Corrigé type des TP N° 1, 2, 3 et 4

Exercice 1:

1- L'intervalle de confiance à 95% de la taille moyenne des enfants est [89.5854; 128.7346].

Statistiques sur échantillon unique

	N	Moyenne	Ecart-type	Erreur standard
				moyenne
Taille des enfants	10	109,1600	27,36345	8,65308

Test sur échantillon unique

	Valeur du test = 0					
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance	e 95% de la différence
					Inférieure	Supérieure
Taille des enfants	12,615	9	,000	109,16000	89,5854	128,7346

2- L'intervalle de confiance à 99% de la taille moyenne des enfants est [81.0389; 137.2811].

Test sur échantillon unique

Test sur continuou unique							
		Valeur du test = 0					
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance	e 99% de la différence	
					Inférieure	Supérieure	
Taille des enfants	12,615	9	,000	109,16000	81,0389	137,2811	

Exercice 2: Le test à réaliser dans ce cas est le test de conformité d'une moyenne qu'on peut formuler comme suit :

$$H_0$$
: " $\mu = 110$ " contre H_1 : " $\mu \neq 110$ ".

La taille moyenne des enfants est significativement égale à 110 le fait que $\alpha < sig (0.05 < 0.925)$.

Test sur échantillon unique

1 est sui cenumini uni uc							
		Valeur du test = 110					
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance	e 95% de la différence	
					Inférieure	Supérieure	
Taille des enfants	-,097	9	,925	-,84000	-20,4146	18,7346	

Exercice 3:

1- L'intervalle de confiance à 95% du nombre moyen de pouls est [88.4623 ; 110.6806].

Statistiques sur échantillon unique

	N	Moyenne	Ecart-type	Erreur standard
				moyenne
Nombre de pouls	7	99,5714	12,01190	4,54007

Test sur échantillon unique

rest sur cenantinon unique							
		Valeur du test = 0					
	t	ddl	Sig.	Différence	Intervalle de confia	nce 95% de la	
			(bilatérale)	moyenne	différen	ce	
					Inférieure	Supérieure	
Nombre de pouls	21,932	6	,000	99,57143	88,4623	110,6806	

2- Le test à réaliser dans ce cas est bien que le test unilatéral à droite de conformité d'une moyenne qu'on formulera comme suit :

$$H_0$$
: " $\mu = 90$ " contre H_1 : " $\mu > 90$ ".

Décision : D'après les résultats on conclut que le nombre moyen de pouls est significativement supérieur à 90 le fait que $2*\alpha > sig$ (0.1 > 0.08).

Test sur échantillon unique

	Valeur du test = 90					
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance	e 95% de la différence
					Inférieure	Supérieure
Nombre de pouls	2,108	6	,080,	9,57143	-1,5377	20,6806

3- Le test à réaliser dans ce cas est bien que le test unilatéral à droite de conformité d'une moyenne qu'on formulera comme suit :

$$H_0$$
: " $\mu = 100$ " contre H_1 : " $\mu < 100$ ".

Décision : D'après les résultats on conclut que le nombre moyen de pouls est significativement égale à 100 le fait que $2*\alpha < sig (0.1 < 0.928)$.

Test sur échantillon unique

rest sur cenantmon unique							
		Valeur du test = 100					
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance	e 95% de la différence	
					Inférieure	Supérieure	
Nombre de pouls	-,094	6	,928	-,42857	-11,5377	10,6806	

Exercice 4:

1- de confiance à 98% du PH moyen de la boisson est [6.7680; 7.8320].

Statistiques sur échantillon unique

	Statistiques sur cenantinon unique							
	N	Moyenne	Ecart-type	Erreur standard				
				moyenne				
PH	10	7,3000	,59628	,18856				

Test sur échantillon unique

	Valeur du test = 0						
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance	e 98% de la différence	
					Inférieure	Supérieure	
РН	38,714	9	,000	7,30000	6,7680	7,8320	

2- Le test à réaliser dans ce cas est le test unilatéral à droite:

$$H_0$$
: " $\mu = 7$ " contre H_1 : " $\mu > 7$ ".

Décision: La nature de la boisson est significativement neutre et ceci le fait que $2*\alpha < sig (0.02 < 0.146)$.

Test sur échantillon unique

	Valeur du test = 7						
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance	e 95% de la différence	
					Inférieure	Supérieure	
PH	1,591	9	,146	,30000	-,1266	,7266	

Exercice 5:

1- L'intervalle de confiance à 98% de la hauteur moyenne des arbres est [22.0602 ; 24.6670].

Statistiques sur échantillon unique

Statistic and but committee and are						
	N	Moyenne	Ecart-type	Erreur standard		
				moyenne		
Hauteur	11	23,3636	1,56414	,47161		

Test sur échantillon unique

	Valeur du test = 0									
	t	ddl Sig. (bilatérale) Différence moyenne Intervalle de conf			Intervalle de confiance	e 98% de la différence				
					Inférieure	Supérieure				
Hauteur	49,540	10	,000	23,36364	22,0602	24,6670				

2- Le test à réaliser dans ce cas n'est pas précis c'est-à-dire en a le choix entre le test bilatéral et le test unilatéral à gauche. Supposons qu'on opte pour le test unilatéral suivant :

$$H_0$$
: " $\mu = 25$ " contre H_1 : " $\mu < 25$ ".

Décision: La hauteur moyenne des arbres est significativement inférieur à 25 unités de mesures et ceci le fait que $2*\alpha < sig (0.02 > 0.006)$.

Test sur échantillon unique

		Valeur du test = 25										
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance 98% de la différe							
					Inférieure	Supérieure						
Hauteur	-3,470	10	,006	-1,63636	-2,9398	-,3330						

Exercice 6:

1- Les moyennes et les écarts-types des deux types d'arbres sont rangés dans le tableau suivant :

Statistiques de groupe

	Statistiques de groupe											
		Type d'Arbre	N	Moyenne	Ecart-type	Erreur standard						
J						moyenne						
	Hauteur	Arbre 1	6	24,5000	,88769	,36240						
	Trauteur	Arbre 2	5	22,0000	,93274	,41713						

2- Le test à réaliser dans ce cas est bien que le test bilatéral d'homogénéité de moyennes qu'on peut formuler comme suit :

H0: "
$$\mu 1 = \mu 2$$
" contre *H1*: " $\mu 1 \neq \mu 2$ "

Décision : D'après les résultats obtenus on ne conclut que les deux types d'arbres ont significativement la même variation de leurs hauteurs le fait $\alpha < sig_1 (0.05 < 0.789)$ et différentes hauteurs moyennes le fait que $\alpha > sig_2 (0.05 > 0.001)$.

Test d'échantillons indépendants

	Test a conditions made pendants										
		Test de Le	evene sur s variances	Test-t pour égalité des moyennes							
	F		Sig.	t ddl Sig. Différence Différence Intervalle de confiance 9				95% de la différence			
						(bilatérale)	moyenne	écart-type	Inférieure	Supérieure	
Hauteur	Hypothèse de variances égales	,076	,789	4,547	9	,001	2,50000	,54981	1,25623	3,74377	
Tiudicui	Hypothèse de variances inégales			4,524	8,461	,002	2,50000	,55257	1,23775	3,76225	

Exercice 7:

1- Les moyennes et les écarts-types des deux types de camemberts sont rangés dans le tableau suivant :

Statistiques de groupe

	Type du Camembert	N	Moyenne	Ecart-type	Erreur standard	
					moyenne	
Poids des camemberts XY	Type X	9	252,3333	7,39932	2,46644	
Folds des camemoens A i	Type Y	11	243,0000	4,53872	1,36848	

2- Le test à réaliser dans ce cas est bien que le test bilatéral d'homogénéité de moyennes qu'on peut formuler comme suit :

$$H_0$$
: " $\mu_X = \mu_Y$ " contre H_1 : " $\mu_X \neq \mu_Y$ "

Décision: D'après les résultats obtenus on ne conclut que les deux types de camemberts ont significativement la même variation de leurs poids et ceci le fait $\alpha < sig_1(0.05 < 0.150)$ et différents poids moyen le fait que $\alpha > sig_2(0.05 > 0.003)$.

Test d'échantillons indépendants

	Test d centralions independents									
		Test de Levene sur Test-t pour égalité des moyennes l'égalité des variances								
		F	Sig.	t	ddl	Sig. (bilatérale)	Différence moyenne	Différence écart-type	Intervalle de confiance 95% de la différence	
							-		Inférieure	Supérieure
Poids des camemberts	Hypothèse de variances égales	2,256	,150	3,472	18	,003	9,33333	2,68846	3,68508	14,98158
	Hypothèse de variances inégales			3,309	12,719	,006	9,33333	2,82065	3,22600	15,44067

3- Le test à réaliser dans ce cas est le test de conformité où on doit vérifier si le poids moyen du deuxième type du camembert est de 250 grammes ou non. Alors la formulation du test est la suivante :

$$H_0$$
: " $\mu_Y = 250$ " contre H_1 : " $\mu_Y < 250$ ".

Décision: D'après les résultats obtenus on ne conclut que le poids moyen du camembert Y est significativement différent du poids normale (250g) et ceci le fait que $\alpha > Sig$ (0.05 > 0.000).

Test sur échantillon unique

			7	Valeur du test = 250		
	t	ddl	Sig.	Différence	Intervalle de con	fiance 95% de la
			(bilatérale)	moyenne	différence	
					Inférieure	Supérieure
Poids du camembert Y	-5,115	10	,000	-7,00000	-10,0492	-3,9508

4- D'après les résultats obtenus même pour $\alpha = 2\%$ on ne conclut que le poids moyen du camembert Y est significativement différent du poids normale (250g) et ceci le fait que $\alpha > Sig$ (0.02>0.000). En réalité il est significativement inférieur à 250 g ($2\alpha > Sig$) d'où l'entreprise doit être pénalisée.

Exercice 8: Pour répondre à l'exercice nous devons utiliser la méthode de l'analyse de la variance à un seul facteur (ANOVA 1). Les résultats obtenus par l'application de la technique en question sont comme suit :

Descriptives

Duree

	N	Moyenne	Ecart-type	Erreur standard	Intervalle de confiance à 95% pour la		Minimum	Maximum
					moyenne			
					Borne inférieure	Borne supérieure		
Traitement A	5	37,4000	2,30217	1,02956	34,5415	40,2585	35,00	41,00
Traitement B	5	41,0000	2,44949	1,09545	37,9586	44,0414	38,00	44,00
Traitement C	5	30,8000	5,21536	2,33238	24,3243	37,2757	26,00	38,00
Traitement D	5	50,2000	6,87023	3,07246	41,6695	58,7305	42,00	58,00
Total	20	39,8500	8,34944	1,86699	35,9423	43,7577	26,00	58,00

ANOVA à 1 facteur

Durée

	Somme des	ddl	Moyenne des carrés	F	Signification
Inter-groupes	981,750	3	327,250	15,274	,000
Intra-groupes	342,800	16	21,425		
Total	1324,550	19			

- 1- D'après les résultats rangés dans le deuxième tableau et pour un risque de décision $\alpha=1\%$ on conclut que le facteur traitement à un effet significatif sur la durée séparant la prochaine crise d'asthme et ceci le fait α >signification (0.01>0.000).
- 2- Pour déterminer les traitements homogènes nous faisons recours au test multiple de *Tukey* qui nous fournis les résultats suivant :

Durée

Test de Tukey

Traitement	N	Sous-ensemble pour $\alpha = 0.05$					
		1	2	3			
Traitement C	5	30,8000					
Traitement A	5	37,4000	37,4000				
Traitement B	5		41,0000				
Traitement D	5			50,2000			
Signification		,151	,618	1,000			

Les moyennes des groupes des sous-ensembles homogènes sont affichées.

a. Utilise la taille d'échantillon de la moyenne harmonique = 5,000.

D'après les résultats fournis par le test de *Tukey* nous constatons que pour un seuil de risque $\alpha=5\%$, il existe trois sous-ensembles qui sont significativement homogènes, à savoir: Sous-ensemble 1 : Traitement C et Traitement A, Sous-ensemble 2 : Traitement A et Traitement et Sous-ensemble 3 : Traitement D. Ce qui signifie que, pour un risque de décision $\alpha=5\%$, le meilleur traitement (le traitement qui prolonge la durée de la prochaine crise d'asthme) est bien que le *Traitement D* et les pires des traitements est *Traitement C et Traitement A*.

Exercice 9: Pour répondre à l'exercice nous devons utiliser l'ANOVA 1. Les résultats obtenus par l'application de la technique en question sont comme suit :

ANOVA à 1 facteur

Rendement

Rendement					
	Somme des	ddl Moyenne des		F	Signification
	carres		carres		
Inter-groupes	126,083	3	42,028	1,913	,181
Intra-groupes	263,667	12	21,972		
Total	389,750	15			

D'après ces résultats que le facteur variété n'a pas un effet significatif sur le rendement moyen le fait α <signification (0.05<0.181). Autrement dit, le rendement moyen des quatre variétés est significativement le même.

Remarque: Si nous appliquons le test multiple de *Tukey* dans ce cas il nous fournira un seul sous-ensemble car toutes les moyennes sont significativement égales.

Corrigé type de TP N°5

Les principaux résultats fournis par SPSS sont comme suite :

Tableau 1.1 : Descriptives

Activité enzymatique

	N	Moyenne	Ecart-type	Erreur standard	Intervalle de confiance à 95% pour la moyenne		Minimum	Maximum
					Borne inférieure	Borne supérieure		
Semaine 4	12	5,1000	1,18782	,34289	4,3453	5,8547	2,70	7,20
Semaine 5	12	5,2083	,92191	,26613	4,6226	5,7941	3,20	6,70
Semaine 6	12	5,7667	1,32001	,38105	4,9280	6,6054	4,50	8,30
Semaine 7	12	6,9333	1,57960	,45599	5,9297	7,9370	4,60	10,40
Semaine 8	12	7,4750	2,55383	,73723	5,8524	9,0976	4,80	13,20
Total	60	6,0967	1,82784	,23597	5,6245	6,5688	2,70	13,20

Tableau 1.2 : Test sur échantillon unique

	Valeur du test = 0					
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance 99% de la différence	
					Inférieure	Supérieure
Semaine 4	14,873	11	,000	5,10000	4,0350	6,1650
Semaine 5	19,570	11	,000	5,20833	4,3818	6,0349
Semaine 6	15,133	11	,000	5,76667	4,5832	6,9501
Semaine 7	15,205	11	,000	6,93333	5,5171	8,3496
Semaine 8	10,139	11	,000	7,47500	5,1853	9,7647

Tableau 2 : Test d'homogénéité des variances

Activité enzymatique

· · · · · · · · · · · · · · · · · · ·						
Statistique de	ddl1	ddl2	Signification			
Levene						
3,499	4	55	,013			

Tableau 3: ANOVA à 1 facteur

Activité enzymatique

	Commo dos	ططا	Mayanna daa	г	Cignification
	Somme des	ddl	Moyenne des	F	Signification
	carrés		carrés		
Inter-groupes	53,894	4	13,474	5,174	,001
Intra-groupes	143,225	55	2,604		
Total	197,119	59			

Tableau 4 : Sous-ensembles homogènes

Activité enzymatique

Test de Tukey

Semaine	N	Sous-ensemble pour alpha =	
		1	2
Semaine 4	12	5,1000	
Semaine 5	12	5,2083	
Semaine 6	12	5,7667	5,7667
Semaine 7	12	6,9333	6,9333
Semaine 8	12		7,4750
Signification		,055	,086

Tableau 5: Test sur échantillon unique

	Valeur du test = 6					
	t	ddl	Sig. (bilatérale)	Différence moyenne	Intervalle de confiance 95% de	
					Inférieure	Supérieure
Semaine 4	-2,625	11	,024	-,90000	-1,6547	-,1453
Semaine 5	-2,975	11	,013	-,79167	-1,3774	-,2059
Semaine 6	-,612	11	,553	-,23333	-1,0720	,6054
Semaine 7	2,047	11	,065	,93333	-,0703	1,9370
Semaine 8	2,001	11	,071	1,47500	-,1476	3,0976

Partie I

- 1- Le tableau 1, nous fournis quelques caractéristiques statistiques descriptives des différents échantillons tels : la moyenne (3^{ième} colonne), l'écart-type (4^{ième} colonne), le maximum des observations (l'avant dernière colonne) et le minimum des observations (la dernière colonne)
- 2- Le tableau 1.1, nous fournis la borne inférieure et la borne supérieure de l'intervalle de confiance de l'activité de l'enzyme, de la totalité des échantillons, pour un seuil de risque α=5%.

 $IC(\mu_1)=[4,3453;5,8547]$

 $IC(\mu_2)=[4,6226;5,7941]$

 $IC(\mu_3)=[4,9280;6,6054]$

 $IC(\mu_4)=[5,9297;7,9370]$

 $IC(\mu_5)=[5,8524;9,0976]$

Pour un seuil de risque $\alpha=1\%$ (voir tableau 1.2)

 $IC(\mu_5)=[4,0350; 6,1650]$

 $IC(\mu_5)=[4,3818; 6,0349]$

 $IC(\mu_5)=[4,5832; 6,9501]$

 $IC(\mu_5)=[5,5171; 8,3496]$

 $IC(\mu_5)=[5,1853; 9,7647]$

Partie II

- 1- La technique adéquate pour répondre à notre objectif est l'ANOVA 1, ou le facteur est la semaine (l'âge de la grossesse), les résultats fournis par cette dernière (tableau 3) indique que pour un risque α=1%, l'âge de la grossesse a un effet significatif sur l'activité de l'enzyme.
- 2- Afin de répondre à cette question on doit utiliser l'une des techniques proposé dans post-hoc ainsi il faut vérifier d'bord l'homogénéité des variances des échantillons pour choisir un test. D'après le tableau 2, on constate que pour α=1% les échantillons ont les mêmes variances, donc pour ce risque α=1% on peut utiliser le test de Tukey.

Le tableau 4, qui résume les résultats obtenus par l'application du test de Tukey indique qu'il existe deux sous-groupe homogène à savoir :

Sous-groupe 1: Semaine 4, semaine 5, semaine 6 et semaine 7.

Sous-groupe 1: Semaine 6, semaine 7 et semaine 8.

- 3- La réponse à la question se fait par le test de conformité de Student dont les résultats sont rangés dans le tableau 5. D'après les résultats et pour α=1%, on conclue que l'activité de l'enzyme est :
 - Inferieur significativement à 6 uniquement durant la 5 ième semaine.
 - Egale significativement à 6 durant les semaines : 4, 6, 7 et 8.
- 4- D'après le tableau 4 et pour un seuil de risque α=1%, la seul semaine où l'activité de l'enzyme est significativement déférentes de celle de la quatrième semaine est bien que la 8^{ième} semaine.
- 5- L'activité de l'enzyme dans la quatrième semaine est supérieure à celles d'autre semaine donc on peut dire qu'il y a une légère croissance dans l'activité de l'enzyme.

Partie III:

Conclusion: réponse ouverte.....