

3 LICENCE- Analyse et Caractérisation des Matériaux

TD 4: SPECTROMETRIE RAMAN

Exercice 01

Les contributions du rotateur rigide F(J) et de l'oscillateur harmonique G(v) sont les plus importantes dans l'expression rotation-vibration. Suivant l'approximation de Born-Oppenheimer, la contribution totale S(v,J) peut être valablement approchée par S(v,J)=G(v)+F(J)

- 1. Donner les expressions des branches spectrales P, Q et R en eV et cm⁻¹ pour un gaz dans le cas de la spectroscopie vibrationnelle ? Calculer la distance entre deux spectres successifs ?
- 2. Donner les expressions des branches spectrales O, Q et S en eV et cm⁻¹ pour un gaz dans le cas de la spectroscopie Raman? Calculer la distance entre deux spectres successifs ?

Exercice 02

Le spectre de la molécule ³⁵Cl₂ (m (³⁵Cl)=34,9688u) obtenu par spectrométrie Raman rotationnelle contient une série de lignes de Stokes séparés de 0,9752 cm⁻¹ et une série de lignes d'anti-Stokes similaires.

- 1. Calculer le moment d'inertie de la molécule ?
- 2. Déduire la distance internucléaire de la molécule ?

Exercice 03

Le spectre de la molécule ¹⁹F₂ (m (¹⁹F)=18,9984u) obtenu par spectrométrie Raman rotationnelle contient une série de lignes de Stokes séparées de 3,5312 cm⁻¹ et une série de lignes d'anti-Stokes similaires.

- 1. Calculer le moment d'inertie de la molécule ?
- 2. Déduire la distance internucléaire de la molécule ?

Exercice 04

Le nombre d'onde de la radiation incidente utilisée pour la spectrométrie Raman est 20487 cm⁻¹. Quel est le nombre d'onde de la radiation diffusée Stokes de la molécule $^{14}N_2$ pour la transition $J: 0 \longrightarrow 2$ sachant que $B(^{14}N_2) = 1,9987$ cm⁻¹

Exercice 05

Le nombre d'onde de la radiation incidente utilisée pour la spectrométrie Raman est 20623 cm^{-1} . Quel est le nombre d'onde de la radiation diffusée Stokes de la molécule $^{16}\text{O}_2$ pour la transition J : $2 \longrightarrow 4$ sachant que B ($^{16}\text{O}_2$) = 1,4457 cm $^{-1}$

Exercice 06

En considère le tétrachlorure de carbone CCl4.

- 1. A quelles longueurs d'ondes apparaitront les raies Raman stokes et anti-stokes pour $\Delta \bar{v} = 218 \ et \ 459 \ cm^{-1}$ dans le cas où la source est :
 - A. Un laser hélium/néon (632,8 nm)
 - **B.** Un laser à argon ionisé (488,0 nm)
- 2. En utilisant l'équation de Boltzmann, calculer le rapport des intensités anti-Stokes et Stokes $\frac{I_{anti-Stokes}}{I_{Stokes}}$ aux températures 20°C et 40°C pour $\Delta \bar{\nu} = 218$ et 459 cm⁻¹?

@ 2018/2017 @