
graphics pipeline

1

graphics pipeline

sequence of operations to generate an image using object-

order processing

primitives processed one-at-a-time

software pipeline: e.g. Renderman

high-quality and efficiency for large scenes

hardware pipeline: e.g. graphics accelerators

lower-quality solution for interactive applications

will cover algorithms of modern hardware pipeline

but evolve drastically every few years

we will only look at triangles
2

graphics pipeline

handles only simple primitives by design

point, lines, triangles, quads (as two triangles)

efficient algorithm

complex primitives by tessellation

complex curves: tessellate into line strips

complex surfaces: tessellate into triangle meshes

"pipeline" name derives from architecture design

sequences of stages with defined input/output

easy-to-optimize, modular design

3

graphics pipeline

object-local algorithm

processes only one-surface-at-a-time

various effects have to be approximated

shadows: shadow volume and shadow maps

reflections: environment mapping

hard to implement

advanced effects cannot be implemented

soft shadows

blurry reflections and diffuse-indirect illumination

4

graphics pipeline stages

vertex data

transformations [vertex processing]

transformed vertex data

convert to pixels [clipping and rasterization]

fragments w/ interpolated data

compute final colors [fragment processing]

fragments color and depth

blending hidden-surface [framebuffer processing]

framebuffer

Ü

Ü

Ü

Ü

5

graphics pipeline stages

vertex processing

input: vertex data (position, normal, color, etc.)

output: transformed vertices in homogeneous canonical

view-volume, colors, etc.

applies transformation from object-space to clip-space

passes along material and shading data

clipping and rasterization

turns sets of vertices into primitives and fills them in

output: set of fragments with interpolated data

6

graphics pipeline stages

fragment processing

output: final color and depth

traditionally mostly for texture lookups

lighting was computed for each vertex

today, computes lighting per-pixel

framebuffer processing

output: final picture

hidden surface elimination

compositing via alpha-blending

7

vertex processing

vertex data

[vertex processing]

transformed vertex data

[clipping and rasterization]

fragments w/ interpolated data

[fragment processing]

fragments color and depth

[framebuffer processing]

framebuffer

8

vertex processing

transform vertices from model to clip space

[Marschner 2004] 9

vertex processing

other geometry tasks

deformation: skinning, mesh blending

low-quality lighting

pass other properties to next stages of pipeline

the only place to algorithmically alter shape

programmable hardware unit

algorithm can be changed at run-time by application

10

clipping and rasterization

vertex data

[vertex processing]

transformed vertex data

[clipping and rasterization]

fragments w/ interpolated data

[fragment processing]

fragments color and depth

[framebuffer processing]

framebuffer

11

clipping and rasterization

remove (partial) objects not in the view frustum

efficiency: cull later stages of the pipeline

correctness: perspective transform can cause trouble

often referred as culling when full objects removed

12

clipping to ensure correctness

in front of eye behind eye

13

point clipping

point-plane clipping

test if the point is on the right side of the plane

by taking dot-product with the plane normal

can be performed in homogeneous coordinates

point-frustum clipping

point-plane clipping for each frustum plane

14

line clipping

segment-plane clipping

test point-plane clipping for endpoints

if endpoints are clipped, clip whole segment

if endpoints are not clipped, accept whole segment

if one endpoint is clipped, clip segment

compute segment-plane intersection

create shorter segment

15

line clipping

segment-frustum clipping

clip against each plane incrementally

guarantee to create the correct segment

more efficient algorithms available

previous incremental approach might try too hard

provide early rejection for common cases

so, only clip when necessary
16

polygon clipping

convex polygons similar to line clipping

clip each point in sequence

remove outside points

create new points on boundary

clipped triangles are not necessarily triangles

17

culling

further optimize by rejecting "useless" triangles

backface culling

if triangle face is oriented away from camera, cull it

only ok for closed surfaces

early z-culling

if triangle is behind existing scene, cull it

uses z-buffer introduced later on

18

viewport transformation

transform the canonical view volume to the pixel coordinates

of the screen

also rescale in the range

we will see later why

perspective divide is often performed here

[Marschner 2004]

z [0...1]

19

rasterization

approximate primitives into pixels

pixel centered at integer coordinates

determine which pixels to turn on

no anti-aliasing (jaggies): pixel in the primitive

consider anti-aliasing for some primitives

input: vertex position in homogeneous coordinates

interpolate values across primitive

color, normals, position at vertices

input: any vertex property

20

line rasterization

approximate line with a collection of pixels

desirable properties

uniform thickness and brightness

continuous appearance (no holes)

efficiency

simplicity (for hardware implementation)

line equation:

in this lecture, for simplicity, assume in

y = mx + b
m [0, 1)

21

point-sampled line rasterization

represent line as rectangle

approximated by all pixel within the

line

for each pixel center, test if inside

the rectangle

inefficient

many inside tests

inaccurate

thickness not constant

22

midpoint line rasterization

for each column only turn on closest

pixel

simple algorithm

given line equation

eval. eqn. for each column

between endpoints

for x = ceil(x0) to floor(x1) {

 y = m*x + b

 write(x,round(y))

}

23

optimizing midpoint line rasterization

evaluating is slow

use incremental difference, DDA

x = ceil(x0)

y = m*x + b

while x < floor(x1)

 write(x, round(y), 1)

 y += m

 x += 1

y

m = šy/šx
y(x + 1) = y(x) + m

24

bresenham's line rasterization

at each pixel , only two

options: E or NE

if then NE

else E

can evaluate using incremental

differences

NE:

E:

can use integers only

(,)xp yp

(+ 1,)xp yp

(+ 1, + 1)xp yp

d = (+ 1)m + b −xp yp

d > 0.5

d

d = d + m − 1
d = d + m

25

bresenham's line rasterization

x = ceil(x0)

y = round(m*x + b)

d = m*(x + 1) + b - y

while x < floor(x1)

 write(x, y, 1)

 x += 1

 d += m

 if d > 0.5

 y += 1

 d -= 1

26

midpoint vs. point-sampled line

point-sampled midpoint

varying thickness same thickness

27

antialiased line rasterization

for each pixel, color is the ratio of

the area covered by the line

need to touch multiple pixels per

column

can be done efficiently by

precomputation and lookup tables

area only depends on line to pixel

distance

28

interpolating parameters along a line

often associate params at line vertices

colors, alphas

linearly interpolate :

 is fractional distance along the line

can be done using incremental differences

qi

qi (s) = ˝ (1 − s) + ˝ sqi qi0 qi1

s

29

triangle rasterization

most common operation in graphics pipelines

can be the only one: turn everything into triangles

input: 2D triangle with vertex attributes

2D vertex coordinates:

other attributes:

output: list of fragments with interpolated attributes

list of pixel coordinates that are to be drawn

linearly interpolated vertex attributes

{(,), (,), (,)}x0 y0 x1 y1 x2 y2

{ , , }qi0 qi1 qi2

30

triangle rasterization

one triangle consistent triangles

31

brute force triangle rasterization

for each pixel in image

determine if inside triangle

interpolate attributes

use baricentric coordinates

optimize by only checking triangle bounding box

32

triangle baricentric coordinates

analytic interpretation

coordinate system of the triangle

geometric interpretation

relative areas

relative distances

also useful for ray-triangle intersection

p = 8a + 9b + :c 8 + 9 + : = 1

p = a + 9(b − a) + :(c − a)

33

brute force triangle rasterization

foreach pixel(x,y) in triangle bounding box

 compute(alpha, beta, gamma)

 if(alpha,beta,gamma) in [0,1]̂3

 qi = alpha*qi0 + beta*qi1 + gamma*qi2

 write(x, y, {qi})

can be made incremental as in line drawing

more efficient options exist, but...

34

triangle rasterization on hardware

old hardware: optimized for large triangles

use smart algorithm

clip triangle to screen window

set up initial values

interpolate

hard to parallelize, high set up cost

35

triangle rasterization on hardware

modern hardware: optimized for small triangles

use incremental brute force algorithm

only clip against near plane for correctness

work with clipped bounding box

easily parallelizable, little set up cost

use tiles in image plane

36

rasterization take-home message

complex but efficient set of algorithms

lots of small little details that matter for correctness

no clear winner

architecture: parallel vs. serial

input: e.g. size of triangles

amortization: one-time vs. step-by-step cost

complex algorithms often have hidden costs

verify if they can be amortized

loops are expensive: optimize as you can

37

fragment processing

vertex data

[vertex processing]

transformed vertex data

[clipping and rasterization]

fragments w/ interpolated data

[fragment processing]

fragments color and depth

[framebuffer processing]

framebuffer

38

fragment processing

compute final fragment colors, alphas, and depth

depth is often untouched if no special efficts

final lighting computations

lots of texture mapping: see later

programmable hardware unit

algorithm can be changed at run-time by application

39

framebuffer processing

vertex data

[vertex processing]

transformed vertex data

[clipping and rasterization]

fragments w/ interpolated data

[fragment processing]

fragments color and depth

[framebuffer processing]

framebuffer

40

framebuffer processing

hidden surface elimination

decides which surfaces are visible

framebuffer blending

composite transparent surfaces if necessary

41

hidden surface removal - painter alg.

sort objects back to front

draw in sorted order

does not work in many cases

42

hidden surface removal - painter alg.

sort objects back to front

draw in sorted order

does not work in many cases

43

hidden surface removal - z buffer

brute force algorithm

for each pixel, keep distance to closest object

for each object, rasterize updating pixels if distance is closer

opaque objects: works in every case

transparent objects: cannot properly composite

44

hidden surface removal - z buffer

z-buffer

color buffer

[adapted from Shirley]

45

hidden surface removal - z buffer

z-buffer

color buffer

[adapted from Shirley]

46

which z distance

use z value after homogeneous xform

linear interpolation works

storage non-linear: more precision around near frame

[Marschner 2004] 47

which z distance

use z value after homogeneous xform

linear interpolation works

storage non-linear: more precision around near frame

[Marschner 2004] 48

hidden surface removal - raycasting

for each ray, find intersection to closest surface

works for opaque and transparent objects

loops over pixels and then over surfaces

inefficient

would like to loop over surfaces only once

49

hidden surface removal - scanline

for each scanline, sort primitives

incremental rasterization

sorting can be done in many ways

needs complex data structures

works for opaque and transparent objects

50

hidden surface removal - reyes

for each primitives, turn into small grids of quads

hit-test quads by ray-casting

keep list of sorted hit-points per pixel

like z-buffer but uses a list

works for opaque and transparent objects

hybrid between raycast and z-buffer

very efficient for high complexity

when using appropriate data-structures

solves many other problems we will encounter later

51

framebuffer processing

hidden surface elimination using Z-buffer

framebuffer blending using -compositing

but cannot sort fragments properly

incorrect transparency blending

need to presort transparent surfaces only

like painter's algorithm, so not correct in many cases

8

52

lighting computation

where to evaluate lighting?

flat: at vertices but do not interpolate colors

Gouraud: at vertices, with interpolated color

Phong: at fragments, with interpolated normals

53

lighting computation - flat shading

compute using normals of the triangle

same as in raytracing

flat and faceted look

correct: no geometrical inconsistency

54

lighting computation - gouraud shading

compute light at vertex position

with vertex normals

interpolate colors linearly over the triangle

55

lighting computation - phong shading

interpolate normals per-pixels: shading normals

compute lighting for each pixel

lighting depends less on tessellation

56

lighting computation comparison

Gouraud Phong

artifacts in highlights good highlights

57

lighting computation

per-pixel lighting is becoming ubiquitous

much more robust

move lighting from vertex to fragment processing

new hardware architectures allow for this

we introduce Gouraud for historical reasons

raytracing can have this by using shading normals

58

lighting computation

shading normals introduce inconsistencies

lights can come from "below" the surface

59

why graphics pipelines?

simple algorithms can be mapped to hardware

high performance using on-chip parallel execution

highly parallel algorithms

memory access tends to be coherent

one object at a time

60

graphics pipeline architecture

multiple arithmetic units

NVidia Geforce GTX Titan: 2688 stream processors

very small caches

not needed since memory accesses are very coherent

fast memory architecture

needed for color/z-buffer traffic

restricted memory access patterns

no read-modify-write

bound to change hopefully

easy to make fast: this is what Intel would love!

research into using for scientific computing
61

graphics pipelines vs. raytracing

raycasting

foreach pixel, foreach obj

project pixels onto objects

discretize first

access objects many times

scene must fit in mem

very general solution

O(log(n)) w/ accel. struct.

but constant very high

graphics pipeline

foreach obj, foreach pixel

project objects onto pixels

discretize last

access objs once

image must fit in mem

hard for complex effects

O(n) or lower sometimes

but constant very small

62

