Résolution algébrique d'un programme linéaire

Un programme linéaire représenté sous forme canonique (système d'inéquations)ne peut être résolu d'une façon algébrique que s'il est standardisé (systéme d'équations). Pour cela le passage à la forme standard s'avère nécessaire.

1) Standardisation d'un programme linéaire primal.

Soit P un programme primal:

$$Max(Cx)$$
; $AX \le b$; $X \ge 0$.

Soit P' la forme standard de P:

$$Max(CX)$$
; $AX = b$; $X \ge 0$.

On doit ajouter une variable d'écart pour chaque contrainte de P de sorte que :

Max(C'X'); AX' = b; $X' \ge 0$. En supposant que A' = [A, I]; X' = (X,Y) avec $X \ge 0$ et $Y \ge 0$ (variables d'écarts); C' = (C,0).

Ou Max(CX); AX = b; $X \ge 0$ tel que $C \le d \Rightarrow \exists e \ge 0 / C + e = d$

- 1) $Y_1 = b_1$
- 2) $Y_2 = b_2$
- 3) $Y_3 = b_3$ $Y_i = variables d'écart.$
- 4)
- 5) $Y_m = b_m$ C = (C,0).

Soit P primal

$$x_1, x_2, \dots, x_n$$
 réelles avec $X_i \ge 0$

$$MAX(z) = C_1X_1 + C_2X_2 + \dots + C_nX_n$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n \le \mathbf{b_1}$$

$$a_{21}x_1+2_{22}x_2+a_{23}x_3+....+a_{2n}x_n \le b_2$$

.....

$$a_{i1}x_1+a_{i2}x_2+$$
 $a_{i3}x_3+....+a_{in}x_n \le b_i$

$$a_{m1}x_1+2_{m2}x_2+a_{m3}x_3+....+a_{mn}x_n \leq b_m$$

sa forme standard P' après ajout de variables d'écarts :

Variables principales $X = (x_1, x_2, ..., x_n)$ réelles avec $X_i \ge 0$ et variables d'écarts $Y = (y_1, y_2, ..., y_m)$ réelles

$$MAX(z) = c_1x_1 + c_2x_2 + \dots + c_nx_n + 0y_1 + 0y_2 + \dots + 0y_m$$

$$a_{11}x_1+a_{12}x_2+a_{13}x_3+....+a_{1n}x_n+y_1 = \mathbf{b_1}$$

$$a_{21}x_1+2_{22}x_2+a_{23}x_3+...+a_{2n}x_n+y_2 = b_2$$

.....

$$a_{i1}x_1+a_{i2}x_2+ a_{i3}x_3+...+a_{in}x_n+y_i = b_i$$

.....

$$a_{m1}x_1+2_{m2}x_2+a_{m3}x_3+....+a_{mn}x_n+y_m = b_m$$

$$A' = [A, I]$$
; $A'X' = b \text{ et } X' = (x,y)$

Exemple: soit P/Max
$$(6x_1 + 8x_2 + 3x_3)$$
; $X_1 \ge 0$, $X_2 \ge 0$, $X_3 \ge 0$

$$x_1 + 2x_2 - 3x_3 \le 6$$

$$2x_1 - x_2 + x_3 \le 10$$

$$x_1 + 3x_2 - 4x_3 \le 5$$
.

La forme standard de P est P':

Max
$$(6x_1 + 8x_2 + 3x_3 + 0y_1 + 0y_2 + \dots + 0y_m)$$
; $X_1 \ge 0$, $X_2 \ge 0$, $X_3 \ge 0$, $Y_1 \ge 0$, $Y_2 \ge 0$, $Y_3 \ge 0$

$$x_1 + 2x_2 - 3x_3 + y_1 = 6$$

$$2x_1 - x_2 + x_3 + y_2 = 10$$

$$x_1 + 3x_2 - 4x_3 + y_3 = 5$$

les cout relatifs aux variables d'écart sont nuls.

2) Forme canonique par rapport à une base.

La forme standard est une forme nécessaire et non suffisante pour résoudre un programme linéaire, pour cela il est impératif d'ajouter une base au système pour arriver à trouver une solution (unique) afin de satisfaire l'objectif (optimJm) d'un programme linéaire.

Une base d'un système linéaire $I=\{1,2,....,n\} / |I|= card (I) = m$ et Rang(A) = m , (A^I) régulière => donc I est une base.

Si $(A^{l})^{-1}b \ge 0$ la solution est **réalisable.**

1) Forme canonique par rapport à une base I.

Soit P un programme linéaire primal est standardisé par rapport à une

base I.
$$Max(Z) = CX$$
 (1) et P' $Max(Z) = C_i X_I + C_J X_J$
 $AX = b$ (2), $A^I X_I + A^J X_J = b$
 $X \ge 0$ $X \ge 0$

Avec $I = base et A inversible (A^I)^{-1} et J/I \cap J = \otimes et Y un vecteur de dimension m . soit P'' un programme linéaire obtenu par la substitution en utilisant (1) et (2) c'est-à-dire :$

$$X_1 C X_1 = (A^1)^{-1} b$$

 $(C_1 - Y A^1) X_1 + (C_1 - Y A^1) X_1 = Max(Z) - YB$

P" est dite forme canonique par rapport à une base

Théorème:

Soit P est P" sus-définies :

- P et p" ont la même solution réalisable
- P et p" ont la même fonction objective

Preuve

Soit Y tel que
$$C_1 - A^1Y = 0 \Rightarrow C_1 = A^1Y \Rightarrow Y = (A^1)^{-1} C_1$$
.

Y est unique car I est une base le système est de Crammer = > la solution est unique.

On remplace $Y = (A^I)^{-1} C_I$ est on obtient P''':

$$X_1 + (A^I)^{-1} A^J X_J = (A^I)^{-1} b => X_1 = (A^I)^{-1} b \ge 0$$

 $0 X_1 + (C_1 - (A^I)^{-1} A^J C_1) X_1 = Max(Z) - Yb$

P''' est dite forme canonique par rapport à une base I.

La valeur de coût dit coût relatif est $C = (0, C_J - (A^I)^{-1} A^J C_I)$

Remarque:

Si la valeur du cout relatif est négative alors la solution est optimale.

2) Méthode de résolution d'un programme linéaire Primal sous une forme canonique par rapport à une base I dite <u>SIMPLEXE</u>.

Algorithme du SIMPLEXE

début

Pas1: mettre le P.L. sous une forme canonique /Base

Pas 2: trouver s tel que s est le rang de C_S le MAXimum (C_i)

Si le $C_S \le 0$ (est négative) alors solution optimale atteinte ARRET.

Pas 3 : trouver r selon une analyse de A_i^s

Si ($A_i^s > 0$) = ∞ alors => la solution (la fonction objective est non bornée) **ARRET**.

Sinon r est le rang du Minimum($\frac{bi}{A_i^s}/A_i^s>0$).

Pas 4 : pivoter selon la formule de GAUSS

Aller à Pas 2.

Fin.

Exemple d'application.

$$X_1 \ge 0$$
, $X_2 \ge 0$;

$$Max (4x_1 + 2x_2)$$

$$-x_1 + 3x_2 \le 9$$

$$2x_1 + 3x_2 \le 8$$

$$2x_1 - x_2 \le 10$$
.

Pas 1

La forme standard par rapport à la base I

Variables principales $X_1 \geq 0$, $X_2 \geq 0;$ variables d'écart $X_3 \geq 0$, $X_4 \geq 0$, $X_5 \geq 0$

$$\mathsf{Max} \left(4x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5 \right)$$

$$-x_1 + 3x_2 + x_3 = 9$$

$$2x_1 + 3x_2 + x_4 = 8$$

$$2x_1 - x_2 + x_5 = 10$$
.

Pas 2

Itération 1

	X ₁	X ₂			•	b ₁
X ₃	-1	3	1	0	0	9
X ₄	2	3	0	1	0	8
X ₅	2	-1	0	0	1	10
С	4	2	0	0	0	Z-0
	S ^	•	•	•	•	<u> </u>

Itération 2

Pivoter en utilisant les formules de GAUSS :

$$a_{ij}' = a_{ij} - \frac{alj}{alk} a_{ik} \quad (i = 1, n ; i \neq l)$$

$$d_i' = d_i - \frac{dl}{alk} a_{ik} \quad (i = 1, n ; i \neq l)$$

$$a_{lj}' = \frac{alj}{alk} \quad (i = 1, n ; j \neq k)$$

Après avoir pivoter avec la formule de GAUS, on obtient .

	X ₁	X ₂		•	X ₅	b ₁
X ₃	0	5/2	1	0	0	9
X ₄	0	4	0	1	0	8
X ₁	1	-1/2	0	0	1	10
С	0	4	0	0	-2	Z-20

S^

Itération 3

	X ₁	X ₂	•	X ₄	X ₅	b ₁
X ₃	0	0	1	-5/8	9/8	9
X ₂	0	1	0	1/4	-1/4	2
X ₁	1	0	0	1/8	3/8	6
С	0	0	0	-1	-1	Z-28

La solution optimale est atteinte vu que les valeurs de C_i sont toutes négatives ou nulles donc ARRET

La solution est : $X_1 = 6$, $X_2 = 2$ et Max(Z) = 28.