
Image Processing and Computer Graphics

Rendering Pipeline

Matthias Teschner

Computer Science Department
University of Freiburg



University of Freiburg – Computer Science Department – Computer Graphics - 2

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline



University of Freiburg – Computer Science Department – Computer Graphics - 3

 the process of generating an image given
 a virtual camera

 objects

 light sources

 various techniques, e.g.
 rasterization (topic of this course)

 raytracing (topic of the course “Advanced Computer Graphics”)

 one of the major research topics in computer graphics
 rendering

 animation

 geometry processing

Rendering



University of Freiburg – Computer Science Department – Computer Graphics - 4

 rendering algorithm for generating 2D images from 
3D scenes 

 transforming geometric primitives such as lines and 
polygons into raster image representations, i.e. pixels

Rasterization

[Akenine-Moeller et al.: Real-time Rendering]



University of Freiburg – Computer Science Department – Computer Graphics - 5

 3D objects are approximately represented by
vertices (points), lines, polygons

 these primitives are processed to obtain a 2D image

Rasterization

[Akenine-Moeller]



University of Freiburg – Computer Science Department – Computer Graphics - 6

 processing stages comprise the rendering pipeline
(graphics pipeline)

 supported by commodity graphics hardware 
 GPU - graphics processing unit

 computes stages of the rasterization-based 
rendering pipeline

 OpenGL and DirectX are software interfaces 
to graphics hardware
 this course focuses on concepts of the rendering pipeline

 this course assumes OpenGL in implementation-specific 
details

Rendering Pipeline



University of Freiburg – Computer Science Department – Computer Graphics - 7

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline



University of Freiburg – Computer Science Department – Computer Graphics - 8

 3D input
 a virtual camera

 position, orientation, focal length 

 objects
 points (vertex / vertices), lines, polygons

 geometry and material properties 
(position, normal, color, texture coordinates)

 light sources
 direction, position, color, intensity

 textures (images)

 2D output
 per-pixel color values in the framebuffer

Rendering Pipeline - Task



University of Freiburg – Computer Science Department – Computer Graphics - 9

Rendering Pipeline /
Some Functionality

[Wright et al.: OpenGL SuperBible]

visibility lighting model shadow texture

 resolving visibility

 evaluating a lighting model

 computing shadows (not core functionality) 

 applying textures



University of Freiburg – Computer Science Department – Computer Graphics - 10

Rendering Pipeline
Main Stages

 vertex processing / geometry stage / vertex shader
 processes all vertices independently in the same way
 performs transformations per vertex, computes lighting per vertex

 geometry shader
 generates, modifies, discards primitives

 primitive assembly and rasterization / rasterization stage
 assembles primitives such as points, lines, triangles
 converts primitives into a raster image
 generates fragments / pixel candidates
 fragment attributes are interpolated from vertices of a primitive

 fragment processing / fragment shader
 processes all fragments independently in the same way
 fragments are processed, discarded or stored in the framebuffer



University of Freiburg – Computer Science Department – Computer Graphics - 11

Rendering Pipeline
Main Stages

[Lighthouse 3D]

 vertex position transform

 lighting per vertex

 primitive assembly, combine 
vertices to lines, polygons

 rasterization, computes pixel 
positions affected by a primitive

 fragment generation with
interpolated attributes, e.g. color

 fragment processing (not illustrated),
fragment is discarded or used to update the 
pixel information in the framebuffer, more than 
one fragment can be processed per pixel position



University of Freiburg – Computer Science Department – Computer Graphics - 12

Rendering Pipeline
Main Stages

[Lighthouse 3D]

with interpolated attributes

+ geometry 
shader

+ lighting

with attributes
- texture coord.
- normal
- color

Textures



University of Freiburg – Computer Science Department – Computer Graphics - 13

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline



University of Freiburg – Computer Science Department – Computer Graphics - 14

 model transform

 view transform

 lighting

 projection transform

 clipping

 viewport transform

Vertex Processing
(Geometry Stage)



University of Freiburg – Computer Science Department – Computer Graphics - 15

 each object and the respective vertices are 
positioned, oriented, scaled in the scene 
with a model transform

 camera is positioned and oriented,
represented by the view transform

 i.e., the inverse view transform is the transform 
that places the camera at the origin of the 
coordinate system, facing in the negative z-direction 

 entire scene is transformed 
with the inverse view transform

Model Transform
View Transform



University of Freiburg – Computer Science Department – Computer Graphics - 16

 M1, M2, M3, M4, V are matrices representing transformations

 M1, M2, M3, M4 are model transforms to place the objects in the scene

 V places and orientates the camera in space

 V-1 transforms the camera to the origin looking along the negative z-axis

 model and view transforms are combined in the modelview transform

 the modelview transform V-1M1..4 is applied to the objects

Model Transform
View Transform

V-1

[Akenine-Moeller et al.: Real-time Rendering]

M1
M2

M3

M4
V

Inverse



University of Freiburg – Computer Science Department – Computer Graphics - 17

 interaction of light sources and surfaces 
is represented with a lighting / 
illumination model

 lighting computes color for each vertex
 based on light source positions and properties

 based on transformed position, transformed 
normal, and material properties of a vertex

Lighting



University of Freiburg – Computer Science Department – Computer Graphics - 18

Porthographic Pperspective

 P transforms the view volume to the canonical view volume

 the view volume depends on the camera properties
 orthographic projection  cuboid

 perspective projection  pyramidal frustum

 canonical view volume is a cube from (-1,-1,-1) to (1,1,1)

 view volume is specified by near, far, left, right, bottom, top 

Projection Transform

[Song Ho Ahn]



University of Freiburg – Computer Science Department – Computer Graphics - 19

 view volume (cuboid or frustum) is transformed 
into a cube (canonical view volume)

 objects inside (and outside) the view volume 
are transformed accordingly

 orthographic 
 combination of translation and scaling

 all objects are translated and scaled in the same way

 perspective
 complex transformation 

 scaling factor depends on the distance of an object to the viewer

 objects farther away from the camera appear smaller

Projection Transform



University of Freiburg – Computer Science Department – Computer Graphics - 20

 primitives, that intersect the boundary of the view 
volume, are clipped
 primitives, that are inside, are passed to the next processing stage

 primitives, that are outside, are discarded

 clipping deletes and generates vertices and primitives

Clipping

[Akenine-Moeller et al.: Real-time Rendering]



University of Freiburg – Computer Science Department – Computer Graphics - 21

 projected primitive coordinates (xp, yp, zp) are 
transformed to screen coordinates (xs, ys)

 screen coordinates together with depth value are
window coordinates (xs, ys, zw)

Viewport Transform /
Screen Mapping

[Akenine-Moeller et al.: Real-time Rendering]



University of Freiburg – Computer Science Department – Computer Graphics - 22

 (xp, yp) are translated and scaled from the range of 
(-1, 1) to actual pixel positions (xs, ys) on the display

 zp is generally translated and scaled from the range 
of (-1, 1) to (0,1) for zw

 screen coordinates (xs, ys) represent the pixel position 
of a fragment that is generated in a subsequent step

 zw , the depth value, is an attribute of this fragment 
used for further processing 

Viewport Transform /
Screen Mapping



University of Freiburg – Computer Science Department – Computer Graphics - 23

Vertex Processing - Summary

object space

 modelview transform

eye space / camera space

 lighting, projection

clip space / normalized
device coordinates

 clipping, viewport transform

window space



University of Freiburg – Computer Science Department – Computer Graphics - 24

 input
 vertices in object / model space

 3D positions

 attributes such as normal, material properties, texture coords

 output
 vertices in window space

 2D pixel positions

 attributes such as normal, material properties, texture coords

 additional or updated attributes such as 
 normalized depth (distance to the viewer)

 color (result of the evaluation of the lighting model)

Vertex Processing - Summary



Image Processing and Computer Graphics

Rendering Pipeline

Matthias Teschner

Computer Science Department
University of Freiburg



University of Freiburg – Computer Science Department – Computer Graphics - 26

Rendering Pipeline - Summary

Scene Description

Display

Vertex

Processing

Fragment

Processing

Rasterization

Primitive

Processing



University of Freiburg – Computer Science Department – Computer Graphics - 27

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline



University of Freiburg – Computer Science Department – Computer Graphics - 29

 input
 vertices with attributes and connectivity information

 attributes: color, depth, texture coordinates

 output
 fragments with attributes

 pixel position

 interpolated color, depth, texture coordinates

Rasterization

[Akenine-Moeller]



University of Freiburg – Computer Science Department – Computer Graphics - 30

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline



University of Freiburg – Computer Science Department – Computer Graphics - 31

Illustration

vertices with
connectivity

final image
(pixels)

fragments
(pixel candidates)

fragment
processing



University of Freiburg – Computer Science Department – Computer Graphics - 32

 fragment attributes are processed 
and tests are performed 
 fragment attributes are processed

 fragments are discarded or

 fragments pass a test and finally update the framebuffer

 processing and testing make use of
 fragment attributes

 textures

 framebuffer data that is available for each pixel position
 depth buffer, color buffer, stencil buffer, accumulation buffer

Fragment Processing



University of Freiburg – Computer Science Department – Computer Graphics - 33

Illustration

Vertex
- color
- depth

…

Texture
- color
…Connectivity

Rasterization

Fragment
- color
- depth

…

Framebuffer
- color 
- depth

…

points of a triangle

how points are 
connected to a triangle

additional
data

final
image

pixel 
candidates



University of Freiburg – Computer Science Department – Computer Graphics - 34

Attribute Processing

 texture lookup 
 use texture coords to look up a texel (pixel of a texture image)

 texturing
 combination of color and texel

 fog
 adaptation of color based on fog color and depth value

 antialiasing
 adaptation of alpha value (and color)

 color has three components: red, green, blue

 color is represented as a 4D vector (red, green, blue, alpha)



University of Freiburg – Computer Science Department – Computer Graphics - 35

Tests

 scissor test
 check if fragment is inside a specified rectangle
 used for, e.g., masked rendering

 alpha test
 check if the alpha value fulfills a certain requirement
 comparison with a specified value
 used for, e.g., transparency and billboarding

 stencil test
 check if the stencil value in the framebuffer at the position 

of the fragment fulfills a certain requirement
 comparison with a specified value
 used for various rendering effects, e.g. masking, shadows



University of Freiburg – Computer Science Department – Computer Graphics - 36

Depth Test

 depth test
 compare depth value of the fragment and depth value 

of the framebuffer at the position of the fragment

 used for resolving the visibility

 if the depth value of the fragment is larger than the 
framebuffer depth value, the fragment is discarded

 if the depth value of the fragment is smaller than the 
framebuffer depth value, the fragment passes and 
(potentially) overwrites the current color and depth 
values in the framebuffer



University of Freiburg – Computer Science Department – Computer Graphics - 37

Depth Test

current
framebuffer

incoming
fragments
triangle 1

updated
framebuffer

current
framebuffer

incoming
fragments
triangle 2

updated
framebuffer

Wikipedia



University of Freiburg – Computer Science Department – Computer Graphics - 38

Blending / Merging

 blending
 combines the fragment color with the framebuffer

color at the position of the fragment

 usually determined by the alpha values

 resulting color (including alpha value) 
is used to update the framebuffer

 dithering
 finite number of colors 

 map color value to one of the nearest renderable colors 

 logical operations / masking



University of Freiburg – Computer Science Department – Computer Graphics - 39

 texture lookup
 texturing
 fog
 antialiasing
 scissor test
 alpha test
 stencil test
 depth test
 blending
 dithering
 logical operations

Fragment Processing - Summary



University of Freiburg – Computer Science Department – Computer Graphics - 40

 introduction

 rendering pipeline

 vertex processing

 primitive processing

 fragment processing

 summary

Outline



University of Freiburg – Computer Science Department – Computer Graphics - 41

Rendering Pipeline - Summary

Scene Description

Display

Vertex

Processing

Fragment

Processing

Rasterization

Primitive

Processing



University of Freiburg – Computer Science Department – Computer Graphics - 42

Rendering Pipeline - Summary

 primitives consist of vertices
 vertices have attributes (color, depth, texture coords)
 vertices are transformed and lit
 primitives are rasterized into fragments / 

pixel candidates with interpolated attributes
 fragments are processed using

 their attributes such as color, depth, texture coordinates
 texture data / image data
 framebuffer data / data per pixel position 

(color, depth, stencil, accumulation)

 if a fragment passes all tests, it replaces 
the pixel data in the framebuffer


