°C si le rapport des poids statistiques de ces états est $g_j/g_i=2$?