3.6. Conduction sans source de chaleur interne en régime permanent a une dimension,

3.6.1. Solutions de I’équation de la chaleur, en coordonnées cartésiennes

e  Mur simple avec conditions de Dirichlet sur les deux faces

On appelle un " mur simple" un milieu conducteur homogéne limité par deux plans //,chacun
des deux étant a une température, la méme pour I’ensemble du plan.

La plupart des problémes de chauffage des batiments peuvent se réduire a 1’étude du mur
plan.

Considérons un mur homogene d’air S, d’épaisseur L, traversée par un flux & causé par les

Tempeératures différentes T; > T, des deux faces aux abscisses respectives xlet x2 et A=cste

Le systéme fondamental donnant la température s’écrit :
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La solution T(x) =A(x)+B fait intervenir deux constante qui sont déterminées a I’aide des

conditions aux limites :
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Le flux de chaleur est constant en régime permanent et loi élémentaire de Fourier permet

d’exprimer
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3.6.2. Solutions de I’équation de la chaleur, en coordonnées cylindrique
On considére un tube creux de longueur L et d’épaisseur 8, la surface interne est maintenue a
une température T et la surface externe du tube étant elle est maintenue a la température T»,

tout le long de tube T, >T,, Riet R, sont les rayons interne et externe respectivement.

L’équation de la conduction on coordonnées cylindriques (, 6, z) s’écrit :
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e Cylindre creux avec conditions de Dirichlet

Pour le cas unidimensionnel sans source interne en régime permanent 1’équation précédente

se réduit a :

OZ_T la_T =0 = dz—T + ld—T =0
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Avec les conditions aux limites

T(Ry) =Ty pour r =R;

T(Ry) =T, pourr =R,

Multipliant 1’équation différentielle précédente par r
d*T N dT 0
Tarr T ar
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On remarque que le premier membre de I’équation est la dérivée de r . donc I’intégration
T

premiére de 1’équation de la chaleur nous donne :

dT_A - dT _dr
rdr_ A r

En intégrant cette équation on trouve : T = Alnr + B



Les deux constantes sont déterminées a partir des conditions aux limites.
Pourr=R;, = T, =AInR;+8B
Pourr=R, = T,=AIlnR,+B

La résolution du systeme des deux équations nous donne :
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La température sera décrite par I’expression
T, — T -T,
T(r) = ln(r) +T, — R X InR,
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Qui peut s’écrire :
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Ainsi que celle du flux thermique
T,—-T, 1 T, —T.
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3.6.3. Solutions de I’équation de la chaleur, en coordonnées sphériques :

En coordonnées sphériques(r, ¢, ), I’équation générale de la conduction s’écrit :
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Dans le cas statlonnalre(a = 0), unidimensionnel (5 =—

Pl 0) et sans source interne

(Q = O) I’équation se réduit a :
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Qui peut s’écrire :
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e  Sphére creuse avec conditions de Dirichlet
Pour une sphére creuse de rayon interne r; et externe r, les parois de la sphére sont

maintenues aux températures T, et T, avec Ty > T,  le systéme d’équation s’écrit :

T
T
d*T 2dT
—_ - =
dr? rdr
-
Pourr=r, T(r)=T;
Pourr=r, T (r2) =T
En multipliant 1’équation différentielle par r*
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L’intégration de la derniére équation donne :

T(T‘)ZT-FB

Ou A et B sont des constantes d’intégration elles sont déterminées a partir des conditions aux

limites.

Ona
Pour r=rn T(r1)=T1=_T—A+B
1

—-A

POUI’T =1 T(rz) = Tz = ” +B
2



Des deux équations précédentes :

Tl_TZ Tl_TZ
A___l_l et B_Tl_—(l_l)
T n o n n

L’équation de la variation de température prend la forme suivante :
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La densité de flux :
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Le flux :
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