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Abstract

In the present study, we investigated the capabilities of a novel ultrasonic approach for real-

time control of fibrinolysis under flow conditions. Ultrasonic monitoring was performed in a

specially designed experimental in vitro system. Fibrinolytic agents were automatically

injected at ultrasonically determined stages of the blood clotting. The following clots dissolu-

tion in the system was investigated by means of ultrasonic monitoring. It was shown, that

clots resistance to fibrinolysis significantly increases during the first 5 minutes since the for-

mation of primary micro-clots. The efficiency of clot lysis strongly depends on the concentra-

tion of the fibrinolytic agent as well as the delay of its injection moment. The ultrasonic

method was able to detect the coagulation at early stages, when timely pharmacological

intervention can still prevent the formation of macroscopic clots in the experimental system.

This result serves as evidence that ultrasonic methods may provide new opportunities for

real-time monitoring and the early pharmacological correction of thrombotic complications in

clinical practice.

Introduction

Monitoring and timely correction of hemostasis is a crucial medical task [1, 2]. A number of

severe thrombotic pathologies, such as myocardial infarction and stroke, might occur suddenly

and develop very rapidly [3, 4]. In these cases large thrombi occluding blood flow in major

arteries can be formed during several minutes [4]. That is why prompt and efficient techniques

for hemostasis monitoring are needed.

Over the past two decades turnaround times of clotting tests were substantially reduced by

introduction of so-called point-of-care techniques [5]. Novel methods for on-line ex vivo mon-

itoring of hemostasis are actively developed [6]. A logical step towards real-time control of

hemostasis would be creation of the technique for direct in vivo monitoring of intravascular

blood coagulation.

One of the possible approaches to creation of such a technique is the use of ultrasonic meth-

ods. The idea for applying ultrasonic methods to detect blood coagulation was proposed quite
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long ago, at first for in vitro measurements [7–9]. In recent years, due to developments in mod-

ern ultrasonic equipment, this area of research has become active again [10]. Various research

teams have offered several ultrasonic techniques for the registration of blood coagulation in
vitro [11–19]. More recently capabilities of ultrasonic methods for in vivo detection of blood

coagulation were demonstrated in animal experiments [20–22].

It is essential that ultrasonic methods can detect blood coagulation under flow conditions

similar to those that take place in major arteries of human body [23, 24]. This fact reveals the

possible application of ultrasonic methods for non-invasive monitoring of coagulation pro-

cesses in clinical practice [25].

Efficient control of hemostasis implies both its monitoring and means for its pharmacologi-

cal correction. Usually monitoring can be performed with routine coagulation tests and cor-

rection can be achieved by use of anticoagulant drugs [1, 2]. But in acute situations, then

formation of arterial thrombi has already started and progress rapidly, coagulation tests are

already late and anticoagulants are not capable of thrombi dissolution. In these situations the

last line of defense remaining is thrombolytic therapy [26, 27]. Its efficiency drastically

depends on the delay after the onset of coagulation processes [28, 29]. A method for real-time

monitoring of the onset of intravascular blood coagulation might be very useful in these acute

situations for the reduction of onset-to-treatment time.

In the present work we investigated possible benefits of ultrasonic detection of early stages

of blood coagulation for fibrinolytic dissolution of forming thrombi. To do so, we designed a

special experimental setup for the ultrasonic monitoring of blood coagulation under intensive

flow conditions in vitro. This setup allowed us to monitor blood coagulation in real time and

to perform an automated injection of a fibrinolytic drug at precisely determined stages of the

coagulation process. Our experiments showed the following:

1. The ultrasonic method used enables the reliable registration of blood coagulation and fol-

lowing fibrinolytic dissolution of clots. The method facilitates the qualitative evaluation of

the efficiency of various fibrinolytic influences and enables the comparison of different

fibrinolytic drugs;

2. The fibrinolytic resistance of clots formed under flow conditions increases significantly

over the first few minutes of their formation;

3. An immediate injection of a fibrinolytic drug after the ultrasonic registration of the onset of

coagulation is able to prevent the formation of large clots in the experimental system.

Materials and methods

Ethics statement

This study was approved by the Institutional Committee of Blood Donation and Blood Pro-

cessing Problems at the National Research Center for Hematology (Permit number: 5/2016).

This study was performed with blood received from healthy donors who provided written

informed consent before blood collection in accordance with Russian Federal Law No 125 on

July 20, 2012. All methods were carried out in accordance with relevant guidelines and regula-

tions (The Order of Russian Health Care Ministry No 183n on April 02, 2014).

Materials

Whole blood and blood plasma were used in the experiments. The blood and fresh frozen

plasma were provided by the Division of Blood and Blood Components Collection and Storage
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of the National Research Center for Hematology. Blood was preserved in Imuflex (Terumo

Europe NV, Belgium) containers with citrate phosphate dextrose (CPD) anticoagulant solu-

tion. Plasma was separated from whole blood by centrifugation at 5000 g for 7 minutes.

To initiate coagulation several types of activators were used: 50 μl of 1% kaolin suspension

(NPO-Renam, Russia), 50 μl of thromboplastin solution, diluted by 12 times with normal

saline (NPO-Renam, Russia) or 10% calcium chloride solution (Mapichem AG, Switzerland).

Unless otherwise specified, activation of coagulation was initiated by injection of 600–800 μl of

10% calcium chloride solution.

Three different types of fibrinolytic drugs were used in the experiments: streptokinase

(Streptokinaza, Belmedpreparaty, Belarus), tissue-type plasminogen activator (Actilyse, Boeh-

ringer Ingelheim International, Germany) and urokinase (Urokinase, Medac GmbH, Ger-

many). The dosages of the fibrinolytic drug were varied in different experiments, while the

volume of the fibrinolytic solution injected into the experimental system (0.5 ml) was kept

constant.

Experimental setup

The principal scheme of the experimental setup is shown in Fig 1. A closed system of flexible

transparent silicone tubes (1 in Fig 1) was filled with either blood or blood plasma. The inner

diameter of the tube was 4 mm, and the total volume of the experimental system was 18 ml.

The flow of liquid in the system was generated by a peristaltic pump, Elpan type 372.1 (2 in Fig

1). The mean velocity of the flow was kept at a rate of 20 cm/sec (shear rate up to 400 s-1). The

activators of coagulation were injected in flowing blood directly when experiment started. All

experiments were performed at the room temperature, 24 ± 2˚C.

In the experiments with blood plasma, the processes of coagulation and fibrinolysis were

registered both optically and acoustically. In the experiments with whole blood, due to its opti-

cal opacity, the registration was conducted only through the acoustic channel. Optical registra-

tion was performed in the transmitted light with a digital camcorder, GoPro HERO 3

(Woodman Labs, Inc., USA) (3 in Fig 1). A macro lens with an optical power of 21 diopters

was used to focus the camcorder on the tube. The tube was held within the focal plane of the

camera by a special screw clamp. The same screw clamp was used to create an area of local nar-

rowing in the tube, beyond which a stagnation zone appeared in the flow. In several experi-

ments, such a stagnation zone was created to facilitate the optical registration of fibrin

microemboli, which form at an early stage of coagulation.

Acoustic registration was performed via an ultrasonic scanner Vingmed SD50 (Vingmed

Sound; Norway) working in a Doppler mode at a frequency of 5 MHz (4 in Fig 1). To reduce

the signal loss, the ultrasonic sensor (5 in Fig 1) together with a section of the tube system, was

immersed in a bath filled with degassed water. The data from the optical and acoustical regis-

tration were recorded on a personal computer (6 in Fig 1).

A custom automated drug-injector (7 in Fig 1) was designed to perform the infusion of

fibrinolytic drugs into the experimental system. The injector was connected to the computer

via a Bluetooth channel. Following a signal from the computer, the injector delivered a fibrino-

lytic agent into the system in a precisely controlled and reproducible manner. The injection

was performed gradually over 6 seconds, which was roughly equal to the turnover time of the

liquid within the experimental system.

A special computer program was written in Python for real-time data analysis and the con-

trol of drug-injector operations. The Doppler shift of the ultrasonic signal was transferred

from the scanner to the computer, digitized in a format of 44100 Hz, 16 bit and subjected to fil-

tration by a second-order Butterworth filter with a passband from 200 to 1600 Hz [30].
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Subsequently, the modulus of the amplitude of the filtered acoustic signal was averaged for

2-second time intervals. This value, indicated below as the averaged modulus of amplitude

Fig 1. The layout of the experimental set-up. 1 –system of transparent flexible silicone tubes; 2 –peristaltic pump; 3 –digital camcorder; 4 –ultrasonic scanner; 5 –

ultrasonic sensor; 6 –personal computer; and 7 –automated drug injector.

https://doi.org/10.1371/journal.pone.0211646.g001
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(AMA), was used for the monitoring of blood coagulation and fibrinolysis in the system.

Upon the increase in AMA above a certain threshold, the program sent a command signal to

the drug-injector to perform the injection. The threshold value of AMA was defined basing on

a series of preliminary experiments as the background level of AMA in the beginning of the

experiment multiplied by a predefined coefficient (equal to 2 for blood plasma and 1.3 for

whole blood).

Calculation of fibrinolysis efficiency index

The efficiency of fibrinolytic processes was assessed basing on the data from the acoustic regis-

tration after the end of each experiment. The area between the upper and the lower envelopes

of the AMA curve was calculated for a time period of 60 minutes after the registration of the

coagulation onset. This value calculated for the particular experiment was denoted as Sexp,
while Sref stands for the respective value calculated for a reference experiment with the blood

(blood plasma) of the same donor, but with normal saline instead of a fibrinolytic drug

injected. Finally, fibrinolysis efficiency index (FEI) was calculated with the following formula:

FEI ¼ 1 �
Sexp
Sref

It should be noted that Sexp is proportional to the integrated intensity of the acoustic signal

reflected by macroscopic clots in the system during the experiment. The faster the dissolution

of fibrin clots, the smaller the value of Sexp. Accordingly, FEI tends to one in cases of the imme-

diate dissolution of all fibrin clots and is close to zero in cases of the complete absence of lysis

in the experimental system.

Results

Changes in the acoustic signal caused by the development of coagulation

processes

In the experiments with blood plasma, the changes in the acoustic signal were found to be corre-

lated with the coagulation processes that were detected optically. The time course of AMA

changes during a typical experiment with blood plasma is shown in Fig 2. The four distinct char-

acteristic stages of the coagulation processes observed in all experiments are marked in Fig 2.

Stage “0” in Fig 2 corresponds to the lag phase that precedes the appearance of the first

optically detectable fibrin microemboli in the system. This stage lasts for 10–20 minutes after

the addition of coagulation activator to the plasma. The AMA value during this stage remained

practically unchanged, and its fluctuations did not exceed 15% of the initial background level.

After the lag phase, the rapid formation of multiple fibrin microemboli in the flow begins

(stage “I” in Fig 2). The movement of microemboli in the flow at this stage visually resembles a

snow-storm. The increase in the amount of microemboli in the flow was accompanied by a

drastic increase in the intensity of the reflected ultrasonic signal. A four-fold to six-fold

increase in the AMA took place.

At 30–60 seconds following the appearance of the first microemboli, fibrin flakes that were

several millimeters in size were formed in the system. During the following few minutes, grad-

ual formation of larger aggregates took place in the system (stage “II” in Fig 2). This process

was accompanied by the appearance of AMA oscillations, which were caused by single aggre-

gates of various sizes passing in front of the ultrasonic sensor. The increase in the size of single

clots led to the amplification of AMA oscillations at this stage.
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Eventually, the mutual aggregation of fibrin flakes and microemboli led to the formation of

several large macroscopic clots (stage “III” in Fig 2). The decrease in the number of clots in the

system was accompanied by a decline in the lower envelope of the AMA plot. When the lower

envelope of the AMA reached the initial background level of the AMA, no more sound-reflect-

ing micro-aggregates remained in the flow. By that time, only several large clots remained in

the system, causing large-amplitude oscillations in the AMA. These macroscopic clots were up

to 10 cm in length and, in some experiments, were capable of occluding the vessel lumen

completely, blocking flow.

Sample clips of a video recording of the coagulation process in blood plasma, representing

all four characteristic stages, can be seen in S1 Video (see also S1 Fig). The video sequence is

accompanied by a corresponding graph of AMA versus time. The Doppler shift in the ultra-

sonic signal is given as a soundtrack of this video record, enabling the coagulation processes

developing in the system to literally be heard “with the naked ear”.

Acoustic registration of drug-induced fibrinolysis

In Fig 3, the typical curves of AMA versus time for the experiments with fibrinolytic drug

injections are presented in comparison with the reference curves obtained for the experiments

in which no fibrinolytic drug was injected. In all cases final concentrations of fibrinolytics in

the system after injection are indicated. The graphs for the experiments with blood plasma are

given in Fig 3A and 3B, and those for the experiments with whole blood, in Fig 3C and 3D. It

has been established that lysis of fibrin clots is reflected in corresponding changes in the acous-

tic signal. represents total reflection of ultrasonic signal by fibrin clots present in the flow, i.e.

macroscopic and microscopic clots. Dissolution of macroscopic clots is reflected in decrease of

AMA oscillations. While dissolution of micro-clots is manifested by decrease of the lower

envelope of AMA curve (see S1 Text for details).

The data presented indicate that the injection of a fibrinolytic drug at the initial stage of the

coagulation process can prevent the formation of large clots in the experimental system. More-

over, it can be seen from Fig 3 that the practically complete lysis of all fibrin aggregates

occurred in 5–7 minutes after injection of the fibrinolytic agent. Similar results were obtained

Fig 2. A typical time course of AMA (averaged modulus of amplitude of the acoustic signal) changes during coagulation in blood

plasma. The four successive characteristic stages of the process are marked with numbers (0, I, II, III).

https://doi.org/10.1371/journal.pone.0211646.g002
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for all coagulation activators used (see S2 Text). Sample clips of a video recording of the fibri-

nolysis process for an experiment with blood plasma are presented in S2 Video.

Acoustic evaluation of the efficiency of fibrinolysis

The efficiency of fibrinolysis turned out to depend strongly on both the concentration of the

fibrinolytic agent and on the moment of its injection. The best lysis was observed when the

fibrinolytic agent was injected at the initial stage of the coagulation process (stage “I” in Fig 2).

To investigate the dependence of the efficiency of fibrinolysis on the concentration of the

fibrinolytic drug, several series of experiments with identical drug injection timing were per-

formed. The drug was injected immediately after the acoustic registration of the coagulation

onset, as soon as the AMA exceeded the preset threshold level.

The curves showing AMA as a function of time for the experiments testing a series of vary-

ing concentrations of urokinase are presented in Fig 4. It is evident that the smaller the dose of

Fig 3. Typical curves of AMA (averaged modulus of amplitude of the acoustic signal) versus time for the experiments with a complete lysis of all macroscopic clots

(black) in comparison with the reference curves obtained for the experiments in which no fibrinolytic drug was injected (gray). The moments of the injection of

streptokinase are marked on the graphs with bold round markers. (a,b)–experiments with blood plasma, final concentration of streptokinase– 150 IU/ml; (c,d)–

experiments with whole blood, final concentration of streptokinase– 600 IU/ml.

https://doi.org/10.1371/journal.pone.0211646.g003
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Fig 4. Curves of AMA (averaged modulus of amplitude of the acoustic signal) as a function of time for the experiments with

different concentrations of urokinase injected. (a,b,c,d)–sets of experiments with blood plasma; (e,f,g,h)–sets of experiments

with whole blood. The urokinase concentrations used were as follows: (a,e)–reference experiments, normal saline was injected

instead of a fibrinolytic drug; (b,f)– 200 IU/ml; (c,g)– 625 IU/ml; (d,h) – 1250 IU/ml.

https://doi.org/10.1371/journal.pone.0211646.g004
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fibrinolytic agent, the slower the dissolution of the fibrin clots. At urokinase concentrations of

50 IU/ml and lower, no fibrinolysis was observed during the 90-minute experimental period.

The time course of AMA changes in these experiments was practically identical to that

observed in the reference experiments, in which normal saline, instead of a fibrinolytic drug,

was injected.

To qualitatively compare the efficiency of fibrinolysis in different experiments, we intro-

duced a special fibrinolysis efficiency index (FEI) (see “Materials and methods”). The depen-

dences of FEI on the concentrations of the fibrinolytic agents used are presented in Fig 5. All

data presented in Fig 5 correspond to the experiments with an injection of a fibrinolytic agent

at the initial stage of the coagulation process. The sets of experimental points presented for

each drug were obtained in a series of experiments using blood plasma from the same donor

that was obtained on the same day.

Increase in fibrinolytic resistance of fibrin clots during their formation

The rate of dissolution of the fibrin aggregates in the experimental system substantially

depended on the time delay of fibrinolytic drug injection after the registration of coagulation

onset. When the fibrinolytic agent was injected at the initial stage of coagulation (stage “I” in

Fig 2), the complete dissolution of all of the clots in the system occurred in the following 5–15

minutes. However, the same concentration of a fibrinolytic drug may fail to cause any detect-

able lysis at all in cases where the injection was performed with a time delay of only several

minutes after the appearance of the primary microemboli in the flow.

The dependence of the efficiency of fibrinolysis on the time delay of the injection was stud-

ied in detail with the aid of an automated drug injector. Several series of experiments were car-

ried out in which the same dose of fibrinolytic drug was injected with different time delays

after the registration of the appearance of first microemboli in the flow. The fibrinolytic injec-

tion was conducted either immediately after the AMA value doubly exceeded its initial back-

ground level or with a delay of 30, 60, 90, 120, 180 and 300 seconds.

The curves of AMA versus time for a series of experiments with different time delays of

drug injection are presented in Fig 6. Fig 7 shows the dependence of FEI on the delay time of

the fibrinolytic drug injection for 6 series of experiments with plasma samples of different

donors. It can be seen that a delay in the injection of more than 30 seconds after the registra-

tion of the first microemboli leads to a significant decrease in the efficiency of fibrinolysis. In

cases where the injection delay was 5 minutes or more, practically no lysis was observed.

A similar effect was observed in the experiments with urokinase and tissue-type plasmino-

gen activator. An injection of a fibrinolytic drug during stage “I” led to fast and effective fibri-

nolysis, while at the beginning of stage “II”, it led to far less pronounced lysis, and at the end of

stage “II” or during stage “III”, it caused practically no lysis at all. Thus, it can be concluded

that the fibrinolytic resistance of clots increases drastically during the first 5 minutes of their

formation.

Discussion

Presently, ultrasonic methods are already used rather widely in the field of thrombosis and

hemostasis, for instance, in the diagnostics of deep vein thrombosis [31, 32], the detection of

thrombi in the left atrial appendage [33] and the monitoring of intravascular emboli [34]. Tak-

ing into account the recent achievements in the development of implantable ultrasonic sensors

[35] it seems quite likely that, eventually, an ultrasonic technique for the monitoring of blood

coagulation and thrombi formation inside the human body will be created.

Control of fibrinolytic drug injection via real-time ultrasonic monitoring of blood coagulation
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In our previous works, we have shown the applicability of ultrasonic methods for the non-

invasive registration of coagulation processes occurring under intensive blood flow conditions

Fig 5. The dependences of FEI (fibrinolysis efficiency index) on the concentrations of the fibrinolytic agents used. The data for streptokinase are marked by black

squares; the data for urokinase, by white diamonds; and the data for tissue-type plasminogen activator, by gray triangles. The concentrations for streptokinase and

urokinase are indicated in IU/ml at the lower scalebar of the plot; the concentrations of t-PA are indicated in mg/ml at the upper scalebar of the plot.

https://doi.org/10.1371/journal.pone.0211646.g005
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[24, 25]. Further development of these methods seems to be very promising because they may

enable coagulation monitoring in the areas of the vascular system where thrombus formation

poses the greatest threat to the patient’s life and health, specifically, the large vessels of heart

and brain.

In the present study, it has been shown that ultrasonic methods enable the registration of

coagulation processes at the stage when timely pharmacological intervention can still prevent

the formation of macroscopic clots in the experimental system. Thus, it was shown that real-

time ultrasonic registration of coagulation processes, in principle, provides the facility to con-

trol thrombi formation.

Fig 6. Curves of AMA versus time for an experimental series with different time delays of drug injection. a–

control experiment with no fibrinolytic drug injected; b–injection delay of 300 seconds; c—injection delay of 60

seconds; d–injection no delay. A concentration of streptokinase was 250 IU/ml.

https://doi.org/10.1371/journal.pone.0211646.g006

Fig 7. The dependence of FEI on the delay time of the fibrinolytic drug injection. The dependence was established

on the basis of 6 series of experiments with blood plasma from different donors. The concentration of streptokinase

injected was constant in all the experiments and was equal to 250 IU/ml.

https://doi.org/10.1371/journal.pone.0211646.g007
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The results presented in this paper may open prospects for creating portable or even

implantable devices, which would be somewhat similar to insulin pumps currently used in

clinical practice [36]. By means of ultrasound, such a device could provide not only the moni-

toring of blood clotting and fibrinolysis, but also active control of these processes. The minia-

ture portable injector with several Doppler sensors on critical human arteries could timely

inject fibrinolytics directly at the early stage of clotting when hemostasis could be corrected

faster and more efficiently.

In our experiments the resistance of clots to fibrinolysis increased drastically in the first few

minutes of clots formation. The increase in the resistance of clots to the action of fibrinolytic

agents with time is well known in clinical practice [28, 37]. Although our results show a similar

trend to that of clinical observations, the time period within which the clots remained sensitive

to the action of fibrinolytic agents turned out to be at least ten fold shorter in our experiments.

The particular mechanisms underlying such a rapid increase in the fibrinolytic resistance of

the clots are still unclear. However, it may be assumed that the effect observed in our work is

the result of chemical stabilization of the clots on one hand [38], and on the other hand,

changes in the structure of the clots, leading to a decrease in the permeation of fibrinolysis acti-

vators to the inner areas of the clots [39].

Concerning chemical stabilization of fibrin clots it is generally known that the action of

coagulation factor XIII [38] and thrombin activatable fibrinolysis inhibitor (TAFI) [40] sub-

stantially increase the fibrinolytic resistance of forming clots. Both of the factors are converted

to their active forms by thrombin. Activated factor XIII restrain fibrinolysis by covalent linking

of α2-antiplasmin to fibrin [41] as well as by cross-linking of α- and/or γ-chains of fibrin [42].

Activated TAFI down-regulates fibrinolysis by removal of C-terminal lysines from fibrin, pre-

venting in that way binding and activation of plasminogen [43].

Moreover it is worth to mention that blood flow itself can influence fibrinolytic resistance

of forming clots in a bidirectional manner. On one hand flow influences the structure of the

fibrin network [44, 45], making it more dense and less permeable to lytic agents, thus imped-

ing the fibrinolytic process [46]. On the other hand, the flow substantially influences the char-

acter of the mass transfer inside the clot and near its surface, thus accelerating the fibrinolytic

dissolution of the clots [47, 48].

Keeping this in mind, within the present work, it was essential to create the experimental

conditions of flow to mimic thrombi formation taking place in large arteries. The experimental

scheme chosen for this purpose is in a way, analogous to the well-known Chandler system

[49], which is widely used up to date to create artificial clots mimicking arterial thrombi [50,

51]. Despite some differences in the setups, the development of coagulation processes in our

experimental system was, in many aspects, similar to that observed in a classical Chandler sys-

tem. For instance, the stage of multiple microemboli formation in the flow, resembling a

“snow-storm”, which was observed in our experiments, was previously described for the Chan-

dler system in experiments by McNicol et al [52].

Of course no in vitro experimental system could completely reproduce in vivo formation of

arterial thrombi. Certainly, further in vivo investigations are required to answer a general ques-

tion: whether the monitoring of the early stages of blood coagulation can increase the real clin-

ical facilities for the prevention of thrombotic complications. Until recently, practically all

research on the ultrasonic registration of blood coagulation has been carried out with in vitro
model systems [7–18, 23–25, 53]. A few novel studies in this research field that have employed

in vivo experiments have been published just recently [20–22]. The small number of such

works may be attributed to the necessity of the convergence of several branches of modern sci-

ence to carry out this type of research. We hope that the present work will attract additional
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interest and attention among researchers to further address the problems of ultrasonic moni-

toring of blood coagulation in vivo.
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(TIF)
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marked by red frame. Successive characteristic stages of the fibrinolysis process are presented
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