Série N° 03 : Electrocinétique.

Exercice 1:

Soit lemontage suivant:

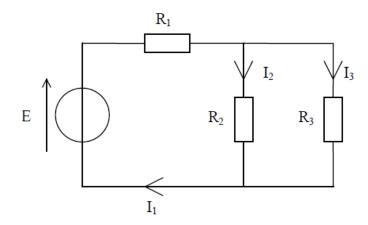
On veut calculer les courants dans ce montage par deux méthodes : diviseur de courant et la méthode de Kirtchhoff.

Filière: Energies renouvelables

1L-ER: 2020/2021 Electricité générale

I-Diviseur de courant :

- 1-Donner la résistance équivalente R à l'association des résistances de la portion BCDFGH.
- 2-Calculer la résistance équivalente de R/R₁, en déduire I₂.
- 3-Calculer, par la méthode de diviseur de courant, l'intensité de I₁ et I₃.
- 4-Par la même méthode, calculer l'intensité de I₄ et I₅.

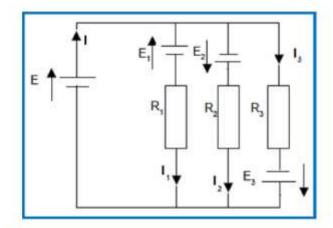

II-Méthode de Kirchhoff :

- 1-Donner les nœuds dans le circuit, puis les équations entre les courants.
- 2-Donner le nombre des branche, puis le nombre et les équations indépendantes liées aux mailles.
- 3-Calculer l'intensité des différants courants présents dans le circuit.

On donne
$$E = 10V$$
, $R_1 = R_4 = 20\Omega$, $R_2 = R_3 = R_5 = R_6 = 10\Omega$

Exercice 2:

Calculer I_1 , I_2 et I_3 :



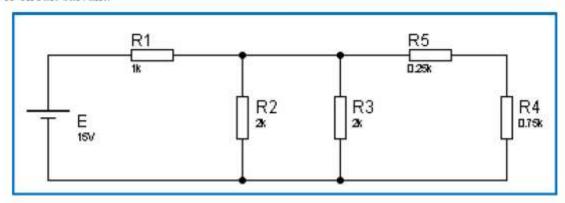
Application numérique :

$$E = 6 \text{ V}, R_1 = 270 \Omega,$$

 $R_2 = 470 \Omega \text{ et } R_2 = 220 \Omega.$

$$R_2 = 470 \Omega$$
 et $R_3 = 220 \Omega$.

Exercice 3:

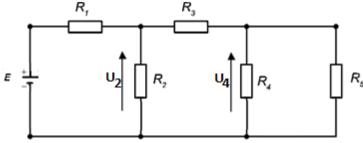


Calculer le courant principal I.

On donne :
$$E=10\ V,\ E_1=5V,\ E_2=3V,\ E_3=6V,\ R_1=1k\Omega,\ R_2=2,2k\Omega\ R_3=3,3k\Omega.$$

Exercice 4:

Soit le circuit suivant:


- Calculer la résistance totale R_T vue par la source E.
 - Calculer l'intensité du courant I fourni par la source E.
 - Calculer la tension U₃ aux bornes de R₃.
 - Calculer la tension U₄ aux bornes de R₄.
 - Calculer la tension U₅ aux bornes de R₅.
 - 6. Calculer les courants qui circulent dans chaque branche.
 - 7. Calculer la puissance dissipée par chaque résistance.
 - Calculer la puissance totale P_T dissipée par toutes les résistances et calculer la puissance P fournie par la source E. Conclure

Exercice 5:

- 1-Déterminer la tension U₄ en fonction de U₂.
- 2-Déterminer la tension U₂ puis U₄ en fonction de E.

On donne:

$$R_1 = R_3 = R \text{ et } R_2 = R_4 = R_5 = 2R.$$
 $R_1 = R_3 = R \text{ et } R_2 = R_4 = R_5 = 2R.$

Exercice 6:

Un fer à repasser a une puissance de 1500 W et fonctionne sous 220 V et 200°C.

- 1) Déterminer l'intensité du courant et la résistance à chaud ?
- 2) Le fil chauffant est en nichrome (résistivité $\rho=150.10-8~\Omega$.m et coefficient de température a = 0,4.10-3 K-1) sa longueur est de 8 m.

Quel est le diamètre du fil?

Calculez sa résistance à froid ?

Exercice 7:

Un fil de cuivre de diamètre 1 mm et de longueur 2 m transporte un courant de 1 A.

- 1) Calculez la densité de courant ?
- 2) Supposant que le nombre d'électrons de conduction est un électron par atome :
 - a) calculez la vitesse de dérive ?
 - b) Quel est le champ électrique dans ce fil ?
 - c) Quelle est sa résistance ?
 - d) Quelle est la d.d.p. à ses extrémités ?

On donne : $n_e=8,\!44.10^{28}$ électrons/m³ ; $\rho_{Cu}=1,\!7.10^{\text{-}8}~\Omega.m$