3.6, Résistance thermique —Analogie électrique

D’aprés les résultats établis au paragraphe précédent, on remarque que les expressions des

flux de chaleur échangé par conduction ou par convection peuvent s’écrire sous la forme :
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Pour le flux convectif
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e Analogie électrique

L’expression du flux ainsi écrite présente une certaine analogie avec la loi d’Ohm en
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Nous constatons une certaine analogie entre les différentes grandeurs

e Le flux de chaleur @ joue un réle du courant électriquel

e ladifférence de température AT joue le r6le de la différence de potentiel U



Ainsi, pour représenter un probléme thermique, on pourra adopter la méthode des schémas

électriques équivalents

thermique

3.7. Conduction avec source de chaleur interne en régime permanent a une dimension

(conduction vive)

On appelle Conduction vive la conduction avec source interne de chaleur. Ces sources
peuvent étre soit uniformément réparties soit concentrées en des points precis.
On considére un solide (ou un fluide au repos) homogeéne et indéformable et on suppose que
la conductivité thermique du matériau est constante. Reprenons 1’équation de la chaleur
établie précédemment.
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En régime permanent (stationnaire) avec source interne 1’équation précédente prend la forme

suivante :

>
hﬁ
Il
|
YIS

e 3.7.1. Mur simple avec conditions de Dirichlet sur les deux faces (températures
imposées aux surfaces)

L’équation a résoudre dans ce cas est :
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Avec les conditions aux limites suivantes : 1

ax=0 T(0)=T,

ax=L T(L)=T, 0



En intégrant 1’équation différentielle on trouve :
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Ou A et B sont des constantes d’intégrations a déterminer :
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e Densité de flux
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Si:

L
T1=T2etx = > = ¢ = 0 = plan adibatique

p=0> Tx = 0 = Test maximal.

3.7.2. Cylindre creux avec conditions de Dirichlet :
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Avec les conditions aux limites
T(R) =T, pourr=R;
T(Ry) =T, pourr=R;

Multipliant 1’équation différentielle précédente par r
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En intégrant cette équation on trouve :
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Déterminations des constantes A et B

Pour r =R,
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Pour déterminer B on remplace A dans (1'):
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3.7.2. Sphere creuse avec conditions de Dirichlet :
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En multipliant I’équation différentielle par r?
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L’intégration de la derniére équation donne :
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A et B constantes d’intégration qui peuvent étre déterminé par les conditions aux limites.

Pourr=r,

q A "
T(H)—_aﬁ _7‘_+B T, )
Pourr=r,

() = —2r2 -2 1B =T, @)

64 T
(1”) _ (2”)

(1, _T)+CI(7‘1 r5) RS T)+q(r1 r3)

— 64
%)

A=
(%)







