JONCTION SEMI-CONDUCTRICE AU SILICIUM

1) FORMATION D'UNE JONCTION PN

Considérons deux barreaux de silicium : l'un dopé P au bore, l'autre dopé N au phosphore. Le bilan des porteurs libres pour une température T fixe est indiqué en figure 14 :

Imaginons que l'on rapproche les deux barreaux de manière à réaliser leur contact physique au niveau d'une jonction dite "métallurgique". On assisterait alors à deux phénomènes se manifestant de part et d'autre de l'interface :

- Phénomène transitoire de durée très brève (figure 15a) : des trous de la région P, proches de l'interface, diffusent vers la région N. En effet comme les trous sont plus nombreux dans P que dans N, ils vont avoir tendance à diffuser pour rétablir l'équilibre (idem pour les électrons proches de l'interface qui vont diffuser de N vers P).
- Phénomène permanent (figure 15b) : les trous qui ont envahi la région N (où ils ont disparu par recombinaison avec les électrons majoritaires dans cette région) ont laissé derrière eux des ions fixes de bore ionisés négativement. De même, les électrons de la région N qui sont passés du côté P ont laissé derrière eux des ions fixes de phosphore ionisés positivement.

Ces ions fixes de bore et de phosphore chargés respectivement - et + forment de part et d'autre de la jonction métallurgique une **zone de charge d'espace** (Z.C.E.) d'épaisseur faible W_0 .

Cette zone de charge d'espace est caractérisée par une **barrière de potentiel V**_o qui provoque alors l'apparition d'un **champ électrique interne E**₀.

Cette barrière de potentiel V_{ϕ} équilibre en fait les phénomènes de diffusion et de conduction.

1.1 Schéma de bandes de la jonction PN en court-circuit et barrière de potentiel V_{igta}

On montre que dans un cristal semi-conducteur non soumis à une différence de potentiel et à l'équilibre thermique, quel que soit son dopage P ou N, les niveaux de Fermi associés, E_{FP} et E_{Fn} (voir paragraphes 3 et 4), restent alignés dans le schéma de bandes. La figure 16, qui représente le schéma de bandes d'une jonction PN en court-circuit, illustre ce principe.

Figure 16 : Schéma de bandes de la jonction PN en court-circuit

Sachant que les niveaux de Fermi E_{Fp} et E_{Fn} respectivement associés aux côtés P et N sont alignés, la bande de conduction du silicium P se situe à une énergie plus élevée que celle du silicium N. Il en est de même pour les bandes de conduction. Ceci entraîne la présence d'une différence d'énergie ΔE entre ces bandes :

$$\Delta E = (E_{F_{i}} - E_{F_{p}}) + (E_{F_{n}} - E_{F_{i}}) \text{ soit : } \Delta E = kT \cdot \ln(\frac{N_{a}N_{d}}{n_{i}^{2}})$$

Sachant que la variation d'énergie potentielle ΔE d'un électron soumis à une différence de potentiel ΔV est telle que : $\Delta E = -q \Delta V$. A la différence d'énergie ΔE entre les bandes, on fait donc correspondre une différence de potentiel interne appelée hauteur de barrière de potentiel V_{ϕ} telle que :

$$V_{\Phi} = \frac{kT}{q} . \ln(\frac{N_a N_d}{n_i^2})$$

La largeur W_0 de la zone de charge d'espace (qui s'étend principalement du côté le moins dopé) est telle que :

$$W_0 = \sqrt{\frac{2\varepsilon_0 \varepsilon_{si}}{q}} (\frac{1}{N_a} + \frac{1}{N_d}) V_{\Phi}$$

(Le calcul de cette expression est donné en annexe)

Exemple : $N_a = 10^{18} \text{ cm}^{-3}$, $N_d = 10^{15} \text{ cm}^{-3}$, $W_0 = 0.96 \ \mu\text{m}$, $V_{\Phi} = 0.75 \ V$ et $E_{0 \ max} = 1.56 \ 10^4 \ V.\text{cm}^{-1}$ avec : $\epsilon_0 = 8,85 \ 10^{-14} \ \text{F/cm}$ et $\epsilon_{\text{Si}} = 12$

1.2 Etude de la jonction en court circuit.

L'anode et la cathode étant à la masse, la jonction est en court-circuit. Dans ces conditions, le courant dans le dispositif doit être nul. En effet, la zone de charge d'espace (figure 17) est traversée par deux courants opposés qui s'annulent :

- a) Le courant I_s (noté a sur la figure) qui correspond aux porteurs minoritaires des zones N (les trous) et P (les électrons) qui se présentent en bordure de la Z.C.E. et qui sont alors entraînés par le champ électrique local E₀, respectivement dans les zones P et N. La population de ces porteurs est proportionnelle à n_i^2 , en effet : $p = \frac{n_i^2}{N_d}$ et $n = \frac{n_i^2}{N_d}$.
- b) Le courant (noté b sur la figure) ayant pour origine les porteurs libres majoritaires de N et de P, très voisins de la zone de charge d'espace et dont l'énergie est suffisante pour sauter la hauteur de barrière qV_{Φ} . Ce phénomène conduit à un courant de la forme $I_0 \exp(-\frac{V_{\Phi}}{U_T})$ où I_0 est le courant qui traverserait la jonction s'il n'y avait pas de barrière de potentiel c'est-à-dire si la diffusion s'effectuait librement.

Le courant total étant nul, il vient :

$$I_{S} = I_{0} \exp(-\frac{V_{\Phi}}{U_{T}})$$

Figure 17 : Courants opposés circulant dans la jonction PN en court-circuit

2) JONCTION POLARISEE EN INVERSE

2.1) Tension V_{inv} faible : courant inverse de saturation I_s

Pour polariser en inverse la jonction, une tension faible V_{inv} , négative par rapport à la masse est appliquée sur le semi-conducteur P alors que le semi-conducteur N est la référence des potentiels (figure 18). La tension V_{inv} extérieure appliquée entraîne une augmentation :

- De la hauteur de barrière énergétique entre les régions P et N qui devient $q(V_{\phi} + V_{inv})$.
- De l'étendu W (V_{inv}) de la Z.C.E. : $W(V_{inv}) = \sqrt{\frac{2\varepsilon_0 \varepsilon_{si}}{q} (\frac{1}{N_a} + \frac{1}{N_d})(V_{\Phi} + V_{inv})} > W_0$

Alors, les porteurs majoritaires des régions N (électrons) et P (trous) n'ont plus l'énergie nécessaire pour sauter la barrière de potentiel aussi, le courant de type b est nul (figure 17). La jonction est de ce fait traversée par le très faible courant de saturation I_s (le courant de type a de la figure 18). Ce courant, issu du phénomène d'ionisation thermique du silicium, dépend de la température :

Figure 18 : Jonction PN bloquée : courant inverse de saturation I_s

3) JONCTION PN POLARISEE EN DIRECT

3.1) Relation courant tension de la jonction PN polarisée en direct

Pour polariser la jonction dans le sens passant, une tension V_{direct} positive par rapport à la masse est appliquée sur le semi-conducteur P alors que le semi-conducteur N est la référence des potentiels (figure 19). La tension extérieure V_{direct} entraîne une diminution :

- De la hauteur de barrière énergétique entre les régions P et N qui devient q $(V_{\Phi} V_{direct})$.
- De l'épaisseur de la zone de charge d'espace :

$$W(V_{direct}) = \sqrt{\frac{2\varepsilon_0 \varepsilon_{si}}{q} (\frac{1}{N_a} + \frac{1}{N_d})(V_{\Phi} - V_{direct})} < W_0$$

De nombreux électrons de la région N et de trous de la région P peuvent alors franchir cette barrière de potentiel (courants de type b de la figure 19). Ces porteurs se présentent alors dans un « milieu hostile » à savoir SiP pour électrons et SiN pour les trous.

- Une surpopulation d'électrons par rapport à l'équilibre s'établit dans le silicium P à l'entrée de la zone neutre. Cette surpopulation provoque une diffusion des électrons dont la population diminue par recombinaison avec les trous. Pour rétablir l'équilibre, les trous de la région neutre P se mettent en mouvement vers la zone où se produit la recombinaison (déficit en trous).
- Une surpopulation de trous par rapport à l'équilibre s'établit dans le silicium N à l'entrée de la zone neutre. Cette surpopulation provoque une diffusion des trous dont la population diminue par recombinaison avec les électrons. Pour rétablir l'équilibre, les électrons de la région neutre N se mettent en mouvement vers la zone où se produit la recombinaison (déficit en électrons).

C'est le phénomène de recombinaison locale qui explique la circulation du courant direct I_A dans la jonction polarisée en direct. Ce courant s'écrit :

$$I_0 \exp(-\frac{V_{\Phi} - V_{direct}}{U_T})$$
 soit en développant : $I_s \exp(\frac{V_{direct}}{U_T})$

Sachant que le courant de saturation I_s correspondant aux porteurs minoritaires des zones N et P qui se présentent en bordure de la Z.C.E. est encore présent (courant b), on obtient le courant total I_A qui circule dans la jonction :

$$I_A = I_S(\exp(\frac{V_{direct}}{U_T}) - 1)$$

Ce courant direct I_A de la jonction dépend fortement de la température par l'intermédiaire de I_s et du terme : $U_T = \frac{kT}{q}$ (soit 26mV à 25°C)

Remarque : Pour V_{direct} > 250 mV on peut utiliser : $I_A \approx I_S \exp(\frac{V_{direct}}{U_T})$

Figure 19 : Jonction polarisée dans le sens direct

3.2) Capacité de transition C_T de la jonction PN bloquée

Nous avons montré que la jonction PN présente autour de la jonction métallurgique, de deux charges opposées immobiles : ions N_a⁻ côté P et ions N_d⁺ du côté N. Elle se comporte donc comme un condensateur C_T nommé capacité de transition dont la zone de charge d'espace est le diélectrique ($\varepsilon_0 \ \varepsilon_{si}$) et les régions N et P les électrodes : $C_T = \varepsilon_0 \varepsilon_{si} \frac{S}{W(V_{inv})}$