graphics pipeline

graphics pipeline

e sequence of operations to generate an image using object-
order processing
o primitives processed one-at-a-time
o software pipeline: e.g. Renderman
= high-quality and efficiency for large scenes
o hardware pipeline: e.g. graphics accelerators
= |[ower-quality solution for interactive applications
e will cover algorithms of modern hardware pipeline
o but evolve drastically every few years

o we will only look at triangles

graphics pipeline

e handles only simple primitives by design

o point, lines, triangles, quads (as two triangles)

o efficient algorithm
e complex primitives by tessellation

o complex curves: tessellate into line strips

o complex surfaces: tessellate into triangle meshes
e "pipeline" name derives from architecture design

o sequences of stages with defined input/output

o easy-to-optimize, modular design

graphics pipeline

e object-local algorithm
o processes only one-surface-at-a-time
e various effects have to be approximated
o shadows: shadow volume and shadow maps
o reflections: environment mapping
o hard to implement
e advanced effects cannot be implemented
o soft shadows

o blurry reflections and diffuse-indirect illumination

graphics pipeline stages

vertex data
transformations — [vertex processing]
transformed vertex data
convert to pixels — [clipping and rasterization]
fragments w/ interpolated data
compute final colors — [fragment processing]
fragments color and depth
blending hidden-surface — [framebuffer processing]

framebuffer

graphics pipeline stages

e vertex processing
o input: vertex data (position, normal, color, etc.)
o output: transformed vertices in homogeneous canonical
view-volume, colors, etc.
o applies transformation from object-space to clip-space
o passes along material and shading data
e clipping and rasterization
o turns sets of vertices into primitives and fills them in

o output: set of fragments with interpolated data

graphics pipeline stages

e fragment processing
o output: final color and depth
o traditionally mostly for texture lookups
= |ighting was computed for each vertex
o today, computes lighting per-pixel
e framebuffer processing
o output: final picture
o hidden surface elimination

o compositing via alpha-blending

vertex processing

vertex data
[vertex processing]
transformed vertex data
[clipping and rasterization]
fragments w/ interpolated data
[fragment processing]
fragments color and depth
[framebuffer processing]

framebuffer

vertex processing

e transform vertices from model to clip space

‘ !
J_}b
object ‘

clip

a ¢

\
R .y

world

[Marschner 2004]

vertex processing

e other geometry tasks
o deformation: skinning, mesh blending
o low-quality lighting
o pass other properties to next stages of pipeline
o the only place to algorithmically alter shape
e programmable hardware unit

o algorithm can be changed at run-time by application

10

clipping and rasterization

vertex data
[vertex processing]
transformed vertex data
[clipping and rasterization]
fragments w/ interpolated data
[fragment processing]
fragments color and depth
[framebuffer processing]

framebuffer

11

clipping and rasterization

e remove (partial) objects not in the view frustum
o efficiency: cull later stages of the pipeline
o correctness: perspective transform can cause trouble

o often referred as culling when full objects removed

eye

12

clipping to ensure correctness

in front of eye behind eye

13

point clipping

e point-plane clipping
o testif the pointis on the right side of the plane
o by taking dot-product with the plane normal

o can be performed in homogeneous coordinates

) T
™,
AN
N
\\\

e point-frustum clipping

o point-plane clipping for each frustum plane

14

line clipping

e segment-plane clipping

©)

o

©)

©)

test point-plane clipping for endpoints

if endpoints are clipped, clip whole segment

if endpoints are not clipped, accept whole segment
if one endpointis clipped, clip segment

= compute segment-plane intersection

= create shorter segment

"\

15

line clipping

e segment-frustum clipping
o clip against each plane incrementally

o guarantee to create the correct segment
\

—
=T

e more efficient algorithms available

o previous incremental approach might try too hard
o provide early rejection for common cases

o so, only clip when necessary

16

polygon clipping

e convex polygons similar to line clipping
o clip each pointin sequence
= remove outside points
= create new points on boundary

o clipped triangles are not necessarily triangles

& .
A ™

17

culling

e further optimize by rejecting "useless" triangles

e backface culling
o if triangle face is oriented away from camera, cull it
o only ok for closed surfaces

e early z-culling
o if triangle is behind existing scene, cull it

o uses z-buffer introduced later on

18

viewport transformation

e transform the canonical view volume to the pixel coordinates
of the screen

e alsorescale zinthe [0...1] range
o we will see later why

e perspective divide is often performed here

-

-

a B —
. -

-

-

-~

clip screen

[Marschner 2004]

19

rasterization

e approximate primitives into pixels

o pixel centered at integer coordinates
e determine which pixels to turn on

o no anti-aliasing (jaggies): pixel in the primitive

o consider anti-aliasing for some primitives

o input: vertex position in homogeneous coordinates
e interpolate values across primitive

o color, normals, position at vertices

o input: any vertex property

20

line rasterization

e approximate line with a collection of pixels
e desirable properties
o uniform thickness and brightness

o continuous appearance (no holes)

©)

efficiency

O

simplicity (for hardware implementation)
e line equation:y = mx + b

o in this lecture, for simplicity, assume m in [0, 1)

21

point-sampled line rasterization

e represent line as rectangle

e approximated by all pixel within the
line
o for each pixel center, testif inside

Y
the rectangle

oYy
e inefficient /
o many inside tests

: YooY Y Y
e inaccurate

o thickness not constant

Y

Y

22

midpoint line rasterization

e for each column only turn on closest
pixel

e simple algorithm
o given line equation
o eval. eqn. for each column

between endpoints

for x = ceil(x@) to floor(x1) {
y = mxx + b

write(x,round(y))

23

optimizing midpoint line rasterization

e evaluating y is slow

e use incremental difference, DDA
m = Ay/Ax
yx+1)=ykx)+m

X = ceil(x0)
y =m*x + b
while x < floor(x1)

write(x, round(y), 1)
y +=m

X += 1

24

bresenham's line rasterization

e ateach pixel (xp,y,), only two
options: € (x, + 1,y,) or N
(xp +1,y,+ 1)

ed=x,+Dm+b-y,
o ifd > 0.5 then ne

o elseE

e can evaluate d using incremental
differences
one:d=d+m-—1
ced=d+m

e can use integers only

T 25

bresenham's line rasterization

X = ceil(x0)
y = round(mxx + b)
d=mx(x +1) +b -y

while x < floor(x1)
write(x, y, 1)

X += 1

d +=m

if d > 0.5
y += 1

d -= 1

26

midpoint vs. point-sampled line

point-sampled

varying thickness

midpoint

same thickness

27

antialiased line rasterization

e for each pixel, color is the ratio of
the area covered by the line
¢ need to touch multiple pixels per

column

Y Y

oY
e can be done efficiently by
precomputation and lookup tables /
oYy

o area only depends on line to pixel

Y Y

distance

28

interpolating parameters

along a line

¢ often associate params ¢; at line vertices

o colors, alphas

o linearly interpolate g;: q;(s) = g, - (1 —5) + ¢g;; - s

o §is fractional distance along the line

o can be done using incremental differences

29

triangle rasterization

e most common operation in graphics pipelines
o can be the only one: turn everything into triangles
e input: 2D triangle with vertex attributes
o 2D vertex coordinates: { (xg, yg), (X1, Y1), (x2,¥5)}
o other attributes: {g,9, 4,19 }
e output: list of fragments with interpolated attributes
o list of pixel coordinates that are to be drawn

o linearly interpolated vertex attributes

30

triangle rasterization

one triangle consistent triangles
L])/.\\._ L] . [] . L] L | L [] L] L y L] \{\ L] . L] L] L]
,/ e | \\t . L . . e | o -,/ e [o \:\ L]
/ L] [L] o/ [. [[L]
L] | ® | /‘ L] e | ® | 8

31

brute force triangle rasterization

e for each pixelin image
o determine if inside triangle
o interpolate attributes

e use baricentric coordinates

e optimize by only checking triangle bounding box

32

triangle baricentric coordinates

p=aa+ b+ yc a+p+y=1 .

e analytic interpretation
o coordinate system of the triangle N

op=a+pf(b-—a)+yc—a) i)

e geometric interpretation

o relative areas
o relative distances

e also useful for ray-triangle intersection

brute force triangle rasterization

foreach pixel(x,y) in triangle bounding box
compute(alpha, beta, gamma)
if(alpha,beta,gamma) in [0,1]73
gl = alpha*qi@ + beta*qil + gammaxqi?2
write(x, vy, {qi})

e can be made incremental as in line drawing

e more efficient options exist, but...

34

triangle rasterization on hardware

¢ old hardware: optimized for large triangles
o use smart algorithm
= clip triangle to screen window
= set up initial values
= interpolate

o hard to parallelize, high set up cost

35

triangle rasterization on hardware

e modern hardware: optimized for small triangles
o use incremental brute force algorithm
= only clip against near plane for correctness
= work with clipped bounding box
o easily parallelizable, little set up cost

= use tiles in image plane

36

rasterization take-home message

e complex but efficient set of algorithms

o lots of small little details that matter for correctness
¢ no clear winner

o architecture: parallel vs. serial

o input: e.g. size of triangles

o amortization: one-time vs. step-by-step cost
e complex algorithms often have hidden costs

o verify if they can be amortized

¢ |loops are expensive: optimize as you can

37

fragment processing

vertex data
[vertex processing]
transformed vertex data
[clipping and rasterization]
fragments w/ interpolated data
[fragment processing]
fragments color and depth
[framebuffer processing]

framebuffer

38

fragment processing

e compute final fragment colors, alphas, and depth
o depth is often untouched if no special efficts
o final lighting computations
o |lots of texture mapping: see later

e programmable hardware unit

o algorithm can be changed at run-time by application

39

framebuffer processing

vertex data
[vertex processing]
transformed vertex data
[clipping and rasterization]
fragments w/ interpolated data
[fragment processing]
fragments color and depth
[framebuffer processing]

framebuffer

40

framebuffer processing

¢ hidden surface elimination
o decides which surfaces are visible
e framebuffer blending

o composite transparent surfaces if necessary

41

hidden surface removal - painter alg.

e sort objects back to front
e draw in sorted order

e does not work in many cases

42

hidden surface removal - painter alg.

e sort objects back to front
e draw in sorted order

e does not work in many cases

43

hidden surface removal - z buffer

e brute force algorithm

e for each pixel, keep distance to closest object

e for each object, rasterize updating pixels if distance is closer
o opaque objects: works in every case

o transparent objects: cannot properly composite

44

hidden surface removal - z buffer

z-buffer

color buffer

1
1
1
1

W w| w| g

1
1
1
1

3
3
3

w| w|w| g

el e B]

[adapted from Shirley]

45

hidden surface removal - z buffer

z-buffer

color buffer

[adapted from Shirley]

e |es | e | 1 1 |ee | |1
wo o |3 |1 1 /3 13 |1
+
e |H |3 [1 1 (3 |13 [1
5 |3 |1 113 |3 |1
+

46

which z distance

¢ use z value after homogeneous xform
o linear interpolation works

o storage non-linear: more precision around near frame

projection plane

eye point

equally spagcTz (distance)

[Marschner 2004] 47

which z distance

¢ use z value after homogeneous xform
o linear interpolation works

o storage non-linear: more precision around near frame

projection plane

eye point

—

equally spaced z'(screen depth)

[Marschner 2004]

48

hidden surface removal - raycasting

e for each ray, find intersection to closest surface
o works for opaque and transparent objects

¢ loops over pixels and then over surfaces
o inefficient

o would like to loop over surfaces only once

49

hidden surface removal - scanline

e for each scanline, sort primitives
o incremental rasterization
o sorting can be done in many ways
o needs complex data structures

o works for opaque and transparent objects

50

hidden surface removal - reyes

e for each primitives, turn into small grids of quads
¢ hit-test quads by ray-casting
e keep list of sorted hit-points per pixel

o like z-buffer but uses a list

o works for opaque and transparent objects
e hybrid between raycast and z-buffer

o very efficient for high complexity

= when using appropriate data-structures

o solves many other problems we will encounter later

51

framebuffer processing

¢ hidden surface elimination using Z-buffer
e framebuffer blending using a-compositing
o but cannot sort fragments properly
o incorrect transparency blending
o need to presort transparent surfaces only

= like painter's algorithm, so not correct in many cases

52

lighting computation

e where to evaluate lighting?
o flat: at vertices but do not interpolate colors
o Gouraud: at vertices, with interpolated color

o Phong: at fragments, with interpolated normals

53

lighting computation - flat shading

e compute using normals of the triangle
© same as in raytracing
e flat and faceted look

e correct: no geometrical inconsistency

54

lighting computation - gouraud shading

e compute light at vertex position
o with vertex normals

¢ interpolate colors linearly over the triangle

55

lighting computation - phong shading

e interpolate normals per-pixels: shading normals
e compute lighting for each pixel

o lighting depends less on tessellation

56

lighting computation comparison

Gouraud Phong

artifacts in highlights good highlights

57

lighting computation

e per-pixel lighting is becoming ubiquitous
o much more robust
o move lighting from vertex to fragment processing
= new hardware architectures allow for this
= we introduce Gouraud for historical reasons

o raytracing can have this by using shading normals

58

lighting computation

e shading normals introduce inconsistencies

o lights can come from "below" the surface

¥

59

why graphics pipelines?

e simple algorithms can be mapped to hardware

e high performance using on-chip parallel execution
o highly parallel algorithms
o memory access tends to be coherent

o one object at a time

60

graphics pipeline architecture

e multiple arithmetic units
o NVidia Geforce GTX Titan: 2688 stream processors
e very small caches
o not needed since memory accesses are very coherent
e fast memory architecture
o needed for color/z-buffer traffic
e restricted memory access patterns
o no read-modify-write
o bound to change hopefully
¢ easy to make fast: this is what Intel would love!

e research into using for scientific computing

61

graphics pipelines vs. raytracing

raycasting graphics pipeline

e foreach pixel, foreach obj foreach obj, foreach pixel

e project pixels onto objects project objects onto pixels

discretize last

e discretize first
e access objects manytimes e access objs once

o scene must fit in mem o image must fitin mem

e very general solution hard for complex effects

O(log(n)) w/ accel. struct. O(n) or lower sometimes

o but constant very high o but constant very small

62

