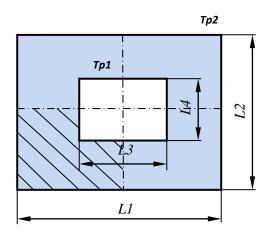
Résolution d'un problème de conduction en 2D

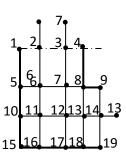
Exemple:

Un four de section droite prismatique a des température des parois interne Tp1=1150 °C et externe Tp2=50 °C.

Compte tenu des symétries, il suffit d'étudier le champ thermique dans le quart de la section droite

On donne *L1=60* ,*L2=80* , *L3=L4=20*





Si nous utilisons le découpage en mailles carrées représentées sur la figure ci-dessus, les conditions aux limites fournissent :

$$T_1 = T_5 = T_{10} = T_{15} = T_{16} = T_{17} = T_{18} = T_{19} = Tp2 = 50$$

 $T_4 = T_8 = T_9 = Tp1 = 1150$

Et les symétries permettent d'écrire :

$$T_6 = T_6$$
 , $T_7 = T_7$, $T_{13} = T_{13}$

En régime stationnaire, la température T(x, y) en un point (x, y) de la paroi vérifie l'équation de Laplace

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$
 (équation elliptique) (1)

On introduit les différences centrées

$$\frac{\partial^2 T}{\partial x^2} \approx \frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{\Delta x^2} \tag{2}$$

$$\frac{\partial^2 T}{\partial y^2} \approx \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{\Delta y^2} \tag{3}$$

L'équation de la chaleur (1) se transforme en un système d'équations aux différences finies et peut s'exprimer (si $\Delta x = \Delta y = h$) par :

$$\frac{T_{i+1,j} + T_{i-1,j} - 4T_{i,j} + T_{i,j+1} + T_{i,j-1}}{h^2} = 0$$
(4)

Méthode de résolution directe

Le système d'équations (4) peut se mettre sous forme matricielle suivante

La résolution de ce système donne

$$T_2 = 330$$
, $T_3 = 678$, $T_6 = 296$, $T_7 = 617$
 $T_{11} = 185$, $T_{12} = 345$, $T_{13} = 527$, $T_{14} = 563$

Cette technique est mal adaptée à la résolution des systèmes volumineux.

Méthode de résolution itérative

En partant du système (4), on peut exprimer chacune des températures T_{ij} par des combinaisons linéaires des autres températures

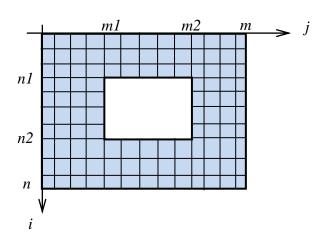
$$T_{i,j} = \frac{1}{4} (T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1})$$

On se donne à priori une première série de valeur de température. On les reportant dans cette dernière équation, on obtient une nouvelle valeur $T_{i,j}$ (2)

$$T_{i,j}^{(2)} = \frac{1}{4} \left(T_{i+1,j}^{(1)} + T_{i-1,j}^{(1)} + T_{i,j+1}^{(1)} + T_{i,j-1}^{(1)} \right)$$

Avec cette méthode il est inutile de mémoriser la matrice du système (4), il suffit de mémoriser la température $T_{i,j}$ de chacun des points de la grille.

Définissons les valeurs des indices correspondants aux parois de la figure suivante :



Pour h=10 et $\epsilon=0.5$ (critère de convergence), la distribution de la température est comme suit :

50	50	50	50	50	50	50
50	185	295	330	295	185	50
50	344	617	678	617	345	50
50	527	1150	1150	1150	527	50
50	563	1150	00	1150	563	50
50	527	1150	1150	1150	527	50
50	344	617	678	617	345	50
50	185	295	330	295	185	50
50	50	50	50	50	50	50