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Preface to the Fourth Edition

This book was first published in 1971 and last revised in 1992. During
the span of over 30 years, it seems fair to say that the book has made a
meaningful contribution to the teaching and learning of nonpara-
metric statistics. We have been gratified by the interest and the
comments from our readers, reviewers, and users. These comments
and our own experiences have resulted in many corrections,
improvements, and additions.

We have two main goals in this revision: We want to bring the
material covered in this book into the 21st century, and we want to
make the material more user friendly.

With respect to the first goal, we have added new materials
concerning the quantiles, the calculation of exact power and simulated
power, sample size determination, other goodness-of-fit tests, and
multiple comparisons. These additions will be discussed in more detail
later. We have added and modified examples and included exact
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vi PREFACE TO THE FOURTH EDITION

solutions done by hand and modern computer solutions using MINI-
TAB,” SAS, STATXACT, and SPSS. We have removed most of the
computer solutions to previous examples using BMDP, SPSSX, Ex-
ecustat, or IMSL, because they seem redundant and take up too much
valuable space. We have added a number of new references but have
made no attempt to make the references comprehensive on some
current minor refinements of the procedures covered. Given the sheer
volume of the literature, preparing a comprehensive list of references
on the subject of nonparametric statistics would truly be a challenging
task. We apologize to the authors whose contributions could not be
included in this edition.

With respect to our second goal, we have completely revised a
number of sections and reorganized some of the materials, more fully
integrated the applications with the theory, given tabular guides for
applications of tests and confidence intervals, both exact and approx-
imate, placed more emphasis on reporting results using P values,
added some new problems, added many new figures and titled all
figures and tables, supplied answers to almost all the problems, in-
creased the number of numerical examples with solutions, and written
concise but detailed summaries for each chapter. We think the problem
answers should be a major plus, something many readers have re-
quested over the years. We have also tried to correct errors and in-
accuracies from previous editions.

In Chapter 1, we have added Chebyshev’s inequality, the Central
Limit Theorem, and computer simulations, and expanded the listing of
probability functions, including the multinomial distribution and the
relation between the beta and gamma functions. Chapter 2 has been
completely reorganized, starting with the quantile function and the
empirical distribution function (edf), in an attempt to motivate the
reader to see the importance of order statistics. The relation between
rank and the edf is explained. The tests and confidence intervals for
quantiles have been moved to Chapter 5 so that they are discussed
along with other one-sample and paired-sample procedures, namely,
the sign test and signed rank test for the median. New discussions of
exact power, simulated power, and sample size determination, and
the discussion of rank tests in Chapter 5 of the previous edition
are also included here. Chapter 4, on goodness-of-fit tests, has been
expanded to include Lilliefors’s test for the exponential distribution,

* MINITAB is a trademark of Minitab Inc. in the United States and other countries and
is used herein with permission of the owner (on the Web at www.minitab.com).
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PREFACE TO THE FOURTH EDITION vii

computation of normal probability plots, and visual analysis of good-
ness of fit using P-P and @-Q plots.

The new Chapter 6, on the general two-sample problem, defines
“stochastically larger” and gives numerical examples with exact and
computer solutions for all tests. We include sample size determination
for the Mann-Whitney-Wilcoxon test. Chapters 7 and 8 are the previous-
edition Chapters 8 and 9 on linear rank tests for the location and scale
problems, respectively, with numerical examples for all procedures. The
method of positive variables to obtain a confidence interval estimate of
the ratio of scale parameters when nothing is known about location has
been added to Chapter 8, along with a much needed summary.

Chapters 10 and 12, on tests for 2 samples, now include multiple
comparisons procedures. The materials on nonparametric correlation
in Chapter 11 have been expanded to include the interpretation of
Kendall’s tau as a coefficient of disarray, the Student’s ¢ approximation
to the distribution of Spearman’s rank correlation coefficient, and the
definitions of Kendall’s tau a, tau b and the Goodman-Kruskal coeffi-
cient. Chapter 14, a new chapter, discusses nonparametric methods for
analyzing count data. We cover analysis of contingency tables, tests for
equality of proportions, Fisher’s exact test, McNemar’s test, and an
adaptation of Wilcoxon’s rank-sum test for tables with ordered
categories.

Bergmann, Ludbrook, and Spooren (2000) warn of possible
meaningful differences in the outcomes of P values from different sta-
tistical packages. These differences can be due to the use of exact versus
asymptotic distributions, use or nonuse of a continuity correction, or use
or nonuse of a correction for ties. The output seldom gives such details of
calculations, and even the “Help” facility and the manuals do not always
give a clear description or documentation of the methods used to carry
out the computations. Because this warning is quite valid, we tried to
explain to the best of our ability any differences between our hand cal-
culations and the package results for each of our examples.

As we said at the beginning, it has been most gratifying to re-
ceive very positive remarks, comments, and helpful suggestions on
earlier editions of this book and we sincerely thank many readers
and colleagues who have taken the time. We would like to thank
Minitab, Cytel, and Statsoft for providing complimentary copies
of their software. The popularity of nonparametric statistics
must depend, to some extent, on the availability of inexpensive and
user-friendly software. Portions of MINITAB Statistical Software
input and output in this book are reprinted with permission of
Minitab Inc.
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viii PREFACE TO THE FOURTH EDITION

Many people have helped, directly and indirectly, to bring a
project of this magnitude to a successful conclusion. We are thankful to
the University of Alabama and to the Department of Information
Systems, Statistics and Management Science for providing an en-
vironment conducive to creative work and for making some resources
available. In particular, Heather Davis has provided valuable assis-
tance with typing. We are indebted to Clifton D. Sutton of George
Mason University for pointing out errors in the first printing of the
third edition. These have all been corrected. We are grateful to Joseph
Stubenrauch, Production Editor at Marcel Dekker for giving us ex-
cellent editorial assistance. We also thank the reviewers of the third
edition for their helpful comments and suggestions. These include
Jones (1993), Prvan (1993), and Ziegel (1993). Ziegel’s review in
Technometrics stated, “This is the book for all statisticians and stu-
dents in statistics who need to learn nonparametric statistics—.... I
am grateful that the author decided that one more edition could al-
ready improve a fine package.” We sincerely hope that Mr. Ziegel and
others will agree that this fine package has been improved in scope,
readability, and usability.

Jean Dickinson Gibbons
Subhabrata Chakraborti
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Preface to the Third Edition

The third edition of this book includes a large amount of additions and
changes. The additions provide a broader coverage of the nonpara-
metric theory and methods, along with the tables required to apply
them in practice. The primary change in presentation is an integration
of the discussion of theory, applications, and numerical examples of
applications. Thus the book has been returned to its original fourteen
chapters with illustrations of practical applications following the
theory at the appropriate place within each chapter. In addition, many
of the hand-calculated solutions to these examples are verified and
illustrated further by showing the solutions found by using one or
more of the frequently used computer packages. When the package
solutions are not equivalent, which happens frequently because most
of the packages use approximate sampling distributions, the reasons
are discussed briefly. Two new packages have recently been developed
exclusively for nonparametric methods—NONPAR: Nonparametric
Statistics Package and STATXACT: A Statistical Package for Exact

ix
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X PREFACE TO THE THIRD EDITION

Nonparametric Inference. The latter package claims to compute exact
P values. We have not used them but still regard them as a welcome
addition.

Additional new material is found in the problem sets at the end of
each chapter. Some of the new theoretical problems request verifica-
tion of results published in journals about inference procedures not
covered specifically in the text. Other new problems refer to the new
material included in this edition. Further, many new applied problems
have been added.

The new topics that are covered extensively are as follows. In
Chapter 2 we give more convenient expressions for the moments of
order statistics in terms of the quantile function, introduce the em-
pirical distribution function, and discuss both one-sample and two-
sample coverages so that problems can be given relating to exceedance
and precedence statistics. The rank von Neumann test for randomness
is included in Chapter 3 along with applications of runs tests in ana-
lyses of time series data. In Chapter 4 on goodness-of-fit tests, Lillie-
fors’s test for a normal distribution with unspecified mean and
variance has been added.

Chapter 7 now includes discussion of the control median test as
another procedure appropriate for the general two-sample problem.
The extension of the control median test to £ mutually independent
samples is given in Chapter 11. Other new materials in Chapter 11 are
nonparametric tests for ordered alternatives appropriate for data
based on % > 3 mutually independent random samples. The tests
proposed by Jonckheere and Terpstra are covered in detail. The pro-
blems relating to comparisons of treatments with a control or an un-
known standard are also included here.

Chapter 13, on measures of association in multiple classifica-
tions, has an additional section on the Page test for ordered alter-
natives in k-related samples, illustration of the calculation of Kendall’s
tau for count data in ordered contingency tables, and calculation of
Kendall’s coefficient of partial correlation. Chapter 14 now includes
calculations of asymptotic relative efficiency of more tests and also
against more parent distributions.

For most tests covered, the corrections for ties are derived and
discussions of relative performance are expanded. New tables included
in the Appendix are the distributions of the Lilliefors’s test for
normality, Kendall’s partial tau, Page’s test for ordered alternatives in
the two-way layout, the Jonckheere-Terpstra test for ordered
alternatives in the one-way layout, and the rank von Neumann test for
randomness.
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PREFACE TO THE THIRD EDITION xi

This edition also includes a large number of additional refer-
ences. However, the list of references is not by any means purported to
be complete because the literature on nonparametric inference pro-
cedures is vast. Therefore, we apologize to those authors whose con-
tributions were not included in our list of references.

As always in a new edition, we have attempted to correct pre-
vious errors and inaccuracies and restate more clearly the text and
problems retained from previous editions. We have also tried to take
into account the valuable suggestions for improvement made by users
of previous editions and reviewers of the second edition, namely,
Moore (1986), Randles (1986), Sukhatme (1987), and Ziegel (1988).

As with any project of this magnitude, we are indebted to many
persons for help. In particular, we would like to thank Pat Coons and
Connie Harrison for typing and Nancy Kao for help in the bibliography
search and computer solutions to examples. Finally, we are indebted to
the University of Alabama, particularly the College of Commerce and
Business Administration, for partial support during the writing of this
version.

Jean Dickinson Gibbons
Subhabrata Chakraborti
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Preface to the Second Edition

A large number of books on nonparametric statistics have appeared
since this book was published in 1971. The majority of them are
oriented toward applications of nonparametric methods and do not
attempt to explain the theory behind the techniques; they are essen-
tially user’s manuals, called cookbooks by some. Such books serve a
useful purpose in the literature because non-parametric methods have
such a broad scope of application and have achieved widespread
recognition as a valuable technique for analyzing data, particularly
data which consist of ranks or relative preferences and/or are small
samples from unknown distributions. These books are generally used
by nonstatisticians, that is, persons in subject-matter fields. The more
recent books that are oriented toward theory are Lehmann (1975),
Randles and Wolfe (1979), and Pratt and Gibbons (1981).

A statistician needs to know about both the theory and methods of
nonparametric statistical inference. However, most graduate programs

xiii

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



xiv PREFACE TO THE SECOND EDITION

in statistics can afford to offer either a theory course or a methods
course, but not both. The first edition of this book was frequently used
for the theory course; consequently, the students were forced to learn
applications on their own time.

This second edition not only presents the theory with corrections
from the first edition, it also offers substantial practice in problem
solving. Chapter 15 of this edition includes examples of applications of
those techniques for which the theory has been presented in Chapters
1 to 14. Many applied problems are given in this new chapter; these
problems involve real research situations from all areas of social, be-
havioral, and life sciences, business, engineering, and so on. The Ap-
pendix of Tables at the end of this new edition gives those tables of
exact sampling distributions that are necessary for the reader to un-
derstand the examples given and to be able to work out the applied
problems. To make it easy for the instructor to cover applications as
soon as the relevant theory has been presented, the sections of
Chapter 15 follow the order of presentation of theory. For example,
after Chapter 3 on tests based on runs is completed, the next assign-
ment can be Section 15.3 on applications of tests based on runs and the
accompanying problems at the end of that section. At the end of
the Chapter 15 there are a large number of review problems arranged
in random order as to type of applications so that the reader can obtain
practice in selecting the appropriate nonparametric technique to use
in a given situation.

While the first edition of this book received considerable acclaim,
several reviewers felt that applied numerical examples and expanded
problem sets would greatly enhance its usefulness as a textbook. This
second edition incorporates these and other recommendations. The
author wishes to acknowledge her indebtedness to the following re-
viewers for helping to make this revised and expanded edition more
accurate and useful for students and researchers: Dudewicz and
Geller (1972), Johnson (1973), Klotz (1972), and Noether (1972).

In addition to these persons, many users of the first edition have
written or told me over the years about their likes and/or dislikes
regarding the book and these have all been gratefully received and
considered for incorporation in this edition. I would also like to express
my gratitude to Donald B. Owen for suggesting and encouraging this
kind of revision, and to the Board of Visitors of the University of
Alabama for partial support of this project.

Jean Dickinson Gibbons
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Preface to the First Edition

During the last few years many institutions offering graduate pro-
grams in statistics have experienced a demand for a course devoted
exclusively to a survey of nonparametric techniques and their justifi-
cations. This demand has arisen both from their own majors and from
majors in social science or other quantitatively oriented fields such as
psychology, sociology, or economics. Although the basic statistics
courses often include a brief description of some of the better-known
and simpler nonparametric methods, usually the treatment is neces-
sarily perfunctory and perhaps even misleading. Discussion of only a
few techniques in a highly condensed fashion may leave the impres-
sion that nonparametric statistics consists of a “bundle of tricks”
which are simply applied by following a list of instructions dreamed up
by some genie as a panacea for all sorts of vague and ill-defined problems.

One of the deterrents to meeting this demand has been the lack
of a suitable textbook in nonparametric techniques. Our experience at

Xv
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xvi PREFACE TO THE FIRST EDITION

the University of Pennsylvania has indicated that an appropriate text
would provide a theoretical but readable survey. Only a moderate
amount of pure mathematical sophistication should be required so
that the course would be comprehensible to a wide variety of graduate
students and perhaps even some advanced undergraduates. The
course should be available to anyone who has completed at least the
rather traditional one-year sequence in probability and statistical in-
ference at the level of Parzen, Mood and Graybill, Hogg and Craig, etc.
The time allotment should be a full semester, or perhaps two seme-
sters if outside reading in journal publications is desirable.

The texts presently available which are devoted exclusively to
nonparametric statistics are few in number and seem to be pre-
dominantly either of the handbook style, with few or no justifications,
or of the highly rigorous mathematical style. The present book is an
attempt to bridge the gap between these extremes. It assumes the
reader is well acquainted with statistical inference for the traditional
parametric estimation and hypothesis-testing procedures, basic prob-
ability theory, and random-sampling distributions. The survey is not
intended to be exhaustive, as the field is so extensive. The purpose of
the book is to provide a compendium of some of the better-known
nonparametric techniques for each problem situation. Those deriva-
tions, proofs, and mathematical details which are relatively easily
grasped or which illustrate typical procedures in general nonpara-
metric statistics are included. More advanced results are simply stated
with references. For example, some of the asymptotic distribution
theory for order statistics is derived since the methods are equally
applicable to other statistical problems. However, the Glivenko Can-
telli theorem is given without proof since the mathematics may be too
advanced. Generally those proofs given are not mathematically rig-
orous, ignoring details such as existence of derivatives or regularity
conditions. At the end of each chapter, some problems are included
which are generally of a theoretical nature but on the same level as the
related text material they supplement.

The organization of the material is primarily according to the
type of statistical information collected and the type of questions to be
answered by the inference procedures or according to the general type
of mathematical derivation. For each statistic, the null distribution
theory is derived, or when this would be too tedious, the procedure one
could follow is outlined, or when this would be overly theoretical, the
results are stated without proof. Generally the other relevant math-
ematical details necessary for nonparametric inference are also in-
cluded. The purpose is to acquaint the reader with the mathematical
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logic on which a test is based, those test properties which are essential
for understanding the procedures, and the basic tools necessary for
comprehending the extensive literature published in the statistics
journals. The book is not intended to be a user’s manual for the ap-
plication of nonparametric techniques. As a result, almost no numer-
ical examples or problems are provided to illustrate applications or
elicit applied motivation. With the approach, reproduction of an ex-
tensive set of tables is not required.

The reader may already be acquainted with many of the non-
parametric methods. If not, the foundations obtained from this book
should enable anyone to turn to a user’s handbook and quickly grasp
the application. Once armed with the theoretical background, the user
of nonparametric methods is much less likely to apply tests indis-
criminately or view the field as a collection of simple prescriptions. The
only insurance against misapplication is a thorough understanding.
Although some of the strengths and weaknesses of the tests covered
are alluded to, no definitive judgments are attempted regarding the
relative merits of comparable tests. For each topic covered, some re-
ferences are given which provide further information about the tests
or are specifically related to the approach used in this book. These
references are necessarily incomplete, as the literature is vast. The
interested reader may consult Savage’s “Bibliography” (1962).

I wish to acknowledge the helpful comments of the reviewers and
the assistance provided unknowingly by the authors of other textbooks
in the area of nonparametric statistics, particularly Gottfried E.
Noether and James V. Bradley, for the approach to presentation
of several topics, and Maurice G. Kendall, for much of the material
on measures of association. The products of their endeavors greatly
facilitated this project. It is a pleasure also to acknowledge my
indebtedness to Herbert A. David, both as friend and mentor. His
training and encouragement helped make this book a reality. Parti-
cular gratitude is also due to the Lecture Note Fund of the Wharton
School, for typing assistance, and the Department of Statistics and
Operations Research at the University of Pennsylvania for providing
the opportunity and time to finish this manuscript. Finally, I thank my
husband for his enduring patience during the entire writing stage.

Jean Dickinson Gibbons
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1

Introduction and Fundamentals

1.1 INTRODUCTION

In many elementary statistics courses, the subject matter is somewhat
arbitrarily divided into two categories, called descriptive and inductive
statistics. Descriptive statistics usually relates only to the calculation
or presentation of figures (visual or conceptual) to summarize or
characterize a set of data. For such procedures, no assumptions are
made or implied, and there is no question of legitimacy of techniques.
The descriptive figures may be a mean, median, variance, range,
histogram, etc. Each of these figures summarizes a set of numbers in
its own unique way; each is a distinguishable and well-defined char-
acterization of data. If such data constitute a random sample from a
certain population, the sample represents the population in miniature
and any set of descriptive statistics provides some information
regarding this universe. The term parameter is generally employed to
connote a characteristic of the population. A parameter is often an

1
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2 CHAPTER 1

unspecified constant appearing in a family of probability distributions,
but the word can also be interpreted in a broader sense to include
almost all descriptions of population characteristics within a family.
When sample descriptions are used to infer some information
about the population, the subject is called inductive statistics or
statistical inference. The two types of problems most frequently en-
countered here are estimation and tests of hypotheses. The factor
which makes inference a scientific method, thereby differentiating it
from mere guessing, is the ability to make evaluations or probability
statements concerning the accuracy of an estimate or reliability of a
decision. Unfortunately, such scientific evaluations cannot be made
without some information regarding the probability distribution of the
random variable relating to the sample description used in the in-
ference procedure. This means that certain types of sample descrip-
tions will be more popular than others, because of their distribution
properties or mathematical tractability. The sample arithmetic mean
is a popular figure for describing the characteristic of central tendency
for many reasons but perhaps least of all because it is a mean. The
unique position of the mean in inference stems largely from its “almost
normal” distribution properties. If some other measure, say the sam-
ple median, had a property as useful as the central-limit theorem,
surely it would share the spotlight as a favorite description of location.
The entire body of classical statistical-inference techniques is
based on fairly specific assumptions regarding the nature of the un-
derlying population distribution; usually its form and some parameter
values must be stated. Given the right set of assumptions, certain test
statistics can be developed using mathematics which is frequently
elegant and beautiful. The derived distribution theory is qualified by
certain prerequisite conditions, and therefore all conclusions reached
using these techniques are exactly valid only so long as the assump-
tions themselves can be substantiated. In textbook problems, the re-
quisite postulates are frequently just stated and the student practices
applying the appropriate technique. However, in a real-world problem,
everything does not come packaged with labels of population of origin.
A decision must be made as to what population properties may judi-
ciously be assumed for the model. If the reasonable assumptions are
not such that the traditional techniques are applicable, the classical
methods may be used and inference conclusions stated only with the
appropriate qualifiers, e.g., “If the population is normal, then....”
The mathematical statistician may claim that it is the users’
problem to decide on the legitimacy of the postulates. Frequently in
practice, those assumptions which are deemed reasonable by empirical
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INTRODUCTION AND FUNDAMENTALS 3

evidence or past experience are not the desired ones, i.e., those for
which a set of standard statistical techniques has been developed.
Alternatively, the sample may be too small or previous experience too
limited to determine what is a reasonable assumption. Or, if the re-
searcher is a product of the “cookbook school” of statistics, his parti-
cular expertise being in the area of application, he may not understand
or even be aware of the preconditions implicit in the derivation of the
statistical technique. In any of these three situations, the result often
is a substitution of blind faith for scientific method, either because of
ignorance or with the rationalization that an approximately accurate
inference based on recognized and accepted scientific techniques is
better than no answer at all or a conclusion based on common sense or
intuition.

An alternative set of techniques is available, and the mathema-
tical bases for these procedures are the subject of this book. They may
be classified as distribution-free and nonparametric procedures. In a
distribution-free inference, whether for testing or estimation, the
methods are based on functions of the sample observations whose
corresponding random variable has a distribution which does not de-
pend on the specific distribution function of the population from which
the sample was drawn. Therefore, assumptions regarding the under-
lying population are not necessary. On the other hand, strictly
speaking, the term nonparametric test implies a test for a hypothesis
which is not a statement about parameter values. The type of state-
ment permissible then depends on the definition accepted for the term
parameter. If parameter is interpreted in the broader sense, the hy-
pothesis can be concerned only with the form of the population, as in
goodness-of-fit tests, or with some characteristic of the probability
distribution of the sample data, as in tests of randomness and trend.
Needless to say, distribution-free tests and nonparametric tests are
not synonymous labels or even in the same spirit, since one relates to
the distribution of the test statistic and the other to the type of hy-
pothesis to be tested. A distribution-free test may be for a hypothesis
concerning the median, which is certainly a population parameter
within our broad definition of the term.

In spite of the inconsistency in nomenclature, we shall follow the
customary practice and consider both types of tests as procedures in
nonparametric inference, making no distinction between the two
classifications. For the purpose of differentiation, the classical statis-
tical techniques, whose justification in probability is based on specific
assumptions about the population sampled, may be called parametric
methods. This implies a definition of nonparametric statistics then as

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



4 CHAPTER 1

the treatment of either nonparametric types of inferences or analogies
to standard statistical problems when specific distribution assump-
tions are replaced by very general assumptions and the analysis is
based on some function of the sample observations whose sampling
distribution can be determined without knowledge of the specific dis-
tribution function of the underlying population. The assumption most
frequently required is simply that the population be continuous. More
restrictive assumptions are sometimes made, e.g., that the population
is symmetrical, but not to the extent that the distribution is specifi-
cally postulated. The information used in making nonparametric in-
ferences generally relates to some function of the actual magnitudes of
the random variables in the sample. For example, if the actual ob-
servations are replaced by their relative rankings within the sample
and the probability distribution of some function of these sample ranks
can be determined by postulating only very general assumptions about
the basic population sampled, this function will provide a distribution-
free technique for estimation or hypothesis testing. Inferences based
on descriptions of these derived sample data may relate to whatever
parameters are relevant and adaptable, such as the median for a lo-
cation parameter. The nonparametric and parametric hypotheses are
analogous, both relating to location, and identical in the case of a
continuous and symmetrical population.

Tests of hypotheses which are not statements about parameter
values have no counterpart in parametric statistics; and thus here
nonparametric statistics provides techniques for solving new kinds of
problems. On the other hand, a distribution-free test simply relates to
a different approach to solving standard statistical problems, and
therefore comparisons of the merits of the two types of techniques are
relevant. Some of the more obvious general advantages of nonpara-
metric-inference procedures can be appreciated even before our sys-
tematic study begins. Nonparametric methods generally are quick and
easy to apply, since they involve extremely simple arithmetic. The
theory of nonparametric inference relates to properties of the statistic
used in the inductive procedure. Discussion of these properties re-
quires derivation of the random sampling distribution of the pertinent
statistic, but this generally involves much less sophisticated mathe-
matics than classical statistics. The test statistic in most cases is a
discrete random variable with nonzero probabilities assigned to only a
finite number of values, and its exact sampling distribution can often
be determined by enumeration or simple combinatorial formulas. The
asymptotic distributions are usually normal, chi-square, or other well-
known functions. The derivations are easier to understand, especially
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INTRODUCTION AND FUNDAMENTALS 5

for non-mathematically trained users of statistics. A cookbook
approach to learning techniques is then not necessary, which lessens
the danger of misuse of procedures. This advantage also minimizes the
opportunities for inappropriate and indiscriminate applications, be-
cause the assumptions are so general. When no stringent postulations
regarding the basic population are needed, there is little problem of
violation of assumptions, with the result that conclusions reached in
nonparametric methods usually need not be tempered by many qua-
lifiers. The types of assumptions made in nonparametric statistics are
generally easily satisfied, and decisions regarding their legitimacy
almost obvious. Besides, in many cases the assumptions are sufficient,
but not necessary, for the test’s validity. Assumptions regarding the
sampling process, usually that it is a random sample, are not relaxed
with nonparametric methods, but a careful experimenter can gen-
erally adopt sampling techniques which render this problem academic.
With so-called “dirty data,” most nonparametric techniques are, rela-
tively speaking, much more appropriate than parametric methods.
The basic data available need not be actual measurements in many
cases; if the test is to be based on ranks, for example, only the ranks
are needed. The process of collecting and compiling sample data then
may be less expensive and time consuming. Some new types of pro-
blems relating to sample-distribution characteristics are soluble with
nonparametric tests. The scope of application is also wider because the
techniques may be legitimately applied to phenomena for which it is
impractical or impossible to obtain quantitative measurements. When
information about actual observed sample magnitudes is provided but
not used as such in drawing an inference, it might seem that some of
the available information is being discarded, for which one usually
pays a price in efficiency. This is really not true, however. The in-
formation embodied in these actual magnitudes, which is not directly
employed in the inference procedure, really relates to the underlying
distribution, information which is not relevant for distribution-free
tests. On the other hand, if the underlying distribution is known, a
classical approach to testing may legitimately be used and so this
would not be a situation requiring nonparametric methods. The in-
formation of course may be consciously ignored, say for the purpose of
speed or simplicity.

This discussion of relative merits has so far been concerned
mainly with the application of nonparametric techniques. Performance
is certainly a matter of concern to the experimenter, but general-
izations about reliability are always difficult because of varying factors
like sample size, significance levels or confidence coefficients, evaluation
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of the importance of speed, simplicity and cost factors, and the non-
existence of a fixed and universally acceptable criterion of good per-
formance. Box and Anderson (1955) state that “to fulfill the needs of
the experimenter, statistical criteria should (1) be sensitive to change
in the specific factors tested, (2) be insensitive to changes, of a mag-
nitude likely to occur in practice, in extraneous factors.” These prop-
erties, usually called power and robustness, respectively, are generally
agreed upon as the primary requirements of good performance in hy-
pothesis testing. Parametric tests are often derived in such a way that
the first requirement is satisfied for an assumed specific probability
distribution, e.g., using the likelihood-ratio technique of test con-
struction. However, since such tests are, strictly speaking, not even
valid unless the assumptions are met, robustness is of great concern in
parametric statistics. On the other hand, nonparametric tests are in-
herently robust because their construction requires only very general
assumptions. One would expect some sacrifice in power to result. It is
therefore natural to look at robustness as a performance criterion for
parametric tests and power for nonparametric tests. How then do we
compare analogous tests of the two types?

Power calculations for any test require knowledge of the prob-
ability distribution of the test statistic under the alternative, but the
alternatives in nonparametric problems are often extremely general.
When the requisite assumptions are met, many of the classical para-
metric tests are known to be most powerful. In those cases where
comparison studies have been made, however, nonparametric tests are
frequently almost as powerful, especially for small samples, and
therefore may be considered more desirable whenever there is any
doubt about assumptions. No generalizations can be made for mod-
erate-sized samples. The criterion of asymptotic relative efficiency is
theoretically relevant only for very large samples. When the classical
tests are known to be robust, comparisons may also be desirable for
distributions which deviate somewhat from the exact parametric as-
sumptions. However, with inexact assumptions, calculation of power of
classical tests is often difficult except by Monte Carlo techniques, and
studies of power here have been less extensive. Either type of test may
be more reliable, depending on the particular tests compared and type
or degree of deviations assumed. The difficulty with all these com-
parisons is that they can be made only for specific nonnull distribution
assumptions, which are closely related to the conditions under which
the parametric test is exactly valid and optimal.

Perhaps the chief advantage of nonparametric tests lies in their
very generality, and an assessment of their performance under
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conditions unrestricted by, and different from, the intrinsic postulates
in classical tests seems more expedient. A comparison under more
nonparametric conditions would seem especially desirable for two or
more nonparametric tests which are designed for the same general
hypothesis testing situation. Unlike the body of classical techniques,
nonparametric techniques frequently offer a selection from inter-
changeable methods. With such a choice, some judgments of relative
merit would be particularly useful. Power comparisons have been
made, predominantly among the many tests designed to detect loca-
tion differences, but again we must add that even with comparisons
of nonparametric tests, power can be determined only with fairly
specific distribution assumptions. The relative merits of the different
tests depend on the conditions imposed. Comprehensive conclusions
are thus still impossible for blanket comparisons of very general
tests.

In conclusion, the extreme generality of nonparametric techni-
ques and their wide scope of usefulness, while definite advantages in
application, are factors which discourage objective criteria, particu-
larly power, as assessments of performance, relative either to each
other or to parametric techniques. The comparison studies so fre-
quently published in the literature are certainly interesting, in-
formative, and valuable, but they do not provide the sought-for
comprehensive answers under more nonparametric conditions. Per-
haps we can even say that specific comparisons are really contrary to
the spirit of nonparametric methods. No definitive rules of choice will
be provided in this book. The interested reader will find many perti-
nent articles in all the statistics journals. This book is a compendium
of many of the large number of nonparametric techniques which have
been proposed for various inference situations.

Before embarking on a systematic treatment of new concepts,
some basic notation and definitions must be agreed upon and the
groundwork prepared for development. Therefore, the remainder of
this chapter will be devoted to an explanation of the notation adopted
here and an abbreviated review of some of those definitions and terms
from classical inference which are also relevant to the special world of
nonparametric inference. A few new concepts and terms will also be
introduced which are uniquely useful in nonparametric theory. The
general theory of order statistics will be the subject of Chapter 2, since
they play a fundamental role in many nonparametric techniques.
Quantiles, coverages, and tolerance limits are also introduced here.
Starting with Chapter 3, the important nonparametric techniques will
be discussed in turn, organized according to the type of inference
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8 CHAPTER 1

problem (hypothesis to be tested) in the case of hypotheses not invol-
ving statements about parameters, or the type of sampling situation
(one sample, two independent samples, etc.) in the case of distribution-
free techniques, or whichever seems more pertinent. Chapters 3 and 4
will treat tests of randomness and goodness-of-fit tests, respectively,
both nonparametric hypotheses which have no counterpart in classical
statistics. Chapter 5 covers distribution-free tests of hypotheses and
confidence interval estimates of the value of a population quantile in
the case of one sample or paired samples. These procedures are based
on order statistics, signs, and signed ranks. When the relevant quantile
is the median, these procedures relate to the value of a location
parameter and are analogies to the one-sample (paired-sample) tests
for the population mean (mean difference) in classical statistics. Rank-
order statistics are also introduced here, and we investigate the re-
lationship between ranks and variate values. Chapter 6 introduces the
two-sample problem and covers some distribution-free tests for the
hypothesis of identical distributions against general alternatives.
Chapter 7 is an introduction to a particular form of nonparametric test
statistic, called a linear rank statistic, which is especially useful for
testing a hypothesis that two independent samples are drawn from
identical populations. Those linear rank statistics which are particu-
larly sensitive to differences only in location and only in scale are the
subjects of Chapters 8 and 9, respectively. Chapter 10 extends this
situation to the hypothesis that £ independent samples are drawn
from identical populations. Chapters 11 and 12 are concerned with
measures of association and tests of independence in bivariate and
multivariate sample situations, respectively. For almost all tests the
discussion will center on logical justification, null distribution and
moments of the test statistic, asymptotic distribution, and other re-
levant distribution properties. Whenever possible, related methods of
interval estimation of parameters are also included. During the course
of discussion, only the briefest attention will be paid to relative merits
of comparable tests. Chapter 13 presents some theorems relating to
calculation of asymptotic relative efficiency, a possible criterion for
evaluating large sample performance of nonparametric tests relative
to each other or to parametric tests when certain assumptions are met.
These techniques are then used to evaluate the efficiency of some of
the tests covered earlier. Chapter 14 covers some special tests based on
count data.

Numerical examples of applications of the most commonly used
nonparametric test and estimation procedures are included after the
explanation of the theory. These illustrations of the techniques will

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



INTRODUCTION AND FUNDAMENTALS 9

serve to solidify the reader’s understanding of proper uses of
nonparametric methods. All of the solutions show the calculations
clearly. In addition, many of the solutions are then repeated using one
or more statistical computer packages.

Problems are given at the end of each chapter. The theoretical
problems serve to amplify or solidify the explanations of theory given
in the text. The applied problems give the reader practice in applica-
tions of the methods. Answers to selected problems are given at the
end of the book.

1.2 FUNDAMENTAL STATISTICAL CONCEPTS

In this section a few of the basic definitions and concepts of classical
statistics are reviewed, but only very briefly since the main purpose is
to explain notation and terms taken for granted later on. A few of the
new fundamentals needed for the development of nonparametric
inference will also be introduced here.

BASIC DEFINITIONS

A sample space is the set of all possible outcomes of a random
experiment.

A random variable is a set function whose domain is the elements of
a sample space on which a probability function has been defined and
whose range is the set of all real numbers. Alternatively, X is a random
variable if for every real number x there exists a probability that the value
assumed by the random variable does not exceed x, denoted by P(X < x)
or F'x(x), and called the cumulative distribution function (cdf) of X.

The customary practice is to denote the random variable by a
capital letter like X and the actual value assumed (value observed in
the experiment) by the corresponding letter in lowercase, x. This
practice will generally be adhered to in this book. However, it is not
always possible, strictly speaking, to make such a distinction. Occa-
sional inconsistencies will therefore be unavoidable, but the statisti-
cally sophisticated reader is no doubt already accustomed to this type
of conventional confusion in notation.

The mathematical properties of any function Fx which is a cdf of
a random variable X are as follows:

1. Fx(x1) < Fx(xg) for all x; < xg, so that Fx is nondecreasing.

2. lim, . . Fx(x) =0 and lim, ., Fx(x) = 1.

3. Fx(x) is continuous from the right, or, symbolically, as ¢ — 0
through positive values, lim; o Fx(x + ¢) = Fx(x).

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



10 CHAPTER 1

A random variable X is called continuous if its cdf is continuous.
Every continuous cdf in this book will be assumed differentiable ev-
erywhere with the possible exception of a finite number of points. The
derivative of the cdf will be denoted by fx(x), a nonnegative function
called the probability density function (pdf) of X. Thus when X is
continuous,

d

Fx(x) = /f fx@)dt  fxx)= aFX(x) =Fx(x)=0

a

nd
[m fx(x)dx =1

A random variable is called discrete if it can take on only a finite
or a countably infinite number of values, called mass points. The
probability mass function (pmf) of a discrete random variable X is
defined as

fx(x) =PX =x) = Fx(x) — lim; o Fx(X —¢)

where ¢ — 0 through positive values. For a discrete random variable
fx(x) =0 and > ,;,fx(x) =1, where the expression “all x” is to be
interpreted as meaning all x at which Fx(x) is not continuous; in other
words the summation is over all the mass points. Thus for a discrete
random variable there is a nonzero probability for any mass point,
whereas the probability that a continuous random variable takes on
any specific fixed value is zero.

The term probability function (pf) or probability distribution will
be used to denote either a pdf or a pmf. For notation, capital letters
will always be reserved for the cdf, while the corresponding lowercase
letter denotes the pf.

The expected value of a function g(X) of a random variable X,
denoted by E[g(X)], is

7 g(x)fx (x) dx if X is continuous
Elg(X)l = > 8x)fx(x) if X is discrete

allx

Joint probability functions and expectations for functions of more
than one random variable are similarly defined and denoted by re-
placing single symbols by vectors, sometimes abbreviated to

X, =X, Xs, ..., Xp)
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INTRODUCTION AND FUNDAMENTALS 11

A set of n random variables (X1,Xs, ..., X)) is independent if and
only if their joint probability function equals the product of the n in-
dividual marginal probability functions.

A set of n random variables (X7,X5,...,X,) is called a random
sample of the random variable X (or from the population Fx or fx) if
they are independent and identically distributed (i.i.d.) so that their
joint probability density function is given by

n
fx, (%1, X, s %) = fx, X, x, (%1, %2, -, %) = [ [ (i)
i1

A statistic is any function of observable or sample random vari-
ables which does not involve unknown parameters.

A moment is a particular type of population parameter. The kth
moment of X about the origin is p, = E(X*), where p} = E(X) =, is
the mean and the kth central moment about the mean is

W =EX -

The second central moment about the mean ., is the variance of X,
Hp = var(X) = *(X) = E(X?) — p® = i — (})*

The kth factorial moment is EX(X —1)--- (X —k+1)].
For two random variables, their covariance and correlation, re-
spectively, are

cov(X,Y) = E(X — ux)(Y — py) = E(XY) — uxpy
cov(X,Y)
o(X)o(Y)

The moment-generating function (mgf) of a function g(X) of X is
M x)(t) = E{expltg(X)]}

Some special properties of the mgf are

corr(X,Y) =pX,Y) =

M, px(t) = e® Mx(at)  foraandb constant

, dt
W = ﬁMX(t)

MOMENTS OF LINEAR COMBINATIONS OF RANDOM VARIABLES

Let X1,Xs,...,X,, be n random variables and a;,b;,i = 1,2,...,n be any
constants. Then
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E (Zn: aiXi> = Zn: a,E(X;)
i=1 i—1
var (i aiXi) = zn: a?var(X;) + 2 Z Zaiaj cov(X;, X;)
= i=1 1<i<j<n
cov <Za X Z b X)

=Y a;b;var(X;) + ZZ (a;ibj + a;b;)cov(X;, X))

1<i<j<n

N

~
Il
-

PROBABILITY FUNCTIONS

Some special probability functions are shown in Table 2.1, along with
the corresponding mean, variance, and moment-generating function.
Both discrete and continuous distributions are included; for a discrete
distribution the probability function means the pmf, whereas for a
continuous distribution the probability function stands for the corres-
ponding pdf. The term standard normal will designate the particular
member of the normal family where 1 = 0 and ¢ = 1. The symbols ¢(x)
and ®(x) will be reserved for the standard normal density and
cumulative distribution functions, respectively.
Three other important distributions are:

71/2(1 +x2/v) (v+1)/2
B(v/2,1/2)

v>0

Student’s t,: fx(x) =

Snedecor’s F(vq,vs):

v v1/2 " (1+ vix/va) (vit+ve)/2
frt = (22) e (sl

V9

x>0;vy, vo >0

Fisher’s z(v1, vo):
f(x) = 2<V1) NI e (L vae® fvy) )
S B(v1/2,v2/2)

V2
The gamma and beta distributions shown in Table 2.1 each contains a
special constant, denoted by I'(2) and B(a, B) respectively. The gamma
function, denoted by I'(a), is defined as

I'a) = / x* e *dx for a>0
0

x> 1;vi,vo >0
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and has the properties

(0 —1)! for any positive integer o
(a—1DI'(x—1) for any positive «,

not necessarily an integer
N for o =1

For other fractional values of o, the gamma function can be found from
special tables. For example, I'(1/4) = 3.6256, I'(1/3) = 2.6789, and
I'(3/4) = 1.2254 (Abramowitz and Stegun, 1972, p. 255). The beta
function, denoted by B(a, B), is defined as

I'(a) =

1
B(%B):/O x%l(l—x)ﬁ*ldx fora > 0,p>0

The beta and the gamma functions have the following relationship:

_ ()I'(B)
- T(a+B)

The gamma and the beta functions can be very helpful in evaluating
some complicated integrals. For example, suppose we wish to evaluate
the integral I; = fooc x*e* dx. We identify I; as a gamma function I'(5)
with o =5 and then I; =T(5)=4!=24. Similary, the integral
I, = fol x*(1 —x)" dx is a beta function B(5,8) with o = 5 and p = 8, and
thus using the relationship with the gamma function and simplifying,
we easily get I, = 4!7!/12! = 1/3960.

B(a, B)

DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES
USING THE METHOD OF JACOBIANS

Let X71,Xs,...,X,, be n continuous random variables with joint pdf
f(x1,%9,...,%,) which is nonzero for an n-dimensional region S,. Define
the transformation

y1 = u(x1, X2, ..., %n),
Yo = u(X1,%2, -, %n), .oy Yo =u(x1,%2,...,%,)
which maps S, onto S,, where S, can be written as the union of a finite
number m of disjoint spaces S1,Ss,...,S,, such that the transforma-

tion from S;, onto S, is one to one, for all 2 = 1,2,...,m. Then for each
k there exists a unique inverse transformation, denoted by

x1=w1(Y1,¥2,- -, ¥n);
X = w2k(y17y27 cee 7yn)a ceey Xp = wnk(ylay27 cee 7yn)
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INTRODUCTION AND FUNDAMENTALS 17

Assume that for each of these m sets of inverse transformations, the
Jacobian

Jo(V1,99, -1 Yn) = O(Wik, Wk, - - -, Wak) _ det(awik>

a(ylay27"'ayn) ayl

exists and is continuous and nonzero in S,, where det(a;;) denotes the
determinant of the n x n matrix with entry a; in the ith row and jth
column. Then the joint pdf of the n random variables Y;,Ys,...,Y,,
where Y; = u;(X7,Xs,...,X,), is

m

f(y17y27 oo 7yn) = Z |Jk(y17y2a .o ~;yn)‘f[wlk(y1;y2; .. »;yn),
k=1

w2k(y17y27"'ayn)7"'7 wnk(y17y27"'7yn)]
for all (y1,¥2,...,¥n) €Sy, and zero otherwise. The Jacobian of the

inverse transformation is the reciprocal of the Jacobian of the direct
transformation,

a(w1k7w2k> e 7wnk) _ [8(u1, ug,... 7un):| 1
a(y17y27"'ayn) a(x17x27"'7xn)

Xi=Wik (Y1,Y2--Yn)
or

Jh1.92, - yn) = Flen, 22, ox0)]

Thus the pdf above can also be written as

FO1y2 - yn) = e, x2, o x0)] 7 f (1,20, . 2)
k=1

where the right-hand side is evaluated at x; = wi,(v1,¥2,...,¥n) for
i=1,2,...,n. If m =1 so that the transformation from S, onto S, is
one to one, the subscript £ and the summation sign may be dropped.
When m = 1 and n = 1, this reduces to the familiar result

|

Let X be any random variable with mean p and a finite variance c=.
Then for every k& > 0, Chebyshev’s inequality states that

dy

dx

fry) = [fx(x)
x=u1(y)

CHEBYSHEV’S INEQUALITY
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o2

k2
Note that the finite variance assumption guarantees the existence of
the mean .

The following result, called the Central Limit Theorem (CLT), is

one of the most famous in statistics. We state it for the simplest i.i.d.
situation.

P(IX —n > k) <

CENTRAL LIMIT THEOREM

Let X71,Xs,...,X,, be a random sample from a population with mean p
and variance 2 > 0 and let X,, be the sample mean. Then for n — o,
the random variable /n(X, — pn)/c has a limiting distribution that is
normal with mean 0 and variance 1.

For a proof of this result, typically done via the moment gen-
erating function, the reader is referred to any standard graduate
level book on mathematical statistics. In some of the non-i.i.d. si-
tuations there are other types of CLTs available. For example, if the
X’s are independent but not identically distributed, there is a CLT
generally attributed to Liapounov. We will not pursue these any
further.

POINT AND INTERVAL ESTIMATION

A point estimate of a parameter is any single function of random

variables whose observed value is used to estimate the true value. Let

0, =uX1,Xo,....X,) be a point estimate of a parameter 0. Some

desirable properties of 6, are defined as follows for all 6.

1. Unbiasedness: E(6,) = 0 for all 6. .

2. Sufficiency: le,Xz,m,Xn,lén (x1,%2,..., %,|0,) does not depend on 6, or,
equivalently,

i, Xo. X, (X1, %2, -+ 1205 0) = (8,5 0)H (1, %9, . . . , %)
where H(x1,x2,...,x,) does not depend on 6.
3. Consistency (also called stochastic convergence and convergence in

probability):

lim P(|0, — 0] >¢) =0  for every & > 0
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a. If 0, is an unbiased estimate of 0 and lim, .. var(én) =0,
then 6, is a consistent estimate of 0, by Chebyshev’s
inequality. .

b. 0, is a consistent estimate of 0 if the limiting distribution of 6,
is a degenerate distribution with probability 1 at 6.

4. Minimum mean squared error: E[(0, — 0)%] < E[((6; — 0)?], for any

other estimate 6. R R

5. Minimum_ variance unbiased: var(0,) < var(0,) for any other
estimate 6, where both 6, and 0, are unbiased.

An interval estimate of a parameter 0 with confidence coefficient
1 -0, or a 100(1 — o) percent confidence interval for 6, is a random
interval whose end points U and V are functions of observable random
variables (usually sample data) such that the probability statement
P(U < 6 <V)=1—aissatisfied. The probability P(U < 6 < V) should
be interpreted as P(U < 0) + P(V > 0) since the confidence limits U
and V are random variables (depending on the random sample) and 6
is a fixed quantity. In many cases this probability can be expressed in
terms of a pivotal statistic and the limits can be obtained via tabulated
percentiles of standard probability distributions such as the standard
normal or the chi-square. A pivotal statistic is a function of a statistic
and the parameter of interest such that the distribution of the pivotal
statistic is free from the parameter (and is often known or at least
derivable). For example, ¢ = /n(X — n)/S is a pivotal statistic for
setting up a confidence interval for the mean p of a normal population
with an unknown standard deviation. The random variable ¢ follows a
Student’s t(,_;) distribution and is thus free from any unknown
parameter. All standard books on mathematical statistics cover the
topic of confidence interval estimation.

A useful technique for finding point estimates for parameters
which appear as unspecified constants (or as functions of such con-
stants) in a family of probability functions, say fx(.; 0), is the method of
maximum likelihood. The likelihood function of a random sample of
size n from the population fx(.; 0) is the joint probability function of the
sample variables regarded as a function of 0, or

L(x1,%2, .., %;0) = [ [ fc(xi:0)
i=1

A maximum-likelihood estimate (MLE) of 0 is a value 0 such that for
all o,

L(x1,%9,...,%,;0) = L(x1,x2,...,%,;0)
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Subject to certain regularity conditions, MLEs are sufficient and
consistent and are asymptotically unbiased, minimum variance, and
normally distributed. Here, as elsewhere in this book, the term
asymptotic is interpreted as meaning large sample sizes. Another
useful property is invariance, which says that if g(0) is a smooth

function of 0 and 0 is the MLE of 0, then the MLE of g(0) is g(6). If more
than one parameter is involved, 06 above may be interpreted as a
vector.

HYPOTHESIS TESTING

A statistical hypothesis is a claim or an assertion about the probability
function of one or more random variables or a statement about the
populations from which one or more samples are drawn, e.g., its form,
shape, or parameter values. A hypothesis is called simple if the
statement completely specifies the population. Otherwise it is called
composite. The null hypothesis Hy is the hypothesis under test. The
alternative hypothesis, Hy or Hp, is the conclusion reached if the null
hypothesis is rejected.

A test of a statistical hypothesis is a rule which enables one to
make a decision whether or not Hj should be rejected on the basis of
the observed value of a test statistic, which is some function of a set of
observable random variables. The probability distribution of the test
statistic when H, holds is sometimes referred to as the null distribu-
tion of the test statistic.

A critical region or rejection region R for a test is that subset of
values assumed by the test statistic which, in accordance with the test,
leads to rejection of Hy. The critical values of a test statistic are the
bounds of R. For example, if a test statstic T prescribes rejection of H
for T' < t,,then ¢, is the critical value and R is written symbolically as

TeR for T < ¢,

A type I error is committed if the null hypothesis is rejected when it is
true. A type Il error is failure to reject a false Hy. For a test statistic T
of Hy:0 € o versus Hq:0 € Q — o, the probabilities of these errors are,
respectively,

a(0) =P(T€eR|0cow) and BO)=P(T¢R|6cQ— o)

The least upper bound value, or supremum, of o(0) for all 6 € » is often
called the size of the test. The significance level is a preselected nom-
inal bound for «(6), which may not be attained if the relevant
probability function is discrete. Since this is usually the case in
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nonparametric hypothesis testing, some confusion might arise if these
distinctions were adhered to here. So the symbol o will be used to
denote either the size of the test or the significance level or the
probability of a type I error, prefaced by the adjective “exact” whenever
supy..,, (0) = o.

The power of a test is the probability that the test statistic will
lead to a rejection of Hj, denoted by Pw(0) = P(T € R). Power is of
interest mainly as the probability of a correct decision, and so the
power is typically calculated when Hj if false, or H; is true, and then
Pw(®) =P(T€R|0€Q — o) =1—p(0). The power depends on the
following four variables:

1. The degree of falseness of Hy, that is, the amount of discrepancy
between the assertions stated in Hy and H;

2. The size of the test o

3. The number of observable random variables involved in the test
statistic, generally the sample size

4. The critical region or rejection region R

The power function of a test is the power when all but one of these
variables are held constant, usually item 1. For example, we can study
the power of a particular test as a function of the parameter 6, for a
given sample size and a. Typically, the power function is displayed as a
plot or a graph of the values of the parameter 6 on the X axis against
the corresponding power values of the test on the Y axis. To calculate
the power of a test, we need the distribution of the test statistic under
the alternative hypothesis. Sometimes such a result is either un-
available or is much too complicated to be derived analytically; then
computer simulations can be used to estimate the power of a test. To
illustrate, suppose we would like to estimate the power of a test for the
mean p of a population with Hy: p = 10. We can generate on the
computer a random sample from the normal distribution with mean 10
(and say variance equal to 1) and apply the test at a specified level a. If
the null hypothesis is rejected, we call it a success. Now we repeat this
process of generating a same size sample from the normal distribution
with mean 10 and variance 1, say 1000 times. At the end of these 1000
simulations we find the proportion of successes, i.e., the proportion of
times when the test rejects the null hypothesis. This proportion is an
empirical estimate of the nominal size of a test which was set a priori.
To estimate power over the alternative, for example, we can repeat the
same process but with samples from a normal distribution with, say,
mean 10.5 and variance 1. The proportion of successes from these
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simulations gives an empirical estimate of the power (simulated
power) of the test for the normal distribution when the mean is 10.5
and so on. The simulation technique is particularly useful when a new
test is developed with an analytically complicated null and/or alter-
native distribution and we would like to learn about the test’s per-
formance. The number of successes follows a binomial distribution
with n = 1000 and p = o and this fact can be used to give an idea about
the simulation error associated with the proportion of successes in
terms of its standard error, which is /a(1 — a)/1000.

A test is said to be most powerful for a specified alternative hy-
pothesis if no other test of the same size has greater power against the
same alternative.

A test is uniformly most powerful against a class of alternative
hypotheses if it is most powerful with respect to each specific simple
alternative hypothesis within the class of alternative hypotheses.

A “good” test statistic is one which is reasonably successful in
distinguishing correctly between the conditions as stated in the null
and alternative hypotheses. A method of constructing tests which of-
ten have good properties is the likelihood-ratio principle. A random
sample of size n is drawn from the population fx(.;0) with likelihood
function L(x1,x9,...,%,;0), where 0 is to be interpreted as a vector if
more than one parameter is involved. Suppose that fx(.;0) is a speci-
fied family of functions for every 6 € ® and ® is a subset of Q. The
likelihood-ratio test of

Hy:6co versus Hi:0eQ-o
has the rejection region
TeR for T<e,0<c<1

where T is the ratio

_L(o)

L(Q)

and L(d) and L(Q) are the maximums of the likelihood function
with respect to 6 for 6 € ® and 0 € Q, respectively. For an exact size
o test of a simple Hy, the number ¢ which defines R is chosen such
that P(T < c¢|Hp) = o. Any monotonic function of 7, say g(7T), can
also be employed for the test statistic as long as the rejection region
is stated in terms of the corresponding values of g(7); the natural
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logarithm is one of the most commonly used g(.) functions. The
likelihood-ratio test is always a function of sufficient statistics, and
the principle often produces a uniformly most powerful test when
such exists. A particularly useful property of T for constructing
tests based on large samples is that, subject to certain regularity
conditions, the probability distribution of —2InT approaches the
chi-square distribution with k; — ko degrees of freedom as n — oo,
where k; and ks are, respectively, the dimensions of the spaces Q
and 0),k2 < k1.

All these concepts should be familiar to the reader, since they are
an integral part of any standard introductory probability and in-
ference course. We now turn to a few concepts which are especially
important in nonparametric inference.

P VALUE

An alternative approach to hypothesis testing is provided by com-
puting a quantity called the P value, sometimes called a probability
value or the associated probability or the significance probability.
A P value is defined as the probability, when the null hypothesis H is
true, of obtaining a sample result as extreme as, or more extreme than
(in the direction of the alternative), the observed sample result. This
probability can be computed for the observed value of the test statistic
or some function of it like the sample estimate of the parameter in the
null hypothesis. For example, suppose we are testing Hy: u = 50 ver-
sus Hy: p> 50 and we observe the sample result for X is 52. The
P value is computed as P(X > 52| p = 50). The appropriate direction
here is values of X that are greater than or equal to 52, since the
alternative is p greater than 50. It is frequently convenient to simply
report the P value and go no further. If a P value is small, this is
interpreted as meaning that our sample produced a result that is
rather rare under the assumption of the null hypothesis. Since the
sample result is a fact, it must be that the null hypothesis statement is
inconsistent with the sample outcome. In other words, we should
reject the null hypothesis. On the other hand, if a P value is large, the
sample result is consistent with the null hypothesis and the null
hypothesis is not rejected.

If we want to use the P value to reach a decision about whether
H, should be rejected, we have to select a value for o. If the P value is
less than or equal to o, the decision is to reject Hy; otherwise, the
decision is not to reject Hy. The P value is therefore the smallest
level of significance for which the null hypothesis would be rejected.
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The P value provides not only a means of making a decision about the
null hypothesis, but also some idea about how strong the evidence is
against the null hypothesis. For example, suppose data set 1 with test
T1 results in a P value of 0.012, while data set 2 with test T (or T1) has
a P value of 0.045. The evidence against the null hypothesis is much
stronger for data set 1 than for data set 2 because the observed sample
outcome is much less likely in data set 1.

Most of the tables in the Appendix of this book give exact P va-
lues for the nonparametric test statistics with small sample sizes. In
some books, tables of critical values are given for selected o values.
Since the usual o values, 0.01, 0.05, and the like, are seldom attainable
exactly for nonparametric tests with small sample sizes, we prefer
reporting P values to selecting a level a. If the asymptotic distribution
of a test statistic is used to find a P value, this may be called an
asymptotic or approximate P value.

If a test has a two-sided alternative, there is no specific di-
rection for calculating the P value. One approach is simply to report
the smaller of the two one-tailed P values, indicating that it is one-
tailed. If the distribution is symmetric, it makes sense to double this
one-tailed P value, and this is frequently done in practice.
This procedure is sometimes used even if the distribution is not
symmetric.

Finally, note that the P value can be viewed as a random vari-
able. For example, suppose that the test statistic 7" has a cdf F under
H, and a cdf G under a one-sided upper-tailed alternative Hy. The P
value is the probability of observing a more extreme value than the
present random 7, so the P value is just the random variable
P =1-F(T). For a discussion of various properties and ramifications,
the reader is referred to Sackrowitz and Samuel-Cahn (1999) and
Donahue (1999).

CONSISTENCY

A test is consistent for a specified alternative if the power of the test,
when that alternative is true, approaches 1 as the sample size
approaches infinity. A test is consistent for a class (or subclass) of
alternatives if the power of the test when any member of the class
(subclass) of alternatives is true approaches 1 as the sample size
approaches infinity.

Consistency is a “good” test criterion relevant to both parametric
and nonparametric methods, and all the standard test procedures
clearly share this property. However, in nonparametric statistics the
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alternatives are often extremely general, and a wide selection of tests
may be available for any one experimental situation. The consistency
criterion provides an objective method of choosing among these tests
(or at least eliminating some from consideration) when a less general
subclass of alternatives is of major interest to the experimenter. A test
which is known to be consistent against a specified subclass is said to
be especially sensitive to that type of alternative and can generally be
recommended for use when the experimenter wishes particularly to
detect differences of the type expressed in that subclass.

Consistency of a test can often be shown by investigating
whether or not the test statistic converges in probability to the
parameter of interest. An especially useful method of investigating
consistency is described as follows. A random sample of size n is
drawn from the family fx(.;0),0 € Q. Let T be a test statistic for the
general hypothesis 6 € ® versus 6 € Q — ®, and let g(0) be some
function of 6 such that

g0)=0, if0co

g(0) #£ 6 ifoeAforACQ—o

If for all 6 we have

E(T)=g(0) and lim, . var(T) =0
then the size o test with rejection region

TeR for |T' — 6| > ¢y

is consistent for the subclass A. Similarly, for one-sided subclass of
alternatives where

g(0) =0 if0cow

and
g(0) > 6 ifoecAforACQ-o

the consistent test of size ¢ has rejection region
TeR forT—6>c,

The results follow directly from Chebyshev’s inequality. (For a proof,
see Fraser, 1957, pp. 267-268.) It may be noted that the unbiasedness
condition may be relaxed to asymptotic (n — oc) unbiasedness.
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PITMAN EFFICIENCY

Another sort of objective criterion may be useful in choosing between
two or more tests which are comparable in a well-defined way, namely
the concept of Pitman efficiency. In the theory of point estimation, the
efficiency of two unbiased estimators for a parameter is defined as the
ratio of their variances. In some situations, the limiting value of this
ratio may be interpreted as the relative number of additional obser-
vations needed using the less efficient estimator to obtain the same
accuracy. The idea of efficiency of two test statistics is closely related,
where power is regarded as a measure of accuracy, but the tests must
be compared under equivalent conditions (as both estimators were
specified to be unbiased), and there are many variables in hypothesis
testing. The most common way to compare two tests is to make all
factors equivalent except sample size.

The power efficiency of a test A relative to a test B, where both
tests are for the same simple null and alternative hypotheses, the
same type of rejection region, and the same significance level, is the
ratio ny/n,, where n, is the number of observations required by test A
for the power of test A to equal the power of test B when n; observa-
tions are employed. Since power efficiency generally depends on the
selected significance level, hypotheses, and ny, it is difficult to calcu-
late and interpret. The problem can be avoided in many cases by
defining a type of limiting power efficiency.

Let A and B be two consistent tests of a null hypothesis Hy and
alternative hypothesis Hy, at significance level o. The asymptotic re-
lative efficiency (ARE) of test A relative to test B is the limiting value of
the ratio n,/n,, where n, is the number of observations required by
test A for the power of test A to equal the power of test B based on n,
observations while simultaneously n, — co and Hy — Hj.

In many applications of this definition, the ratio is the same for
all choices of o, so that the ARE is a single number with a well-defined
interpretation for large samples. The requirement that both tests be
consistent against H; is not a limitation in application, since most
tests under consideration for a particular type of alternative will be
consistent anyway. But with two consistent tests, their powers both
approach 1 with increasing sample sizes. Therefore, we must let H;
approach Hj so that the power of each test lies on the open interval
(a,1) for finite sample sizes and the limiting ratio will generally be
some number other than 1. The ARE is sometimes also called local
asymptotic efficiency since it relates to large sample power in the vi-
cinity of the null hypothesis. A few studies have been conducted which
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seem to indicate that in several important cases the ARE is a
reasonably close approximation to the exact efficiency for moderate-
sized samples and alternatives not too far from the null case. Espe-
cially in the case of small samples, however, the implications of the
ARE value cannot be considered particularly meaningful. Methods of
calculating the ARE for comparisons of particular tests will be treated
fully in Chapter 13.

The problem of evaluating the relative merits of two or more
comparable test statistics is by no means solved by introducing the
criteria of consistency and asymptotic relative efficiency. Both are
large-sample properties and may not have much import for small- or
even moderate-sized samples. As discussed in Section 1.1, exact power
calculations are tedious and often too specific to shed much light on the
problem as it relates to nonparametric tests, which may explain the
general acceptance of asymptotic criteria in the field of nonparametric
inference.

The asymptotic relative efficiency of two tests is also defined as
the ratio of the limits of the efficacies of the respective tests as the
sample sizes approach infinity. The efficacy of a test for Hy: 6 = 0y
based on a sample size n is defined as the derivative of the mean of the
test statistic with respect to 6 divided by the variance of the test sta-
tistic, both evaluated at the hypothesized value 6 = 6. Thus, for large
n the efficacy measures the rate of change of the mean (expressed in
standard units) of a test statistic at the null hypothesis values of 6. A
test with a relatively large efficacy is especially sensitive to alternative
values of 0 close to 0y and therefore should have good power in the
vicinity of 6. Details will be given in Chapter 13.

RANDOMIZED TESTS

We now turn to a different problem which, although not limited to
nonparametric inference, is of particular concern in this area. For
most classical test procedures, the experimenter chooses a “reason-
able” significance level o in advance and determines the rejection-
region boundary such that the probability of a type I error is exactly
o for a simple hypothesis and does not exceed o for a composite
hypothesis. When the null probability distribution of the test statistic
is continuous, any real number between 0 and 1 may be chosen as
the significance level. Let us call this preselected number the nom-
inal o. If the test statistic 7" can take on only a countable number of
values, i.e., if the sampling distribution of T is discrete, the number
of possible exact probabilities of a type I error is limited to the
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number of jump points in the cdf of the test statistic. These exact
probabilities will be called exact o values, or natural significance
levels. The region can then be chosen such that either (1) the exact o
is the largest number which does not exceed the nominal o or (2) the
exact o is the number closest to the nominal a. Although most sta-
tisticians seem to prefer the first approach, as it is more consistent
with classical test procedures for a composite Hj, this has not been
universally agreed upon. As a result, two sets of tables of critical
values of a test statistic may not be identical for the same nominal «;
this can lead to confusion in reading tables. The entries in each table
in the Appendix of this book are constructed using the first approach
for all critical values.

Disregarding that problem now, suppose we wish to compare the
performance, as measured by power, of two different discrete test
statistics. Their natural significance levels are unlikely to be the same,
so identical nominal o values do not ensure identical exact prob-
abilities of a type I error. Power is certainly affected by exact «, and
power comparisons of tests may be quite misleading without identical
exact o values. A method of equalizing exact o values is provided by
randomized test procedures.

A randomized decision rule is one which prescribes rejection of
H, always for a certain range of values of the test statistic, rejection
sometimes for another nonoverlapping range, and acceptance other-
wise. A typical rejection region of exact size as o might be written
T € R with probability 1 if T' > t9, and with probability p if t; < T < to,
where #; < t3 and 0 < p < 1 are chosen such that

P(T = t5|Hy) + pP(t1 < T < t3|Hp) = o

Some random device could be used to make the decision in practice,
like drawing one card at random from 100, of which 100p are labeled
reject. Such decision rules may seem an artificial device and are
probably seldom employed by experimenters, but the technique is
useful in discussions of theoretical properties of tests. The power of
such a randomized test against an alternative H; is

Pw(0) = P(T > to|Hy) + pP(ty < T < to|H))

A simple example will suffice to explain the procedure. A random
sample of size 5 is drawn from the Bernoulli population. We wish to
test Hy: 8 = 0.5 versus H;: 0 > 0.5 at significance level 0.05. The test
statistic is X, the number of successes in the sample, which has the
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binomial distribution with parameter 6 and n =5. A reasonable
rejection region would be large values of X, and thus the six exact
significance levels obtainable without using a randomized test from
Table C of the Appendix are:

c 5 4 3 2 1 0

P(X >c|0 = 0.5) 1/32 6/32 16/32 26/32 31/32 1

A nonrandomized test procedure of nominal size 0.05 but exact size
oa=1/32=0.03125

has rejection region
XeR for X =5

The randomized test with exact o = 0.05 is found with #; =4 and
to = 5 as follows:

P(X >5/0=05)+pP(4 <X < 5)=1/32+pP(X =4) = 0.05
S0,

1/32 + 5p/32 = 0.05 and p = 0.12

Thus the rejection region is X € R with probability 1 if X = 5 and with
probability 0.12 if X = 4. Using Table C, the power of this randomized
test when Hi: 0 = 0.6 is

Pw(0.6) = P(X = 5[0 = 0.6) + 0.12 P(X = 4]0 = 0.6)
=0.0778 + 0.12(0.2592) = 0.3110

CONTINUITY CORRECTION

The exact null distribution of most test statistics used in nonpara-
metric inference is discrete. Tables of rejection regions or cumulative
distributions are often available for small sample sizes only. However,
in many cases some simple approximation to these null distributions is
accurate enough for practical applications with moderate-sized sam-
ples. When these asymptotic distributions are continuous (like
the normal or chi square), the approximation may be improved by
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introduction a correction for continuity. This is accomplished by
regarding the value of the discrete test statistic as the midpoint of an
interval. For example, if the domain of a test statistic 7"is only integer
values, the observed value is considered to be ¢ & 0.5. If the decision
rule is to reject for T >, or T <t /2 and the large-sample

f % is the standard normal

under Hy, the rejection region with continuity correction incorporated
is determined by solving the equations

approximation to the distribution o

tyo— 0.5~ E(T|Hp) ), +0.5—E(T|H)
o(THy) 2 28 o(T/Hy)  ?

where z,/; satisfies ®(z,/2) = 1 — o/2. Thus the continuity-corrected,
two-sided, approximately size o rejection region is

T > E(T|Ho) + 0.5 4 z,/26(T'|Ho) or
T < E(T\Ho) — 0.5 — z,/95(T|Ho)

One-sided rejection regions or critical ratios employing continuity
corrections are found similarly. For example, in a one-sided test with
rejection region T > t,, for a nominal size o, the approximation to the
rejection region with a continuity correction is determined by solving
for ¢, in

to — 0.5 — E(T|Hy)

=24
o(T|Ho)

and thus the continuity corrected, one-sided upper-tailed, approxi-
mately size o rejection region is

T > E(T|Ho) + 0.5 + z,0(T|H)

Similarly, the continuity corrected, one-sided lower-tailed, approxi-
mately size o rejection region is

T < E(T|H,) — 0.5 — z,6(T|Ho)

The P value for a one-sided test based on a statistic whose null
distribution is discrete is often approximated by a continuous dis-
tribution, typically the normal, for large sample sizes. Like the rejec-
tion regions above, this approximation to the P value can usually be
improved by incorporating a correction for continuity. For example,
if the alternative is in the upper tail, and the observed value of an
integer-valued test statistic 7 is ¢, the exact P value P(T > tg|Hy) is
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approximated by P(T >ty — 0.5|Hp). In the Bernoulli case with
n =20, Hy: 6 =0.5 versus Hi: 0 > 0.5, suppose we observe X =13
successes. The normal approximation to the P value with a continuity
correction is

P(X > 13|H) = P(X > 12.5) = P(X \;510 > 12"3% 10)
—P(Z>112)

=1-®(1.12) =0.1314

This approximation is very close to the exact P value of 0.1316 from
Table C. The approximate P value without the continuity correction is
0.0901, and thus the continuity correction greatly improves the P value
approximation. In general, let #, be the observed value of the test
statistic T'whose null distribution can be approximated by the normal
distribution. When the alternative is in the upper tail, the approx-
imate P value with a continuity correction is given by

to — E(T|H0) — 05]
o(T|Ho)

1-o]

In the lower tail, the continuity corrected approximate P value is given
by

to — E(T|Ho) + 0.5
q’[ o (T1Ho) }

When the alternative is two-sided, the continuity corrected approx-
imate P value can be obtained using these two expressions and
applying the recommendations given earlier under P value.
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Order Statistics, Quantiles,
and Coverages

2.1 INTRODUCTION

Let X71,Xs,...,X,, denote a random sample from a population with
continuous cdf Fx. First let Fix be continuous, so that the probability is
zero that any two or more of these random variables have equal
magnitudes. In this situation there exists a unique ordered arrange-
ment within the sample. Suppose that X(;) denotes the smallest of the
set X1,Xp,...,X,; Xo) denotes the second smallest; ... and X,
denotes the largest. Then

X(l) < X(z) << X(n)

denotes the original random sample after arrangement in increasing
order of magnitude, and these are collectively termed the order sta-
tistics of the random sample X7,Xs, ..., X,. The rth smallest, 1 <r < n,
of the ordered X'’s, X|,), is called the rth-order statistic. Some familiar

32
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applications of order statistics, which are obvious on reflection, are as
follows:

1. X(,), the maximum (largest) value in the sample, is of interest in
the study of floods and other extreme meteorological phenomena.

2. Xq), the minimum (smallest) value, is useful for phenomena
where, for example, the strength of a chain depends on the
weakest link.

3. The sample median, defined as X|(,,1)/2) for n odd and any number
between X, 5y and X(,,/2,1) for n even, is a measure of location and
an estimate of the population central tendency.

4. The sample midrange, defined as (X;) + X(,))/2, is also a measure
of central tendency.

5. The sample range X(,) — X(;) is a measure of dispersion.

6. In some experiments, the sampling process ceases after collecting
r of the observations. For example, in life-testing electric light
bulbs, one may start with a group of n bulbs but stop taking
observations after the rth bulb burns out. Then information is
available only on the first r ordered “lifetimes” X(;) < Xg) < ---
< X, where r < n. This type of data is often referred to as cen-
sored data.

7. Order statistics are used to study outliers or extreme observations,
e.g., when so-called dirty data are suspected.

The study of order statistics in this chapter will be limited to
their mathematical and statistical properties, including joint and
marginal probability distributions, exact moments, asymptotic mo-
ments, and asymptotic marginal distributions. Two general uses of
order statistics in distribution-free inference will be discussed later in
Chapter 5, namely, interval estimation and hypothesis testing of po-
pulation percentiles. The topic of tolerance limits for distributions,
including both one-sample and two-sample coverages, is discussed
later in this chapter. But first, we must define another property of
probability functions called the quantile function.

2.2 THE QUANTILE FUNCTION

We have already talked about using the mean, the variance, and other
moments to describe a probability distribution. In some situations we
may be more interested in the percentiles of a distribution, like the
fiftieth percentile (the median). For example, if X represents
the breaking strength of an item, we might be interested in knowing
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the median strength, or the strength that is survived by 60 percent of
the items, i.e., the fortieth percentile point. Or we may want to know
what percentage of the items will survive a pressure of say 31b. For
questions like these, we need information about the quantiles of a
distribution.

A quantile of a continuous cdf F'x of a random variable X is a real
number that divides the area under the pdf into two parts of specific
amounts. Only the area to the left of the number need be specified
since the entire area is equal to one. The pth quantile (or the 100pth
percentile) of Fx is that value of X, say X,, such that 100p percent of
the values of X in the population are less than or equal to X),, for any
positive fraction p(0 < p < 1). In other words, X, is a parameter of the
population that satisfies P(X <X,)=p, or, in terms of the cdf
Fx(X,) = p.If the cdf of X is strictly increasing, the pth quantile is the
unique solution to the equation X, = F5!(p) = Qx(p), say. We call
®x(p), 0 < p < 1, the inverse of the cdf, the quantile function (qf) of
the random variable X.

Consider, for example, a random variable from the exponential
distribution with = 2. Then Table 2.1 in Chapter 1 indicates that the
cdf is

0 x <0
FX(x):{

1—e /2 x=0

Since 1 —e%/2=p for x >0, the inverse is X, = -2 In(1 —p) for
0 <p <1, and hence the quantile function is @x(p) = —2 In(1 — p).
The cdf and the quantile function for this exponential distribution are
shown in Figures 2.1 and 2.2, respectively.

Suppose the distribution of the breaking strength random vari-
able X is this exponential with B = 2. The reader can verify that the
fiftieth percentile @x(0.5) is 1.3863, and the fortieth percentile @x(0.4)
is 1.0217. The proportion that exceeds a breaking strength of 3 pounds
is 0.2231.

In general, we define the pth quantile Qx(p) as the smallest X
value at which the cdf is at least equal to p, or

Qx(p) = Fx'(p) = inf[x: Fx(x) > p] 0<p<1

This definition gives a unique value for the quantile @x(p) even when
Fx is flat around the specified value p, whereas the previous definition
would not give a unique inverse of Fx at p.

Some popular quantiles of a distribution are known as the
quartiles. The first quartile is the 0.25th quantile, the second quartile
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Fig. 2.1 The exponential cdf with § = 2.

is the 0.50th quantile (the median), and the third quartile is the 0.75th
quantile. These are also referred to as the 25th, the 50th, and the 75th
percentiles, respectively. Extreme quantiles (such as for p = 0.95, 0.99,
or 0.995) of a distribution are important as critical values for some test
statistics; calculating these is important in many applications.

The cdf and the qgf provide similar information regarding the
distribution; however, there are situations where one is more natural
than the other. Note that formulas for the moments of X can also be
expressed in terms of the quantile function. For example,

1 1
E(X) = /0 Qx(p)dp and  EX?) = /0 QGpdp  (21)

so that o = [ @ (p)dp — [f, Qx(p)dp)”.
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Fig. 2.2 The exponential quantile function with g = 2.

The following result is useful when working with the qf. Let
fx(p) = F(p) be the pdf of X.

Theorem 2.1 Assuming that the necessary derivatives all exist, the
first and the second derivatives of the quantile function Qx(p)
are

/ . 1 an " _ f)/([QX(p)]
Qx(p) =~ K@x @)l d Qx(p) FelQx o)

The proof of this result is straightforward and is left for the
reader.

It is clear that given some knowledge regarding the distri-
bution of a random variable, one can try to use that information,
perhaps along with some data, to aid in studying properties of such
a distribution. For example, if we know that the distribution of X is
exponential but we are not sure of its mean, typically a simple random
sample is taken and the population mean is estimated by the sample
mean X. This estimate can then be used to estimate properties of the
distribution. For instance, the probability P(X < 3.2) can be estimated
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by 1 —e 32X which is the estimated cdf of X at 3.2. This, of course, is
the approach of classical parametric analysis. In the field of non-
parametric analysis, we do not assume that the distribution is ex-
ponential (or anything else for that matter). The natural question then
is how do we estimate the underlying cdf? This is where the sample
distribution function (sdf) or the empirical cumulative distribution
function (ecdf) or the empirical distribution function (edf) plays a
crucial role.

2.3 THE EMPIRICAL DISTRIBUTION FUNCTION

For a random sample from the distribution Fy, the empirical dis-
tribution function or edf, denoted by S, (x), is simply the proportion of
sample values less than or equal to the specified value x, that is,

number of sample values < x
n

Sh(x)

In the above example, S,(3.2) can be used as a point estimate of
P(X < 3.2). The edf is most conveniently defined in terms of the order
statistics of a sample, defined in Section 2.1. Suppose that the n
sample observations are distinct and arranged in increasing order so
that X(;) is the smallest, X(5) is the second smallest, ..., and X|,) is the
largest. A formal definition of the edf S, (x) is

0 if x <X(1)
Sp(x) =4 i/n  ifX;q <x<Xui=12....n (3.1)

Suppose that a random sample of size n = 5 is given by 9.4, 11.2,
11.4, 12, and 12.6. The edf of this sample is shown in Figure 3.1.
Clearly, S, (x) is a step (or a jump) function, with jumps occuring at the
(distinct) ordered sample values, where the height of each jump is
equal to the reciprocal of the sample size, namely 1/5 or 0.2.

When more than one observation has the same value, we say
these observations are tied. In this case the edf is still a step function
but it jumps only at the distinct ordered sample values X(; and the
height of the jump is equal to 2/n, where % is the number of data
values tied at X ;).

We now discuss some of the statistical properties of the edf S, (x).
Let T,(x) =nS,(x), so that T,(x) represents the total number of
sample values that are less than or equal to the specified value x.
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Fig. 3.1 An empirical distribution function for n = 5.

Theorem 3.1 For any fixed real value x, the random variable T, (x) has
a binomial distribution with parameters n and Fx(x).

Proof For any fixed real constant x and i =1, 2, ..., n, define the
indicator random variable

1 if X; <«x
Si(x) =Ix, <x =
®) =l < {o if X; > x
The random variables 6;(x),d2(x),...,0,(x) are independent and

identically distributed, each with the Bernoulli distribution with
parameter 0, where 0 = P[5;(x) = 1] = P(X; < x) = Fx(x). Now, since
Thn(x) =>"18i(x) is the sum of n independent and identically
distributed Bernoulli random variables, it can be easily shown that
T, (x) has a binomial distribution with parameters n and 6 = Fx(x).

From Theorem 3.1, and using properties of the binomial dis-
tribution, we get the following results. The proofs are left for the
reader.

Corollary 3.1.1 The mean and the variance of S, (x) are

() E[S,(x) = Fx(x)
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(b) Var[S,(x)] = Fx(x)[1 — Fx(x)]/n

Part (a) of the corollary shows that S,(x), the proportion of
sample values less than or equal to the specified value x, is an un-
biased estimator of Fx(x). Part (b) shows that the variance of S, (x)
tends to zero as n tends to infinity. Thus, using Chebyshev’s inequality,
we can show that S, (x) is a consistent estimator of Fx(x).

Corollary 3.1.2 For any fixed real value x, S,(x) is a consistent esti-
mator of Fx(x), or, in other words, S, (x) converges to Fx(x) in
probability.

Corollary 3.1.3 E[T,(x)T,(y)] = nFx(x)Fx(y), for x < y.

The convergence in Corollary 3.1.2 is for each value of x in-
dividually, whereas sometimes we are interested in all values of x,
collectively. A probability statement can be made simultaneously for
all x, as a result of the following important theorem. To this end, we
have the following classical result [see Fisz (1963), for example, for a
proof].

Theorem 3.2 (Glivenko-Cantelli Theorem) S, (x) converges uniformly to
Fx(x) with probability 1, that is,

Pllim sup |S,(x)-Fx(x)|=0]=1

=00 _oo<a<oo

Another useful property of the edf is its asymptotic normality,
given in the following theorem.

Theorem 3.3 As n — oo, the limiting probability distribution of the
standardized S, (x) is standard normal, or

lim P{ @[Sn(x) —Fx@] t} — D)

n—oo

Proof Using Theorem 3.1, Corollary 3.1.1, and the central limit
theorem, it follows that the distribution of [2Sn(x) — nFx(v)] =

VIS, ) — Fx(x) Vel - Pl

approaches the standard normal as n — co.
VFx(x)[1 - Fx(x)]
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THE EMPIRICAL QUANTILE FUNCTION

Since the population quantile function is the inverse of the cdf and the
edf is an estimate of the cdf, it is natural to estimate the quantile
function by inverting the edf. This yields the empirical quantile
function (eqf) @,(u), 0 < u < 1, defined below.

X(2) 1f—<u<g
n
-1
Xn) if nT<u<1

Thus @Q,(u) =inffx:S,(x) > u]. Accordingly, the empirical (or the
sample) quantiles are just the ordered values in a sample. For exam-
ple, if n = 10, the estimate of the 0.30th quantile or the 30th percentile
is simply @10(0.3) = X(3),since & < 0.3 < 3. This is consistent with
the usual definition of a quantile or a percentile since 30 percent of the
data values are less than or equal to the third order statistic in a
sample of size 10. However, note that according to definition, the
0.25th quantile or the 25th percentile (or the 1st quartile) is also equal
to X3 since 2/10 < 0.25 < 3/10.

Thus the sample order statistics are point estimates of the corre-
sponding population quantiles. For this reason, a study of the properties of
order statistics is as important in nonparametric analysis as the study of
the properties of the sample mean in the context of a parametric analysis.

2.4 STATISTICAL PROPERTIES OF ORDER STATISTICS

As we have outlined, the order statistics have many useful applica-
tions. In this section we derive some of their statistical properties.

CUMULATIVE DISTRIBUTION FUNCTION (CDF) OF X,

Theorem 4.1 For any fixed real t
PXy) <t)=)Y PnS,(t) =i

n
i

= i( >[FX(t)]i[1 —Fx@®)]"" —oco<t<oo (4.1)
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This theorem can be proved in at least two ways. First, X, <t if
and only if at least r of the X’s are less than or equal to £, and Theorem
3.1 gives the exact distribution of the number of X’s less than or equal
to ¢. This result holds even if the underlying distribution is discrete.
A second proof, using mathematical statistical results about order
statistics, is given later.

PROBABILITY DENSITY FUNCTION (PDF) OF X,

Theorem 4.2 Ifthe underlying cdf Fx is continuous with Fy(x) = fx(x),
the pdf of the rth-order statistic is given by

fx, (x) = (r—l)"L('n—r)' [Fx(x)]r_l[l — Fx ()" fx(x)
—00 <X <00 (4.2)

This can be proved from Theorem 4.1 by differentiation and some
algebraic manipulations. A more direct derivation is provided later.

Theorems 4.1 and 4.2 clearly show that the sample quantiles are
not distribution free. Because of this, although intuitively appealing as
point estimators of the corresponding population quantiles, these
statistics are often not convenient to use except in very special si-
tuations. However, they frequently provide interesting starting points
and in fact are the building blocks upon which many distribution-free
procedures are based. The study of order statistics is thus vital to the
understanding of distribution-free inference procedures.

Some important simplification occur when we assume that the
sample comes from the continous uniform population on (0,1). Note
that for this distribution Fx(¢)=¢ for 0<t¢<1 Thus, from
Theorem 4.1, the cdf of X, is

FX(f) (t) = P(X(,) < t) = zn:P[nSn(t) = l]

n n ) .
:Z()t‘(l—t)"‘ 0<t<1
— \ 1

and when F' is continuous, the pdf of X, is a beta distribution given by

fx,, (&) = (r—l)r!l(!n—r)!trl(l -7 0<t<1 (4.3)

This is summarized in Theorem 4.3.

Theorem 4.3 For a random sample of size n from the uniform (0,1)
distribution, the rth order statistic X, follows a beta (r,n —r + 1)
distribution.
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The following result follows from Theorems 4.1 and 4.3.

Corollary 4.3.1

Z(?)tl(l _t)n*i _M/O xrfl(l _x)nfrdx (44)

i=r

The integral on the right is called an incomplete beta integral and is
often written as I;(r, n —r + 1). This function has been tabulated by
various authors. It can be verified that 1 — I;(a,b) = I;_4(b,a); we leave
the verification as an exercise for the reader (Problem 2.3).

2.5 PROBABILITY-INTEGRAL TRANSFORMATION (PIT)

Order statistics are particularly useful in nonparametric statistics
because the transformation U|,) = F(X|,)) produces a random variable
which is the rth-order statistic from the continuous uniform popula-
tion on the interval (0,1), regardless of what F' actually is (normal,
gamma, chi-square, etc.); therefore U, is distribution free. This
property is due to the so-called probability-integral transformation
(PIT), which is proved in the following theorem.

Theorem 5.1 (Probability-Integral Transformation) Let X be a random
variable with cdf Fx. If Fx is continous, the random variable Y
produced by the transformation Y = Fx(X) has the continuous
uniform probability distribution over the interval (0,1).

Proof Since 0 < Fx(x) < 1for all x, letting F'y denote the cdf of Y,
we have Fy(y)=0 for y<0 and Fy(y)=1 for y >1 For
0 <y < 1, define u to be the largest number satisfying Fx(u) = y.
Then Fx(X) <y if and only if X < u, and it follows that

Fy(y) =PIFX) <y]| =PX <u)=Fx(u) =y

which is the cdf of the continuous uniform distribution defined
over (0,1). This completes the proof.

This theorem can also be proved using moment-generating functions
when they exist; this approach will be left as an exercise for the reader.

As a result of the PIT, we can conclude that if X;,X5,...,X,, is a
random sample from any population with continuous distribution Fy,
then Fx(X1),Fx(X2),...,Fx(X,) is a random sample from the uniform
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population. Similarly, if X(;) < X(g) < --- <X, are the order statistics
for the original sample, then

Fx(Xq)) < Fx(X(g) < < Fx(X(n))

are the order statistics from the continuous uniform distribution on
(0,1) regardless of the original distribution Fx as long as it is con-
tinuous.

The PIT is a very important result in statistics, not only in the
theoretical derivations of the properties of order statistics and the like,
but also in practical applications such as random number generation.
Two examples are now given to illustrate the utility of the PIT.

Example 5.1 Suppose we wish to calculate the probability P(2 <
X < 3), where X follows a chi-square distribution with 3 degrees of
freedom (df). Suppose Fx(X) deonotes the cdf of X. Since Fx(X) has the
uniform distribution on (0,1) and F is nondecreasing, the probability
in question is simply equal to Fx(3) — Fx(2). Using the CHIDIST
function with df = 3 in the software package EXCEL (note that EXCEL
gives right-tail probabilities) we easily get Fx(2)=1-0.5724 =
0.4276 and Fx(3) =1-0.3916 = 0.6084, so that the required prob-
ability is simply 0.6084 — 0.4276 = 0.1808. Thus transforming the
original probability in terms of a probability with respect to the uni-
form distribution helps simplify the computation.

Example 5.2 An important practical application of the PIT is gen-
erating random samples from specified continuous probability dis-
tributions. For example, suppose we wish to generate an observation X
from an exponential distribution with mean 2. The cdf of X is
Fx(x) =1—e*/2, and by the PIT, the transformed random variable
Y =1—e%/2 is distributed as U, an observation from the uniform
distribution over the interval (0,1). Now set 1 — e X/2 = U and solve for
X =—-2In(1 - U). Using a uniform random number generator (most
software packages and some pocket calculators provide one), obtain a
uniform random number U and then the desired X from the trans-
formation X = —2 In(1 — U). Thus, for example, if we get u = 0.2346
using a uniform random number generator, the corresponding value of
X from the specified exponential distribution is 0.5347.

In order to generate a random sample of 2 or more from a spe-
cified continuous probability distribution, we may generate a random
sample from the uniform (0,1) distribution and apply the appropriate
transformation to each observation in the sample. Several other
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applications of the probability-integral transformation are given in
Problem 2.4.

2.6 JOINT DISTRIBUTION OF ORDER STATISTICS

The joint distribution of order statistics is specified through the joint
pdf. Since the observations X7,X5,...,X, in a random sample from a
continuous populaiton with pdf fx are independent and identically
distributed random variables, their joint pdf is

n

fx %o %, (%1, %2, %) = | [Fc (i)

i=1

The joint pdf of the n-order statistics X;) <Xy <--- <Xy
is not the same as the joint pdf of X;,Xs,...,X,, since the order sta-
tistics are obviously neither independent nor identically distributed.
However, the joint pdf is easily derived using the method of Jacobians
for transformations.

The set of n order statistics is produced by the transformation

Y= smallest of (Xl,Xg, “os ,Xn) ZX(l)
Y, = second smallest of (X1,Xs,...,X,) =Xy

This transformation is not one to one. In fact, since there are in total n!

possible arrangements of the original random variables in increasing

order of magnitude, there exist n! inverses to the transformation.
One of these n! permutations might be

Xs5<Xi<X 1< <X, <Xo

The corresponding inverse transformation is

X5=Y1
X1=Y
X 1=Y3
Xn = Yn—l
Xo=Y,
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The Jacobian of this transformation is the determinant of an n x n

identity matrix with rows rearranged, since each new Y; is equal to

one and only one of the original Xi, Xs,...,X,. The determinant

therefore equals +1. The joint density function of the random vari-
ables in this particular transformation is thus

n

XX V2:9ms Y39 = [ [fx (i) for y1<ys<---<yn

i=1

It is easily seen that the same expression results for each of the n!
arrangements, since each Jacobian has absolute value 1 and multi-
plication is commutative. Therefore, applying the general Jacobian
technique described in Chapter 1, the result is

n
fX(l)X(Z)v"'TX(Yl) (ylay27 7yn): Z HfX(yL)

overalln!inverse j—1
transformations

=n![[fx@:) fory1<ya< - <yn
i=1

(6.1)

In other words, the joint pdf of n order statistics is n! times the joint
pdf of the original sample. For example, for a random sample of size n

from the normal distribution with mean p and variance 62, we have
fX(l)X(2)7<---X(n) (y].)yZ) e 7yn)
n! AN ()2
S~ ) D Tt for —co<y1 <ya < <yn <0

e
(27:02)"/2

The usual method of finding the marginal pdf of any random
variable can be applied to the rth order statistic by integrating out the
remaining (n — 1) variables in the joint pdf in (6.1). For example, for
the largest (maximum) element in the sample, X|,), we have

fre m=nifictn) [ [ [T Tl et

=1

~nifxto) [ : / yoo - i[FX<y2>fX<yz>]
n—1

x| | fxi)dys---dyn1
i3
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Yn Yn-1 y4
v [ [ [ B
X fo yi)dys - dyn 1
=4

n—1
—nlfln)
= n! [FX(yn)]n_le( n) (62)

Similary, for the smallest (minimum) element, X(;), we have

Feo (1) =n!fic(y1) /yoo /y / /y [0 dyndyn 1-dysdys

n-17=92

(o) / h / [T = Prbn)lfic )

Yn-2

n—2
X fo yi)dyn-1dYn-—2--dys

=n!fx(y1 /y1 /y2 /n3 = F;(%n o)l fx(Yn—2)

X fo (vi)dyn-2---dys
=2

n—1
:n!fX(yl)%
=n![1-Fx(y)]" fx(v1) (6.3)

In general, for the rth-order statistic, the order of integration which is
easiest to handle would be oo >y, >y,-1>--- >y, followed by
—00 <y1 <yg < --- <Y so that we have the following combination of
techniques used for X(,) and Xy

Yr Yr-1 Y2 0 oo o0
o= [ [
—00 J =00 —00 JYr Yr41 Yn-1

< [[fx i) dyn - dyreodyrirdys - -dy,—
i=1

i#r
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L

(n—r)!

y2 r—1

HfX(yl)dyl e 'dyr—Z dyr—l
i=1

—00

[1— Fx())"" [Fx(y)]
(n—r)! (r—1)!

= n!fX(yr)

= #M[FX( r)]r71[1 —Fx(y)]" fx(yr) (6.4)

It is clear that this method can be applied to find the marginal
distribution of any subset of two or more order statistics and it is re-
latively easy to apply when finding the joint pdf of a set of successive
order statistics, such as X(;),X(3),...,X(;—2). In this case we simply
integrate out X, ;) and X, as

o0 (o)
/ X0y Xy, o Xy (X152, -+, 2X0) A () AX (1)
X,

n—2 < Xn-1

The approach, although direct, involves tiresome integration.

A much simpler method can be used which appeals to probability
theory instead of pure mathematics. The technique will be illustrated
first for the single-order statistic X,). Recall that by definition of a
derivative, we have

Fx, (x +h) - Fx, (x)

Px <Xy <x—h)

(6.5)

Suppose that the x axis is divided into the following three disjoint
intervals:

Il S (—OO, x]
Iy = (x,x+h]
13 = (x+h, OO)
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The probability that X lies in each of these intervals is

p1=PX €l1) =Fx(x)

P2 ZP(X S 12) = Fx(x —|—h) —Fx(x)

P3 :P(X €I3) =1 7Fx(x+h)
respectively. Now, X, is the rth-order statistic of the set X;,Xs,..., X,
and lies in the interval I5 if and only if exactly r — 1 of the original X
random variables lie in the interval I, exactly n — r of the original X’s
lie in the interval I3 and X, lies in the interval I5. Since the original X
values are independent and the intervals are disjoint, the multinomial

probability distribution with parameters p1,ps, and ps can be used to
evaluate the probability in (6.5). The result is

n
fx,, (%) = lim ( )pi papy "

o\r—1,1,n—r
— i Fer

y }E%{FX(x + h}z — P pes h)]”"}
i P - Ex T (69

which agrees with the result previously obtained in (6.4) and Theorem 4.2.

For the joint distribution, let X,) and X, any two-order statistics
from the set X;) < X(9) < --- <X,). By the definition of partial deri-
vatives, the joint pdf can be written

X X0 (€.5)
. FX(r)X(s) (x+h7y+t) _FX(r)rX(s) (x,y+t) _FX(r),X<s) (x+h7y) +FX(r)TX(S) (x7y)
=lim
st ht
i P(x<X(,> <x+h,X<s> <y+t) —P(x<X(r) <x+h,X(s) <y)
Plx<X ) <x+h,y<Xy ) <y+t
:lhingl (<X <x hty (5) Sy+t) (6.7)

t—0

For any x < y, the x axis can be divided into the following five
disjoint intervals with the corresponding probabilities that an original
X observation lies in that interval:
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Interval 1 PXel)

I = (o0, «] p1=Fx(x)

Iy = (x, x + h] p2=Fx(x+h)—Fx(x)
Iy = (x+h, y) p3 =Fx(y) —Fx(x +h)
Ii=(y, y+1] ps=Fx(y+1) - Fx(y)
Is = (y +t,00) ps=1-Fx({y+t)

With this interval separation and assuming without loss of generality
that r <s, X,) and X(, are the rth- and sth-order statistics, respec-
tively, and lie in the respective intervals Iy and I, if and only if the n X
values are distributed along the x axis in such a way that exactly r — 1
liein I1, 1in I, 1 in I4, and n — s in I5 since the one in I, is the sth in
magnitude, and the remaining s —r — 1 must therefore lie in I3.
Applying the multinomial probability distribution to these five types of
outcomes with the corresponding probabilities, we obtain

n r—1 s—r—1 n—s
(r— 1,1,s—r—1,1,n _S)p1 b2pP3  P4aPs

Substituting this for the probability in (6.7) gives
n

r—1,1,s—r—1,1,n—s

fro X (52 9) =< )[Fx<x>1”

y lim{FX(x+h]2 —Fx(x)

P()~ P+ 1}

x lim
h—0
t—0

{FX(y'i_ti_FX(y) [1—FX(y+t)]"s}

-1 —~ - iy X @) Fxly) ~Fx @)
x[1=Fx(y)|"" fx()fx(y) forallx<y (6.8)

This method could be extended in a similar manner to find the
joint distribution of any subset of the n order statistics. In general, for
any k < n, to find the joint distribution of k-order statistics, the x axis
must be divided into £ + (B — 1) 4+ 2 = 2k + 1 disjoint intervals and the
multinomial probability law applied. For example, the joint pdf of
X(r1)7X(r2)7 . >X(rk)’ where 1<ri<ro<---<rmp<nandl1<k<nis
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FXiry) Xirgy o Xy (X1, %2, -, %)
— n! F ri—1
D = =Dy ()]
x [Fy(x2) — Fx (1)1 [1— Fx ()]

X fx (x1)fx (x2) - - - fx (xr) X1 <Xo < - < Xy

In distribution-free techniques we are often interested in the case
where X(;) < X() < --- <Xy are order statistics from the continuous
uniform distribution over the interval (0, 1). Then Fx(x) = x and so
the marginal pdf of X, and the joint pdf of X, and X(,) for r < s are,
respectively,

n'

fx,, (x) = mx“l(l )" 0<x<1 (6.9)

! r— s—r— n—s
(r—l)(s—ltL— 1)!(3_1)!x Ly —x)* "1 — )",

0<x<y<l1 (6.10)

fX(r)‘X(s) (x)y> =

from (6.4) and (6.8).

The density function in (6.9) will be recognized as that of the beta
distribution with parameters r and n — r + 1. Again, this agrees with
the result of Theorem 4.3.

2.7 DISTRIBUTIONS OF THE MEDIAN AND RANGE

As indicated in Section 2.1, the median and range of a random sample
are measures based on order statistics which are descriptive of the
central tendency and dispersion of the population, respectively. Their
distributions are easily obtained from the results found in Section 2.6.

DISTRIBUTION OF THE MEDIAN

For n odd, the median of a sample has the pdf of (6.4) with
r=(n+1)/2.If n is even and a unique value is desired for the sample
median U, the usual definition is

i = X2 + Xne2)2
2
so that the distribution of U must be derived from the joint density

function of these two-order statistics. Letting n = 2m, from (6.8) we
have for x <y
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B e (3) = 1 2 P L Fx ) i)
Making the transformation
u="72
v=y

and using the method of Jacobians, the pdf of the median U for n =
2m is

[(f ’f_>1’)2!]2 [tz - Felor

X fx(2u — v)fx(v) dv (7.1)

As an example, consider the uniform distribution over (0,1). The
integrand in (7.1) is nonzero for the intersection of the regions

fulu) =

0<2u—-v<l1 and O<ov<l1
The region of integration then is the intersection of the three regions

v (v+1)

u<v, 5 <u< 2 s
which is depicted graphically in Figure 7.1. We see that the limits
on the integral in (7.1) must beu <v<2ufor0<u <landu <v<1
for % < u < L Thus if m = 2, say, the pdf of the median of a sample of
size 4 is

and O<v<1

u=(v+l1)/2

1

Fig. 7.1 Region of integration is the shaded area.
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[ 8u%(3 —4u) for 0 <u<1/2
fuluw) = {8(4u3 —u?+6u—1) forl/2<u<1 (7.2)
In general, for any integer m = 1,2,... one can obtain

m-1 (2m)12
iZok!(m—-1!m—-k-1)(k+m)

x(2u—1)" F (1 —w) - (1—2u)) if0<u<1/2

m_1 (2m)!12
,;::0 Rlm—-1)l(m—-k—-1)(k+m)

x(2u—1)" (1 =)kt if1/2<u<1
Verification of these results is left for the reader.

DISTRIBUTION OF THE RANGE

A similar procedure can be used to obtain the distribution of the range,
defined as

R =Xu - X
The joint pdf of X(;) and X, is

fxiy X0 (@¥) = n(n = 1)[Fx(y) = Fx ()" *fx(©)fx(y)  x<y
Now we make the transformation
u=y-—x
v=Yy
and obtain, by integration out v, the pdf of the range is

oo

frlu) = / n(n — 1)[Fx(v) — Fx(v — )" (v — w)fic(v) dv

oo

foru >0 (7.3)

For the uniform distribution, the integrand in (7.3) is nonzero for
the intersection of the regions

O<v—u<l1 and O<ov<l1
but this is simply 0 < u < v < 1. Therefore, the pdf of the range is
frRw)=nn—-1u"2(1-u) for0<u<1 (7.4)
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which is the beta distribution with parameters n — 1 and 2. Thus the
result for the uniform distribution is quite easy to handle. However,
for a great many distributions, the integral in (7.3) is difficult to
evaluate. In the case of a standard normal population, Hartley (1942)
has tabulated the cumulative distribution of the range for sample sizes
not exceeding 20. The asymptotic distribution of the range is discussed
in Gumbel (1944).

2.8 EXACT MOMENTS OF ORDER STATISTICS

Expressions for any individual or joint moments of continuous order
statistics can be written down directly using the definition of moments
and the specified pdf. The only practical limitation is the complexity of
integration involved. Any distribution for which Fx(x) is not easily
expressible in a closed form is particularly difficult to handle. In some
cases, a more convenient expression for the moments of X,) can be
found in terms of the quantile function Qx (1) = Fx! = Fx!(u) defined

in Section 2.2.

KTH MOMENT ABOUT THE ORIGIN

The kth moment about the origin of the rth-order statistic from F is

B = e [P E ) L B ) dy
= #ﬂ/myk[l’x(y)]”[l —Fx(y)]"" dFx(y)
1
= i, Qe
— EQu(U)} 5.1

where the random variable U has a beta distribution with parameters
r and n —r + 1. This shows an important relationship between the
moments of the order statistics from any arbitrary continuous dis-
tribution and the order statistics from the uniform (0,1) distribution.
In some cases it may be more convenient to evaluate the integral in
(8.1) by numerical methods, especially when a closed-form expression
for the quantile function and/or the integral is not readily available.

As an example consider the case of the uniform distribution on
the interval (0,1). In this case Qx () = u identically on (0,1) and hence
the integral in (8.1) reduces to a beta integral with parameters r + &
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and n — r + 1. Thus, using the relationship between the beta and the
gamma functions and factorials,

% n!
B n! (r+k-1D!(n—-r)
S (r=Dln-r) (n+k)!
_ nl(r+k-1)!
(n+k)(r—1)

for any 1 < r <n and k. In particular, the mean is

and the variance is

rn—r+1)

V) G P 2)

(8.3)

One may immediately recognize (8.2) and (8.3) as the mean and the
variance of a beta distribution with parameters r and n — r + 1. This is
of course true since as shown in Theorem 4.3, the distribution of X

the rth-order statistic of a random sample of n observations from the
uniform (0,1) distribution, is a beta distribution with parameters r and
n—r+1.

COVARIANCE BETWEEN X, AND X,

Now consider the covariance between any two order statistics X, and
X),r <s;r,s=1,2,...,n, from an arbitrary continuous distribution.
From (6.8) we have

n!
(r—Dl(s—r—1l(n-s)!

/ | Bl Fxy) - By
1= Fx))" " fe@lfy) dedy

EX X)) =

We now write fx(x)dx =dFx(x), fx(y)dy =dFx(y) and substitute
Fx(x) =u and Fx(y) =v, so that x = fy!(u) = Qx(u) and y = Fx'(v)
= @x(v). Then the above expression reduces to

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



ORDER STATISTICS, QUANTILES, AND COVERAGES 55

n!
(r— s—r—l)(n—s)'

Qx(v
/ / Qx()u v —u) " 1 —v)" *dudv (8.4)

As remarked before, (8.4) may be more convenient in practice for the
actual evaluation of the expectation.

Specializing to the case of the uniform distribution on (0,1) so
that Qx(u) = u and Qx(v) = v, we obtain

n!
(r—=Ll(s—r—1l(n-s)!

/ / uo(v—u) 1 —v)" Fdudp

After substituting z = u /v and simplifying, the inner integral reduces
to a beta integral and the expectation simplifies to

EX X)) =

n!
(r—Dli(s—r—1l(n-s)!
n!
T r-Dis—r—Dl(n—ys)
nlrl(s —r—1Dl(s + 1)!(n —s)!
T r=Dis—r—1Dl(n—-s)sln+2)
ris+1)

1
(B(r+1, s—r)/ L —0)" P do
0

Br+1,s—r)B(s+2,n—s+1)

= 8.5
(n+1)(n+2) (85)
Now the covariance is found using the formula
cov(X (), X(5)) = E(X(r), X(5)) — EX () E(X(s))
which yields, for the uniform (0,1) distribution
r(s+1) rs
cov(X ), X(s) = —
o) =G D+ 2 w1
— 1
= M forr<s (8.6)
(n+1)%(n+2)
Thus the correlation coefficient is
_[(nr—s+1) 12
corr (X, X)) = L(n ey forr <s (8.7)
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In particular then, the correlation between the minimum and max-
imum value in a sample of size n from the uniform (0,1) distribution is

COI‘I‘(X(l),X(n)) = 1/n

which shows that the correlation is inversely proportional to the
sample size.

We noted earlier that when the population is such that the cdf
Fx(x) or the quantile function @x(u) cannot be expressed in a closed
form, evaluation of the moments is often tedious or even impossible
without the aid of a computer for numerical integration. Since the
expected values of the order statistics from a normal probability dis-
tribution have especially useful practical applications, these results
have been tabulated and are available, for example, in Harter (1961).
For small n, these normal moments can be evaluated with appropriate
techniques of integration. For example, if n = 2 and FY is the standard
normal, the mean of the first-order statistic is

o0 X 1 9
EXq) =2 1-— (L2 gy | —_ (120" gy
( (1)) /oo |: /oc \/ \/27’[

/ / xe"Y2ERE) gy

Introducing a change to polar coordinates with
x =rcosf t=rsinb

the integral above becomes

5n/4 oo .
/ / 2 cos 0e "2 dr do
5n/4 r2 9

cos 0 = / 127" dr do
VG / Vo
5m/4
cos0do
-l

L<_L_L> 1
S Ver\ V2 Vv2) um
Since E(X(1) + X(2)) = 0, we have E(X(5)) = 1//.

Other examples of these techniques will be found in the
problems.
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In nonparametric statistics, we do not assume a parametric form
for the underlying population and therefore approximation to the
moments of the order statistics is important.

2.9 LARGE-SAMPLE APPROXIMATIONS TO THE MOMENTS OF ORDER
STATISTICS

Evaluation of the exact moments of X|,, directly from the pdf could
require numerical integration for many Fx of interest. Thus for
practical applications and in theoretical investigations, approxima-
tions to the moments of X, are needed. The PIT plays an important
role here since the rth-order statistic from any continuous distribution
is a function of the rth-order statistic from the uniform distribution.
Letting U,y denote the rth-order statistic from a uniform distribution
over the interval (0,1), this functional relationship can be expressed as

X(r) :F}}I(U(r)) :QX(U(r)) (91)

Now since the moments of Uy, are easily evaluated and X, is a
function of U, the idea is to approximate the moments of X, in
terms of some function of the moments of U,. In other words, in
studying the moments (or other statistical properties) of X, we try to
take advantage of the facts that X, is a “nice” transformation (func-
tion) of the random variable U and that the properties of U, are
easily found.

Consider first the general case of any random variable Z and any
continuous function g(Z) of Z. Since the function g(Z) is continuous,
the Taylor series expansion of g(Z) about a point p is

© (7 _ m i ;
@) =g+ Z W g0 92)
i1 v
where g (1) = d'g(Z)/dZ'|,_,, and this series converges if
Z _ n
lim %g(”)(zl) =0 forp<z1<Z

Now if we let E(Z) = p and var(Z) = 62 and take the expectation of
both sides of (9.2), we obtain

Elg(Z)) =g(n) + ;—Tg(”(u) Ly ElZ -l
’ i—3

() (9.3)
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From this we immediately see that

1. A first approximation to E[g(Z)] is g(p). o2

2. A second approximation to E[g(Z)] is g(p) + 58(2)(H)~

To find similar approximations to var(Z), we form the difference
between equations (9.2) and (9.3), square this difference, and then
take the expectation, as follows:

8(Z)~Elg(Z)]=(Z—wg" (n)+g? (u)%[(z— W’ —var(z)]

x_ (i) . .
Wiz
=3 '

{8(2)-Elg(2)}*=(Z-)’lgM (W +1? (W]’ [var*(Z)
—2var(Z)(Z—w)?*)-g" (We® (wvar(Z)(Z—n)+1(2)
so that
varlg(Z)] = o*[gV (W)* - 1g® (w)*c* + E[h(2)] (94)

where E[h(Z)] involves third or higher central moments of Z.
The first approximations to E[g(Z)] and var[g(Z)] are

Elg(Z)] =g(n)

and
varlg(Z)] = [gV (W)*o
The second approximations to E[g(Z)] and var|g(Z)] are

@)
Elg(2)] =g+ o2
and
2
var(g(2)] = (g (w]*0? - [’MT”)G}

respectively. The goodness of any of these approximations of course
depends on the magnitude of the terms ignored, i.e., the order of the
higher central moments of Z.

In order to apply these generally useful results for any random
variables to the rth-order statistic of a sample of n from the continuous
cdf Fx, we simply take Z = U, and note that the functional re-
lationship X, :F)}l(U(,)) implies that our g function must be the
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quantile function, g(.) = @x(.). Further, the moments of U, were
found in (8.2) and (8.3) to be

rin—r+1)

o ) S P g

Also, since the function g is the quantile function given in (9.1), the
first two derivatives of the function g, gV’ and g, are obtained
directly from Theorem 2.1. Evaluating these derivatives at p =
r/(n + 1) we obtain

gV (w) —{fX {FXI (n . 1” }_1
e =i 7 () ) (o[ ()|}

Substituting these results in the general result above, we can obtain
the first and the second approximations to the mean and the variance
of X(;). The first approximations are

E(Xy) = Fy' (n - 1) (9.5)
and
var(X;,) = ﬁ (e ()] } (9.6)

Using (8.1), the third central moment of U, can be found to be
2 2
E[(U,, - W3 = r(2n® — 6nr ;— 4n 4+ 4r° —6r +2) 9.7)
(n+1)°(n+2)(n+3)

so that for large n and finite r or r/n fixed, the terms from (9.3) and
(9.4) which were ignored in reaching these approximations are of
small order. For greater accuracy, the second- or higher-order
approximations can be found. This will be left as an exercise for the
reader.

The use of (9.5) and (9.6) is particularly simple when fx and Fx
are tabulated. For example, to approximate the mean and variance of
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the fourth-order statistic of a sample of 19 from the standard normal
population, we have

E(X4) ~ ®(0.20) = —0.84

var(Xiw) ~ s o1 (0(-0.84)]

- 0.16

-9 _
o1 0.2803"“ = 0.097

The exact values of the means and variances of the normal order
statistics are widely available, for example, in Ruben (1954) and
Sarhan and Greenberg (1962). For comparison with the results in this
example, the exact mean and variance of X(4) when n = 19 are —0.8859
and 0.107406, respectively, from these tables.

2.10 ASYMPTOTIC DISTRIBUTION OF ORDER STATISTICS

As we found in the last section for the moments of order statistics,
evaluation of the exact probability density function of X, is sometimes
rather complicated in practice and it is useful to try to approximate its
distribution. When the sample size n is large, such results can be
obtained and they are generally called the asymptotic or the large
sample distribution of Xy, as n goes to infinity. Information con-
cerning the form of the asymptotic distribution increases the useful-
ness of order statistics in applications, particularly for large sample
sizes. In speaking of a general asymptotic distribution for any r,
however, two distinct cases must be considered:

Case 1: Asn— o0, r/n—p, 0<p <1

Case 2: As n — oo, r or n — r remains finite.

Case 1 would be of interest, for example, in the distribution of quan-
tiles, whereas case 2 would be appropriate mainly for the distribution
of extreme values. Case 2 will not be considered here. The reader is
referred to Wilks (1948) for a discussion of the asymptotic distribution
of X, for fixed r under various conditions and to Gumbel (1958) for
asymptotic distributions of extremes.

Under the assumptions of case 1, we show in this section that the
distribution of the standardized rth-order statistic from the uniform
distribution approaches the standard normal distribution. This result
can be shown in either of two ways. The most direct approach is to
show that the probability density function of a standardized U, ap-
proaches the function ¢(u). In the density for U,
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n! _ _r
fU(,)(u):mur 1(l—u)n O<u<l1
we make the transformation
U(,) —Uu
Zipy=——"

(o3

and obtain, for all z,

Fnl@) = =gy 0 + W) (L= 0z =) o
(27t () (7))
—n(;l_i)cur L1 — ) et (10.1)

where

o= (r-1)1n<1+‘f> +(n—r)1n<1_1"_zu) (10.2)

Now using the Taylor series expansion

o8}

In(1+x) =Y (-1)

i=1

&
i
which converges for —1 < x < 1, and with the notation
c c
—=c1 ——=c
p 1—p

we have

2 3 2 3
v:(r—1)<clz—c§Z2+c§z—---> —(n—r) (czz+cgz2+c323+~--)
52
:z[cl(r—1)—c2(n—r)]—§[c§(r—1)+c§(n—r)]
2 3

+§[cl(r—1)—c2(n—r)] — (10.3)
Since we are going to take the limit of v as n — oo,r/n — p fixed,

0 <p <1, c1 and ¢y can be approximated as

L] ()
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(n—r +r1><n + 2>} - Ll —pp>n] :

respectively. Substitution of these values in (10.3) shows that as
n — oo, the coefficient of z is

C-OI=p (n-ryp_r-mp-(-p)  VI=p

B Va@-p) Jwd-p) VB

the coefficient of —22/2 is

Co =

(r—1)<1—p)+(n—r)p:(1_p)_(1—p)+p:1_(1—p)ﬁ1
np n(l-p) np np

and the coefficient of z3/3 is

(r-1)(1-p)*"” <nr>p3/2_(np1><1p>3/2_ P
P [n(1-p)]"*

(mp)’*  n(@1-p)P* %

Substituting these results back in (10.3) and ignoring terms of order
n~1/2 and higher, the limiting value is

lim v = —22/2

n—oo

For the limiting value of the constant term in (10.1), we must use
Stirling’s formula

k!~ V2me hpht12
for the factorials, which is to be multiplied by

rrfl/Z(n —r4+ 1)n*r+1/2 rr71/2<n 4 1)n7r+1/2

r-1 n—r
ol (1—np = ~
( ) (n+1)"(n+2)"? (n+1)"+1/2

So, as n — oo, the entire constant of (10.1) is written as
n—1
(o
r—1
(n+1)! r(n—-r+1)

r—1 n-r
= 1_
riln—r+1)! n+1 oW (1)
V2me~ () (n4-1)" /2 P2y 1)
Come e 0 U (n—r )" TR ()R Ve
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Thus we have the desired result

1
lim fz(,(2) = — e (127

n—o0o V21
and hence the pdf of the standardized U, approaches the pdf of the
standard normal distribution or, in other words,

lim P(Uq) <) = ® (t_—“)

n—oo O

To summarize, for large n, the distribution of U, can be approximated
by a normal distribution with mean p and variance c2.

For the rth-order statistic from any continuous distribution F,
the relationship X, = Fx'(U;)) allows us to conclude that the
asymptotic distribution of X, is also approximately normal as long
as the appropriate mean and variance are substituted. The key to
this argument is the result that if a random variable is approxi-
mately normally distributed then a smooth function of it (a trans-
formation) is also approximately normally distributed with a certain
mean and variance. Using the approximate mean and variance found
in (9.5) and (9.6) and using the fact that r/n — p as n — oo, we get

E(X,)) — Fx\(p) and var(X,,) ~ 21 pﬁvxmn?

and state the following theorem.

Theorem 10.1 Let X, denote the rth-order statistic of a random

sample of size n from any continuous cdf Fy. lz;he if r/n —p

as n — 00,0 < p <1, the distribution of Lﬁ} fx ()X — 1

tends to the standard normal, where p = F5'(p).

Using this result it can be shown that X, is a consistent esti-
mator of p = Fx!(p) if r/n — p as n — oc.

For the asymptotic joint distribution of any two-order statistics
X and X(;),1 <r <s <n, Smirnov (1935) obtained a similar result.
Let n — oo in such a way that r/n — p; and s/n — p2,0 < p1 < p2 < 1,
remain fixed. Then X, and X, are (jointly) asymptotically bivariate
normally distributed with means p;, variances p;(1 — p;)[fx (1)) %/n,
and covariance pi(1— pz)[nfx(pl)fx(uz)]”, where ; satisfies

Fx(y;) =p;i fori =12
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2.11 TOLERANCE LIMITS FOR DISTRIBUTIONS AND COVERAGES

An important application of order statistics is in setting
tolerance limits for distributions. The resulting procedure does not
depend in any way on the underlying population as long as the
population is continuous. Such a procedure is therefore distribution
free.

A tolerance interval for a continuous distribution with tolerance
coefficient vy is a random interval (given by two endpoints that are
random variables) such that the probability is y that the area between
the endpoints of the interval and under the probability density func-
tion is at least a certain preassigned value p. In other words, the
probability is y that this random interval covers or includes at least a
specified percentage (100p) of the underlying distribution. If the
endpoints of the tolerance interval are two-order statistics X,y and
X(),r < s, of arandom sample of size n, the tolerance interval satisfies
the condition

PXy) <X <X =p]=v (11.1)

The probability vy is called the tolerance coefficient. We need to find the
two indices r and s, for a given tolerance coefficient, subject to the
conditions that 1 <r <s <n. If the underlying distribution Fx is
continuous, we can write

P[X(r> <X <X(s)] :P(X <X(s)) —P(X <X(r))
=FxX) - Fx(X)
=Us — Up

according to the PIT. Substituting this result in (11.1), we find that the
tolerance interval satisfies

PlUs —Up =pl=v (11.2)

Thus, the question of finding the indices r and s, for any arbitrary
continuous distribution reduces to that of finding the indices for the
uniform (0,1) distribution. This is a matter of great simplicity, as we
show in Theorem 11.1.

Theorem 11.1 For a random sample of size n from the uniform (0,1)
distribution, the difference Uy —U(), 1<r<s<n, is dis-
tributed as the (s — r)th-order statistic U,_,) and thus has a beta
distribution with parameters s —rand n —s —r + 1.
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Proof We begin with the joint distribution of U, and Uy found
in (6.8). To prove the theorem we make the transformation

U= U(s) — U(r) and V = U(s)
The joint distribution of U and V is then

fU~V(u, U) = (I" — 1)'(8 — f'_ 1)'(n — S)' (U — u)rflus—rfl(l _ v)nfs

O<u<v<l1

and so

n!

1 ! r—1 n—s
fU(“):(r_1)!(s_r_1)!(n_s)!”87r7/u(”_”) (1—o)""dv

Under the integral sign, we make the change of variable
v—u =t(1 — u) and obtain

fulu) =

n!
(r—=1Dl(s—r—1)l(n—s)!

x /1 U1 —u) -t —w)]" (1 - w) dt
0

_ n! s—r—1 n—s+r

oD r—Dim s (W Bn—s )
_ n! s—r—1 n—s+r
_(s—r—l)!(n—s+1)!u (1—u) O<u<i

w1 —u)t

(11.3)

This shows that U has a beta distribution with parameters s — r
and n —s+r+1, which is also the distribution of U(_, by
Theorem 4.3. Thus the required result in (11.2) can be written
simply as

=P(U > — ' n! s—r—1 1 n—s+r d
V=P /p)_/p Gor—Dimn_sim¥ 1w “

We can solve this for r and s for any given values of p and vy, or we
can find the tolerance coefficient y for given values of p, r, and s.
Note that all of the above results remain valid as long as the
underlying cdf is continuous so that the PIT can be applied and
hence the tolerance interval is distribution free.
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Corollary 11.1.1 U,y — U(,_1) has a beta distribution with parameters
1 and n.

ONE-SAMPLE COVERAGES

The difference Fx (X(s)) — Fx(X(»)) = Us) — Uy is called the coverage of
the random interval (X(,),X(,)), or simply an s — r cover. The coverages
are generally important in nonparametric statistics because of their
distribution-free property. We define the set of successive elementary
coverages as the differences.

.......................................... (11.4)
Crn =Fx(X(n) —Fx(X(n-1) = Upn) = U1
Cinsr) =1-Up)

Corollary 11.1.1 shows that the distribution of the ith elementary
coverage C; does not depend on the underlying cdf Fx, as long as Fyx is
continuous and thus the elementary coverages are distribution-free.
In fact, from Corollary 11.1.1 and properties of the beta distribution (or
directly), it immediately follows that

1

BC) =01

From this result, we can draw the interpretation that the n-order
statistics X(1),X(g), ..., X(,) partition the area under the pdf into n + 1
parts, each of which has the same expected proportion of the total
probability.

Since the Jacobian of the transformation defined in (11.4) map-
ping U, U, ..., Uy onto Cy),C),...,C,) is equal to 1, the joint
distribution of the n coverages is

fcic...c.(c1,¢2,...,¢p) =n! fore; >0,
n+1

i1=1,2,...,nand Zcizl
i=1
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A sum of any r successive elementary coverages is called an r coverage.
We have the sum C; +C;1 + -+ + Ciyr = Ujyr) — Uy, i +1 < n. Since
the distribution of Ci,Cs,...,C, is symmetric in ci,cg,...,c,, the
marginal distribution of the sum of any r of the coverages must be the
same for each fixed value of r, in particular equal to that of

Ci1+Co+---+C=Upy

which is given in (6.9). The expected value of an r coverage then is
r/(n + 1), with the same interpretation as before.

TWO-SAMPLE COVERAGES

Now suppose that a random sample of size m, X1,Xs,...,X,, is avail-
able from a continuous cdf Fx and that a second independent random
sample of size n, Y1,Yo,...,Y, is available from another continuous cdf
Fy. Let Y1),Yqg),...,Y, be the Y-order statistics and let
I = (=00, Yl, Ia = Yy, Yoo oo s L = (Y(u-1), Yl Lini1) = (Y(n), 0)
denote the (n + 1) nonoverlapping blocks formed by the n Y-order
statistics. The number of X observations belonging to the ith block, I;,
is called the ith block frequency and is denoted by B;, say. Thus there
are (n+1) block frequencies B1,Bs,...,B, 1, where
B,.1 =m —B; — By —--- — B,,. A particularly appealing feature of the
block frequencies is their distribution-free property, summarized in
Theorem 11.2.

Theorem 11.2 When Fx = Fy, that is, the underlying distributions are
identical, the joint distribution of B1,Bs,...,B, 1 is given by

P(By=b1.Bs = by, ... By = byit) = GO
n
n+l
J=1

In fact, one can show that when Fx = Fy, the joint distribution of
any t of the random variables By,Bg,...,B,.1, say Bj,B5,..., B}, is
given by

PBi =0b1,B;=>5;,...,B; =b;) =

where 0 < b]’f <m
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For proofs of these and other related results see, for example,
Wilks (1962, pp. 442-446).

We will later discuss a number of popular nonparametric tests
based on the block frequencies. Some problems involving the block
frequencies are given at the end of this chapter.

RANKS, BLOCK FREQUENCIES, AND PLACEMENTS

The ranks of observations play a crucial role in nonparametric sta-
tistics. The rank of the ith observation Xj;, in a sample of m observa-
tions, is equal to the number of observations that are less than or
equal to X;. In other words, using the indicator function,

rank(X, ZI X <X;) =mS,(Xp)

J=1

where S, (X;) is the edf of the sample. For the ordered observation X;
the rank is simply equal to the index i. That is,

rank(X| :ZI =mSn (X)) =1

J=

Thus, ranks of ordered observations in a single sample are similar to
an empirical (data-based) version of the one-sample coverages studied
earlier. We provide a functional definition of rank later in Chapter 5
and study some of its statistical properties.

When there are two samples, say m X’s and n Y’s, the rank of an
observation is often defined with respect to the combined sample of
(m +n) observations, say Z’s. In this case the rank of a particular
observation can be defined again as the number of observations (X’s
and Y’s) less than or equal to that particular observation. A functional
definition of rank in the two sample case is given later in Chapter 7.
However, to see the connection with two-sample coverages, let us ex-
amine, for example, the rank of Y(; in the combined sample. Clearly
this is equal to the number of X’s less than or equal to Y(;, plus j, the
number of Y’s less than or equal to Y|;), so that

m

rank(Y(;)) = > I(X; <Y;)) +J
i=1
However, X" I(X; < Y(;) is simply equal tory +rg + - -- +r; where r; is
the frequency of the ith block (Y;_1),Y(;], defined under two-sample
coverages. Thus we have
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rank(Y(j)) =r1+ro+- 41+

and hence the rank of an ordered Y observation in the combined
sample is a simple function of the block frequencies. Also let P(; =
mS,,(Y(;)) denote the number of X’s that are less than or equal to Y.
The quantity P(j is called the placement of Y(; among the X obser-
vations (Orban and Wolfe, 1982) and has been used in some non-
parametric tests. Then, P =r; —r; 1 with ro =0 and rank(Y(;) =
P(j, +j. This shows the connection between ranks and placements.
More details regarding the properties of placements are given as
problems.

2.12 SUMMARY

In this chapter we discussed some mathematical-statistical concepts
and properties related to the distribution function and the quantile
function of a random variable. These include order statistics, which
can be viewed as sample estimates of quantiles or percentiles of the
underlying distribution. However, other methods of estimating popu-
lation quantiles have been considered in the literature, primarily
based on linear functions of order statistics. The reader is referred to
the summary section in Chapter 5 for more details.

PROBLEMS

2.1. Let X be a nonnegative continuous random variable with cdf Fx. Show that

EX) = [T Fe(o)ds

2.2. Let X be a discrete random variable taking on only positive integer values. Show
that

2.3. Show that

S (0 = g f,

x=a

for any 0 < p < 1. The integral on the right is called an incomplete beta integral and
written as I, (a, n — a + 1). Thus, if X is a binomial random variable with parameters n
and p, the probability that X is less than or equal to a (a =0, 1,...,n) is

1-ILe+1l,n—a)=5Lpn—-aa+1)
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2.4. Find the transformation to obtain, from an observation U following a uniform
(0,1) distribution, an observation from each of the following continuous probability
distributions:

(a) Exponential distribution with mean 1.

(b) Beta distribution with o =2 and = 1. The probability density function is
given by

fx) =2x O0<x<1

(¢) The logistic distribution defined by the probability density function
e x—)/p

f(X) = B[l _;’_e—(x—a)/ﬁ]z

—0<x<o00, —-0w0<a<o0o,0<p<oo

(d) The double exponential distribution defined by the probability density
function

1
I”(JC):Q*BB*"""”/B —o0<x <00, —00<0<00,0<P< o0
(¢) The Cauchy distribution defined by the probability density function
f(x)*# —0<x <00, —00<a<00,0<pB< oo

B+ (x - )?

2.5. Prove the probability-integral transformation (Theorem 5.1) by finding the mo-
ment-generating function of the random variable Y = Fx(X), where X has the con-
tinuous cumulative distribution Fx and a moment-generating function that exists.

2.6. If X is a continuous random variable with probability density function
fx(x) =2(1—-x),0<x <1, find the transformation Y =g(X) such that the random
variable Y has the uniform distribution over (0,2).

2.7. The order statistics for a random sample of size n from a discrete distribution are
defined as in the continuous case except that now we have X;) <X < -+ <X(,).
Suppose a random sample of size 5 is taken with replacement from the discrete dis-
tribution fx(x) = 1/6 for x = 1,2,...,6. Find the probability mass function of X(;), the
smallest order statistic.

2.8. A random sample of size 3 is drawn from the population
fx (x) = exp[—(x — 0)] for x > 0. We wish to find a 95 percent confidence-interval estimate
for the parameter 0. Since the maximum-likelihood estimate for 6 is X(;), the smallest
order statistic, a logical choice for the limits of the confidence interval would be some
functions of X(y). If the upper limit is X(;, find the corresponding lower limit g(X(;)) such
that the confidence coefficient is 0.95.

2.9. For the n-order statistics of a sample from the uniform distribution over (0, 6), show
that the interval (X,), X(,)/a/") is a 100 (1 — o) percent confidence-interval estimate of
the parameter 6.

2.10. Ten points are chosen randomly and independently on the interval (0,1).
(a) Find the probability that the point nearest 1 exceeds 0.90.

(b) Find the number ¢ such that the probability is 0.5 that the point nearest zero
will exceed c.
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2.11. Find the expected value of the largest order statistic in a random sample of size 3
from:

(@) The exponential distribution fx(x) = exp(—x)for x > 0

(b) The standard normal distribution

2.12. Verify the result given in (7.1) for the distribution of the median of a sample of
size 2m from the uniform distribution over (0,1) when m = 2. Show that this distribution
is symmetric about 0.5 by writing (7.1) in the form

fo(u) =8(0.5—|lu—05))2(1+4u—05) O<u<1

2.13. Find the mean and variance of the median of a random sample of n from the
uniform distribution over (0,1):

(@) When n is odd
(b) When n is even and U is defined as in Section 2.7.

2.14. Find the probability that the range of a random sample of size n from the po-
pulation fx(x) = 2% for x > 0 does not exceed 4.

2.15. Find the distribution of the range of a random sample of size n from the ex-
ponential distribution fx(x) = 4exp(—4x) for x > 0.

2.16. Give an expression similar to (7.3) for the probability density function of the
midrange for any continuous distribution and use it to find the density function in the
case of a uniform population over (0,1).

2.17. By making the transformation U = nFx(X(y)), V = n[l — Fx(X(»))] in (6.8) with
r =1, s = n, for any continuous Fyx, show that U and V are independent random vari-
ables in the limiting case as n — oo, so that the two extreme values of a random sample
are asymptotically independent.

2.18. Use (9.5) and (9.6) to approximate the mean and variance of:

(@) The median of a sample of size 2m + 1 from a normal distribution with mean
u and variance o2.

(b) The fifth-order statistic of a random sample of size 19 from the exponential
distribution fx(x) = exp(—x) for x > 0.

2.19. Let X(,) be the largest value in a sample of size n from the population f;.

(a) Show that lim, .. P(n 'X(, <x)=exp(—o/mx) if fx(x)= o/[n(o®+x?)]
(Cauchy).

(b) Show that lim, o P(n"2X () < x) = exp(—o1y/2/mx) if  fx(x) =
(o/v/2m)x~3/2 exp(—a2/2x) for x > 0.

2.20. Let X{, be the rth-order statistic of a random sample of size n from a continuous
distribution F. n

(@) Show that P(X; <t) = kz (k

(b) Verify the probability density function of X/, given in (6.4) by differentiation
of the result in (a).

(c) By considering P(X) >t/n) in the form of (a), find the asymptotic
distribution of X, for r fixed and n — oo if Fx(x) is the uniform distribution over
(0,1).
2.21. Let X3) <X <--- <X(, be order statistics for a random sample from the
exponential distribution Fx(x) = exp(—x) for x > 0.

(@) Show that X, and X(;) — X, are independent for any s > r.

(b) Find the distribution of X 1) — X.

JEx@ L - Fx(®" ™.
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(¢) Show that E(X;)) =, 1/(n+1—).

(d) Interpret the significance of these results if the sample arose from a life test
on n light bulbs with exponential lifetimes.
2.22. Let X(;) <X(g) <--- <X, denote the order statistics of a sample from a con-
tinuous unspecified distribution Fx. Define the n random variables

Fx (X))

Vi = s 0)
Fx(Xi+1))

for1<i<n-1andV, =Fx(Xg))

(@) Find the marginal distribution of V,,1 <r <n.

(b) Find the joint distribution of V. and Fx(X_1)), 1 <r <n — 1, and show that
they are independent.

(¢) Find the joint distribution of V1, Vs, ..., V,.

(d) Show that V1, Vs, ...V, are independent.

(e) Show that Vi, VZ V3 ..., V" areindependent and identically distributed with
the uniform distribution over (0,1).
2.23. Find the probability that the range of a random sample of size 3 from the uniform
distribution is less than 0.8.

2.24. Find the expected value of the range of a random sample of size 3 from the
uniform distribution.

2.25. Find the variance of the range of a random sample of size 3 from the uniform
distribution.

2.26. Let the random variable U denote the proportion of the population lying between
the two extreme values of a sample of n from some unspecified continuous population.
Find the mean and variance of U.

2.27. Suppose that a random sample of size m, X, Xo,..., X,,, is available from a
continuous cdf Fx and a second independent random sample of size n, Y1,Ys,...,Y,, is
available from a continuous cdf Fy. Let S; be the random variable representing the
number of Y blocks I1,1s,...,I,,1 (defined in the section on two-sample coverages) that
contain exactly j observations from the X sample, j =0,1,... ,m.

(@) Verify that So+S1+---+Sn =n+1and S;1+2Sy+---+mS,, =m.

(b) If Fx =Fy, show that the joint distribution of Sy,Si,...,S, is given by

(n+1)! (m + n)’l

solsy!- - sp! n

(¢) In particular show that, if Fx = Fy, the marginal distribution of Sy is given
by <n:(; 1> (Zl_—:ﬁ)/(m:n) forsop=n-m+1,n-—m+2,...,n (Wilks, 1962)
A simple distribution-free test for the equality of Fx and Fy can be based on Sy, the
number of blocks that do not contain any X observation. This is the “empty block” test
(Wilks, 1962, pp. 446-452).

2.28. Exceedance Statistics. Let X1,Xs,...,X,, and Y1,Ys,...,Y, be two independent
random samples from arbitrary continuous cdf’s Fx and Fy, respectively, and let S, (x)
and S, (y) be the corresponding empirical cdf’s. Consider, for example, the quantity
m[1 — S,,(Y1)], which is simply the count of the total number of X’s that exceed (or do not
precede) Y; and may be called an exceedance statistic. Several nonparametric tests
proposed in the literature are based on exceedance (or precedence) statistics and these
are called exceedance (or precedence) tests. We will study some of these tests later.
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Let Y1) < Y(g) < --- < Y, be the order statistics of the Y sample. Answer parts (a)
through (k) assuming Fx = Fy.

(@) Show that S,,(Y;),i =1,2,...,n, is uniformly distributed over the set of
points (0,1/m,2/m, ..., 1).

(b) Show that the distribution of S, (Y(;)) — Sn(Y®)), k <J, is the same as the
distribution of S, (Y(j_p)). (Fligner and Wolfe, 1976)

(c) Show that the distribution of P;y = mS,,(Y ;) is given by

")

(")

The quantity P; is the count of the number of X’s that precede the ith-order statistic in
the Y sample and is called the “placement” of Y(;) among the observations in the X
sample. Observe that P =r; +--- +r;, where r; is the ith block frequency and thus
ri =Pg = Pg-y).

P[P(i):ﬂ:( j=0,1,....m

(d) Show that

i and var(Py) :z(n71+1)7gz(m+n+1)
(n+1)%(n+2)
(Orban and Wolfe, 1982)

(e) Let T be the number of X observations exceeding the largest Y observation,
that is, T = m[l - S (Y(n))] =m — P(n>. Show that

(m-l—n—t—l)
P(Tl—t)—ﬁ

(f) Let Ty be the number of X’s preceding (not exceeding) the smallest Y
observation; this is, Ty = mS,,(Y(1)) = P(1). Show that the distribution of T3 = T + T3 is
given by

(m+n=t-2)
P(Ts=t)=(t+1) ﬁ (Rosenbaum, 1954)
m

(g) Let Ty be the number of X’s in the interval I = (Y, Y (41— ], Where Y, is
the pth sample quantile of the Y’s. The interval [ is called the interquartile range of the
Y’s. Note that Ty = m[Si(Y(11-r)) — Sm(Y(r))]. Show that the distribution of T} is given
by

2r—t—1 t—2
P(T4_t)_(m+mrt(mnq;)n(>n+t r) t=0,1,....m
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(h) Show that

2m and  var(Ty) = 2m(n — 1)(2m tn+l)
n+1)(n+2)
(Hackl and Katzenbeisser, 1984)

E(Ts) =

The statistics T3 and T4 have been proposed as tests for Hy:Fx = Fy against the
alternative that the dispersion of Fx exceeds the dispersion of Fy.

2.29. Let S, (x) be the empirical cdf of a random sample of size m from a continuous cdf
Fx. Show that for —oco <x <y < o0,

cov[Si(x), Sly)] = XL IH0)]

m
2.30. Let X3,Xy,...,X,;, be a random sample from the exponential distribution
fx(x) =(20) e x>0,0>0, and let the ordered X’s be denoted by
Y1 <Ys < - <Y,. Assume that the underlying experiment is such that Y; becomes
available first, then Y3, and so on (for example, in a life-testing study) and that the
experiment is terminated as soon as Y is observed for some specified r.

(@) Show that the joint probability density function of Y1,Ys,...,Y, is

n! Yoi1Yi+ (n =)y

(n—r1 P 20

(b) Show that 07![Y>0_, Y; + (n — r)Y,] has a chi-square distribution with 2r
degrees of freedom.

(20)™" 0<y1 < <y, <00

2.31. A manufacturer wants to market a new brand of heat-resistant tiles which may be
used on the space shuttle. A random sample of m of these tiles is put on a test and the
heat resistance capacities of the tiles are measured. Let X(;) denote the smallest of these
measurements. The manufacturer is interested in finding the probability that in a future
test (performed by, say, an independent agency) of a random sample of n of these tiles, at
least £ (k = 1,2,...,n) will have a heat resistance capacity exceeding X(;) units. Assume
that the heat resistance capacities of these tiles follows a continuous distribution with
cdf F.

(@) Show that the probability of interest is given by

r=k
where
_mal(r+m—1)!
Pr) ri(n +m)!
(b) Show that
P(r-1) r

P(r) Trtm-—1
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a relationship that is useful in calculating P(r).

(¢) Show that the number of tiles n to be put on a future test such that all of the
n measurements exceed X(;) with probability p is given by

,_m1-p)
p

2.32. Define the random variable

o (1 x>0
10 ifx<o0

Show that the random function defined by
“g(x — X;)
F, =) ==
is the empirical distribution function of a sample X3,Xs,...,X,, by showing that

F,(x) =S, (x) for all x

.2.33. Prove that cov[S,(x), S,(¥)] = c[Fx(x), Fx(y)]/n where

s(1—t) ifs<t

c(s,t):min(s,t)fst:{t(lis) fs>¢

and S,(.) is the empirical distribution function of a random sample of size n from the
population F.

2.34. Let S, (x) be the empirical distribution function for a random sample of size n from
the uniform distribution on (0,1). Define

X, (t) = V/AISu(t) — 1
t
Z,(t) = (t+1)X, (m) forall0 <t<1

Find E[X,(t)] and E|Z,(t)],varX,(t)] and var[Z,(t), and conclude that
var[X,(t)] < var[Z,(t)] for all 0 < ¢ < 1 and all n.
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Tests of Randomness

3.1 INTRODUCTION

Passing a line of ten persons waiting to buy a ticket at a movie
theater on a Saturday afternoon, suppose we observe the arrange-
ment of five males and five females in the line to be M, F, M, F, M, F,
M, F, M, F. Would this be considered a random arrangement by
gender? Intuitively, the answer is no, since the alternation of the two
types of symbols suggests intentional mixing by pairs. This
arrangement is an extreme case, as is the configuration M, M, M, M,
M, F, F, F, F, F, with intentional clustering. In the less extreme
situations, the randomness of an arrangement can be tested statis-
tically using the theory of runs.

Given an ordered sequence of one or more types of symbols, a run
is defined to be a succession of one or more types of symbols which are
followed and preceded by a different symbol or no symbol at all. Clues
to lack of randomness are provided by any tendency of the symbols to
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exhibit a definite pattern in the sequence. Both the number of runs
and the lengths of the runs, which are of course interrelated, should
reflect the existence of some sort of pattern. Tests for randomness can
therefore be based on either criterion or some combination thereof. Too
few runs, too many runs, a run of excessive length, too many runs of
excessive length, etc. can be used as statistical criteria for rejection of
the null hypothesis of randomness, since these situations should occur
rarely in a truly random sequence.

The alternative to randomness is often simply nonrandomness.
In a test based on the total number of runs, both too few and too many
runs suggest lack of randomness. A null hypothesis of randomness
would consequently be rejected if the total number of runs is either too
large or too small. However, the two situations may indicate different
types of lack of randomness. In the movie theater example, a sequence
with too many runs, tending toward the genders alternating, might
suggest that the movie is popular with teenagers and young adults,
whereas the other extreme arrangement may result if the movie is
more popular with younger children.

Tests of randomness are an important addition to statistical
theory, because the theoretical bases for almost all the classical tech-
niques, as well as distribution-free procedures, begin with the as-
sumption of a random sample. If this assumption is valid, every
sequential order is of no consequence. However, if the randomness of
the observations is suspect, the information about order, which is al-
most always available, can be used to test a hypothesis of randomness.
This kind of analysis is also useful in time-series and quality-control
studies.

The symbols studied for pattern may arise naturally, as with
the theater example, or may be artificially imposed according to
some dichotomizing criterion. Thus the runs tests are applicable to
either qualitative or quantitative data. In the latter case, the di-
chotomy is usually effected by comparing the magnitude of each
number with a focal point, commonly the median or mean of the
sample, and noting whether each observation exceeds or is exceeded
by this value. When the data consist of numerical observations, two
other types of runs analysis can be used to reach a conclusion about
randomness. Both of these techniques use the information about
relative magnitudes of adjacent numbers in the time-ordered se-
quence. These techniques, called the runs up and down test and the
rank von Neumann test, use more of the available information and
are especially effective when the alternative to randomness is either
a trend or autocorrelation.
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3.2 TESTS BASED ON THE TOTAL NUMBER OF RUNS

Assume an ordered sequence of n elements of two types, n; of the first
type and ng of the second type, where ny + ng = n. If ry is the number
of runs of type 1 elements and rg is the number of runs of type 2, the
total number of runs in the sequence is r = ry + ro. In order to derive a
test for randomness based on the variable R, the total number of runs,
we need the probability distribution of R when the null hypothesis of
randomness is true.

EXACT NULL DISTRIBUTION OF R

The distribution of R will be found by first determining the joint
probability distribution of Ry and Ry and then the distribution of their
sum. Since under the null hypothesis every arrangement of the ni + ng
objects is equiprobable, the probability that R; = r; and Ry = re is the
number of distinguishable arrangements of n; + ng objects with r; runs
of type 1 and r3 runs of type 2 objects divided by the total number of
distinguishable arrangements, which is n!/n;!ng!. For the numerator
quantity, the following counting lemma can be used.

Lemma 1 The number of distinguishable ways of distributing n-like
objects into r distinguishable cells with no cell empty is
(C)m=r

Proof Suppose that the n-like objects are all white balls. Place
these n balls in a row and effect the division into r cells by in-
serting each of r — 1 black balls between any two white balls in
the line. Since there are n — 1 positions in which each black ball
can be placed, the total number of arrangements is (’;:11)

In order to obtain a sequence with r; runs of the objects of type 1,
the ni-like objects must be placed into r; cells, which can be done in

(’r‘llj) different ways. The same reasoning applies to obtain r¢ runs of

the other ny objects. The total number of distinguishable arrangements
starting with a run of type 1 then is the product ("1’1> (”2’1). Simi-

ri—1 ro—1

larly for a sequence starting with a run of type 2. The blocks of objects
of type 1 and type 2 must alternate, and consequently either
ri=rex1orr; =ro. If ry =re+1, the sequence must begin with a
run of type 1;if r; = ro — 1, a type 2 run must come first. But if r; = ry,
the sequence can begin with a run of either type, so the number of
distinguishable arrangements must be doubled. We have thus proved
the following result.
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Theorem 2.1 Let Ry and Ry denote the respective numbers of runs of ny
objects of type 1 and ng objects of type 2 in a random sample of size
n = ny + ng. The joint probability distribution of R1 and Rs is

c ni—1 np—1 r1:1,2,...,n1
f ( ) 7‘1—1 7‘2—1 1.2

ri,re) = ro=1,4,...,n
R{,R,\"'1,72 <n1+n2) 2 2

ni

rlzrgorrlzrgil

(2.1)

wherec=2ifri=roandc=1ifri=ro+ 1L

Corollary 2.1 The marginal probability distribution of Ry is

o))
_an-1 il =12 .m (2.2)

Similarly for Re with ny and ng interchanged.

Proof From (2.1), the only possible values of ry are rg =ry,r; — 1,
and r; + 1, for any ry. Therefore we have

fr,(r1) = > [z, (r1,72)

r2

(=22 )+ (o) ()
(o))
ElCme) - () ()
()= ool )+ G
(o)
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Theorem 2.2 The probability distribution of R, the total number of
runs of n =ni + ng objects, n1 of type 1 and ng of type 2, in a
random sample is

fr(r)=
2<r'72111> (:72:11> / <n1:1n2> if ris even

<<rn . 1;2) ((rn : 5;2) " ((rn . 5;2) ((rn : I);2>/ (m;m) ifris odd

(2.3)
forr=23,...,n1+ns

Proof For r even, there must be the same number of runs of both
types. Thus the only possible values of r; and rg arer; = rg =r/2,
and (2.1) is summed over this pair. If r; = rg & 1,r is odd. In this
case, (2.1) is summed over the two pairs of values r;y = (r—1)/2
and ro=(r+1)/2,r1=(r+1)/2 and re = (r —1)/2, obtaining
the given result. Note that the binomial coefficient (§) is defined
to be zero if a < b.
Using the result of Theorem 2.2, tables can be prepared for tests
of significance of the null hypothesis of randomness. For example, if
n1 =5 and ny = 4, we have

m_i_ 0.008

fr(9) = (9) 126
4
4 3
fR(S)—2<3Z<3):126:0.063
()
4 3
fz(2) = 2<%>9§0) = %6 =0.016 )
’ ;
HE)-EE)
fa(®) =~ /200 20731 :%6:0.056 :
(4)
a
g
%)
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For a two-sided test which rejects the null hypothesis for R < 2 or
R > 9, the exact significance level o would be 3/126 = 0.024. For the
critical region defined by R < 3or R > 8, o = 18/126 = 0.143. As for all
tests based on discrete probability distributions, there are a finite
number of possible values of a. For a test with significance level at
most 0.05, say, the first critical region above would be used even
though the actual value of a is only 0.024. Tables which can be used to
find rejection regions for the runs test are available in many sources.
Swed and Eisenhart (1943) give the probability distribution of R for
ni < ng < 20, which is given in Table D of the Appendix for all n; < ng
such that nq +ng < 20 and other ny; and ns such that n1 <ng <12;
note that left-tail and right-tail probabilities are given separately.

MOMENTS OF THE NULL DISTRIBUTION OF R

The kth moment of R is
E(RY) =3 rtfa(r)

Lo () ()
v (2 (™ 32)

(o) () 1}/ ()

The smallest value of r is always 2. If n; = ng, the largest number of runs
occurs when the symbols alternate, in which case r = 2n1. If n1 < ng, the
maximum value of r is 2n; + 1, since the sequence can both begin and
end with a type 2 symbol. Assuming without loss of generality that
ni < ng, the range of summation for r is 2 < r < 2n; + 1. Letting r = 2;
for r even and r = 2i + 1 for r odd, the range of i is 1 <i < n;.

For example, the mean of R is expressed as follows using (2.4):

(m +ng >E(R)

ni

() ()
Steren() ()

1=

(2.4)

(2.5)

To evaluate these three sums, the following lemmas are useful.
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Lemma 2

Z(T)(’;) _ (mnﬂ:n) where ¢ = min(m,n)

r=0

Proof (1+x)"™ = (1+x)™(1+x)" for all x.
m+n m-+n ) m m n n 5
(") -5 i)

=0 Jj=0 k=0

Assuming without loss of generality that ¢ = m and equating the
two coefficients of x™ on both sides of this equation, we obtain

"= 26 )0)

=0

Lemma 3

2 (T) (r: 1) = (Zi?) where ¢ = min(m,n — 1)

Proof The proof follows as in Lemma 2, equating coefficients of
xm+1‘

The algebraic process of obtaining E(R) from (2.5) is tedious and
will be left as an exercise for the reader. The variance of R can be
found by evaluating the factorial moment E[R(R — 1)] in a similar
manner.

A much simpler approach to finding the moments of R is provided
by considering R as the sum of indicator variables as follows for
n =ni+ng. Let

R=1+L+I3+---+1,

where in an ordered sequences of the two types of symbols, we define

I, — 1 if the kth element # the (¢ — 1)th element
k 0 otherwise

Then I}, is a Bernoulli random variable with parameter p = ning/ (’2’),
S0

2n1n2

E(l) = BU) = o
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Since R is a linear combination of these I, we have

2n1ns

ER)=1+> EI;)=1 o (2.6)
var(R) = var (ZIk> (n — L)var(lp) + ZZ cov(lj,I)
2<j2k<n
=(n—-DEI})+ Y Y EII) - (n—17E@L) (27

2<j#k <n
To evaluate the (n — 1)(n — 2) joint moments of the type E(I;I}) for
J # k, the subscript choices can be classified as follows:

1. For the 2(n — 2) selections where j=%k —1orj=%+1,

nlng(nl — 1) + nznl(ng — 1) ning

ELiL) = nin—1)(n-2) T nn-1)

2. For the remaining (n—-1)(n—-2)—-2n—-2)=(n—-2)(n—3)
selections of j # k&,

4n1n2(n1 — 1)(n2 — 1)

EI1e) = n(n—1)(n—2)(n —3)

Substitution of these moments in the appropriate parts of (2.7) gives

2ning  2(n — 2)nin, 4ning(ng —1)(ng — 1) 4n2n2
n n(n —1) n(n—1) - n?

_ 2n1n2(2n1n2 —niy — ng)

(n1+ng)*(ny +ng — 1)

var(R) =

(2.8)

ASYMPTOTIC NULL DISTRIBUTION

Although (2.3) can be used to find the exact distribution of R for any
values of n1 and ns, the calculations are laborious unless n1 and ngy are
both small. For large samples an approximation to the null distribu-
tion can be used which gives reasonably good results as long as n; and
ng are both larger than 10.

In order to find the asymptotic distribution, we assume that the
total sample size n tends to infinity in such a way that ny/n — A and
ng/n — 11—, Afixed, 0 < A < 1. For large samples then, the mean and
variance of R from (2.6) and (2.8) are
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lim E(R/n) = 2A(1 — 1) lim var(R/v/n) = 4231 — &)

n—oo n—oo

Forming the standardized random variable

_R-2n(1-1)
NS

and substituting for R in terms of Z in (2.3), we obtain the standar-
dized probability distribution of R, or fz(z). If the factorials in the
resulting expression are evaluated by Stirling’s formula, the limit
(Wald and Wolfowitz, 1940) is

(2.9)

lim Infz(z) = —Inv2r — 1/222

n—oo

which shows that the limiting probability function of Z is the standard
normal density.

For a two-sided test of size o using the normal approximation, the
null hypothesis of randomness would be rejected when

R —2nM(1— 1
‘znl/zu(l_m)‘ > 22 (2.10)
where z, is that number which satisfies ®(z,) = 1 — vy or, equivalently,
z, is the (1 —vy)th quantile (or the upper yth quantile) point of the
standard normal probability distribution. The exact mean and var-
iance of R given in (2.6) and (2.8) can also be used in forming the
standardized random variable, as the asymptotic distribution is
unchanged. These approximations are generally improved by using a
continuity correction of 0.5, as explained in Chapter 1.

DISCUSSION

This runs test is one of the best known and easiest to apply among the
tests for randomness in a sequence of observations. The data may be
dichotomous as collected, or if actual measurements are collected the
data may be classified into a dichotomous sequence according as each
observation is above or below some fixed number, often the calculated
sample median or mean. In this latter case, any observations equal to
this fixed number are ignored in the analysis and n1,n9, and n reduced
accordingly. The runs test can be used with either one- or two-sided
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alternatives. If the alternative hypothesis is simply randomness, a
two-sided test should be used. Since the presence of a trend would
usually be indicated by a clustering of like objects, which is reflected
by an unusually small number of runs, a one-sided test is more
appropriate for trend alternatives.

Because of the generality of alternatives to randomness, no
statement can be made concerning the overall performance of this
runs test. However, its versatility should not be underrated. Other
tests for randomness have been proposed which are especially useful
for trend alternatives. The best known of these are tests based on the
length of the longest run and tests based on the runs up and down
theory. These two types of test criteria will be discussed in the fol-
lowing sections.

APPLICATIONS

This test of randomness is based on the total number of runs R in an
ordered sequence of n elements of two types, n; of type 1 and ng of type
2. Values of the null distribution of R computed from (2.3) are given in
Table D for ni < ng < 12 as left-tail probabilities for R small and right-
tail for R large. If the alternative is simply nonrandomness and the
desired level is o, we should reject for R <r, or R >r, ,, where
PR <rys) <o/2 and P(R >r, 5) < a/2; the exact level of this two-
tailed test is P(R <ry)2) + P(R >r, ). If the desired alternative is a
tendency for like elements to cluster, we should reject only for two few
runs and therefore only for R <r,s. On the other hand, if the
appropriate alternative is a tendency for the elements to mix, we
should reject only for too many runs and therefore only for R > r,.
Because Table D covers only n1 < ng, the type of element which occurs
less frequently in the n observations should be called the type 1
element.

For n1 > 12 and ny > 12, the critical values r and ' can be found
from the normal approximation to the null distribution of the total
number of runs. If we use the exact mean and variance of R given in
(2.6) and (2.8) and a continuity correction of 0.5, the left-tail and right-
tail critical regions are

R+05—-1-2n1n9/n <
\/2n1ns(2n1ng —n)/[n%(n — 1)] =

R—-05-1-2n1ng9/n -
V2n1ns(2nang —n)/n?(n — 1))

(2.11)

2y
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The two-tailed critical region is a combination of the above with z,
replaced by z, /.

Example 2.1 The recorded high temperature in a Florida resort
town for each of 10 consecutive days during the month of January
of this year is compared with the historical average high for the
same days in previous years and noted as either above historical
average (A) or below average (B). For the data AABABBAAA
B, test the null hypothesis of random direction of deviation from
average high temperature against the alternative of nonrandom-
ness, using level 0.05.

Solution Since the data consist of six A’s and four B’s, B will be
called the type 1 element to make ny; = 4,ny = 6. The total number
of runs observed is R =6. Table D shows that P(R < 2)=0.010
and P(R >9) =0.024, and these are the largest respective prob-
abilities that do not exceed 0.025; the rejection region is then
R <2 or R =9 with exact level 0.034. Our R = 6 does not fall into
this region, so we do not reject the null hypothesis of randomness
at the 0.05 level.

The STATXACT solution to Example 2.1 is shown below. The
reader can verify using Table D that the exact right-tailed P value is
P(R > 6) = 0.595 and the asymptotic P value from (2.11) with a con-
tinuity correction is P(Z > —0.2107) = 0.5952.

(LT T T T FHEE LT T P L

STATXACT Solution to Example 2.1
P TS L L L LT T TR TR T LT T T P av e T2 e

ONE SAMPLE RUNS TEST

Bummary of Exact distribution of ONE SAMPLE RUNS TEST statistic

Value of cutpoint = 10.00 { User Defined )
Min Max Mean Std-dev Ubserved Standardized
2.000 5.000 5.80D 1.424 6.000 -0.2107

Asympbotic p-value :

pPr { Test Statistic .GE. &.000 } = 0.5835

Two-sided: 2 * One-slded = 1.04000
Exact p-value:

Pr{ Test Statistic .GE. £.000 } = 0.5552

Pr{ Test Statistic .EQ. 6.000 } = 0.2857

Pr{|Test Statistic-Mean] .GE. |Observed-Mean|} = 1.0000
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3.3 TESTS BASED ON THE LENGTH OF THE LONGEST RUN

A test based on the total number of runs in an ordered sequence
of n; objects of type 1 and ng objects of type 2 is only one way of
using information about runs to detect patterns in the arrange-
ment. Other statistics of interest are provided by considering the
lengths of these runs. Since a run which is unusually long reflects
a tendency for like objects to cluster and therefore possibly a
trend, Mosteller (1941) has suggested a test for randomness based
on the length of the longest run. Exact and asymptotic probability
distributions of the numbers of runs of given length are discussed
in Mood (1940).

The joint probability distribution of R; and Ry derived in the
previous section, for the numbers of runs of the two types of ob-
jects, disregards the individual lengths and is therefore of no use
in this problem. We now need the joint probability distribution for
a total of n; +ny random variables, representing the numbers of
runs of all possible lengths for each of the two types of elements in
the dichotomy. Let the random variables R;,i =1,2;j=1,2,...,n;,
denote, respectively, the numbers of runs of objects of type i which
are of length j. Then the following obvious relationships hold:

n; n;
E Jrii =n; and g ri=r; fori=1,2
=1 =1

The total number of arrangements of the n; +ng symbol is
still (”””2), and each is equally likely under the null hypothesis of

ni

randomness. We must compute the number of arrangements in
which there are exactly r;; runs of type i and length j, for all ¢ and
Jj. Assume that r; and ry are held fixed. The number of arrange-
ments of the r; runs of type 1 which are composed of rj; runs of
length j for j=1,2,...,n1 is simply the number of permutations of
the r1 runs with r1; runs of length 1, ri2 runs of length 2,... ry,,
of length n;, where within each category the runs cannot be dis-
tinguished. This number is r1!/T]";71;!. The number of arrange-
ments for the ry runs of type 2 of)jects is similarly rZ!/HJ'.‘jlrgj!. If
ri=r9+1, the total number of permutations of the runs of both
types of objects is the product of these two expressions, but if
ri =re, since the sequence can begin with either type of object,
this number must be doubled. Therefore the following theorem is
proved.
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Theorem 3.1 Under the null hypothesis of randomness, the probability
that the ri runs of n1 objects of type 1 and re runs of ng objects of
type 2 consist of exactly rij, j=1,2,...,n1and ryj, j=1,2,...,n9
runs of length j, respectively, is

crilry!

- ni+ng (3.1)
LI '( )
ni

wherec=2ifri=roandc=1ifri =ro+ 1

Combining the reasoning for Theorem 2.1 with that of Theorem
3.1, the joint distribution of the n; +1 random variables Ry and
Ry;, j=1,2,...,n1, can be obtained as follows:

ng — 1
cr1!< 1 )
rzn_+ n (3:2)
n 1+ng
1% rlﬂ( n )

The result is useful when only the total number, not the lengths, of
runs of type 2 objects is of interest. This joint distribution, when
summed over the values for ro, gives the marginal probability dis-
tribution of the lengths of the ri runs of objects of type 1.

f(rllv'"ar1n17r217"'7r2n2):

f(ris,...,rin,,r2) =

Theorem 3.2 The probability that the ri runs of ny objects of type 1

consist of exactly rij,j =1,2,...,n1, runs of length j, respectively,
is
el ( n2r+ 1 )
1
f(r117-~-;r1n1): (33)
Hf_h roil ni+ ng
j=1 1 ni

The proof is exactly the same as for the corollary to
Theorem 2.1. The distribution of lengths of runs of type 2 objects
is similar.

In the probability distributions given in Theorems 3.1 and 3.2,
both r; and ry, and rq, respectively, were assumed to be fixed numbers.
In other words, these are conditional probability distributions given
the fixed values. If these are not to be considered as fixed, the condi-
tional distributions are simply summed over the possible fixed values,
since these are mutually exclusive.
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Theorem 3.2 can be used to find the null probability distribution
of a test for randomness based on K, the length of the longest run of
type 1. For example, the probability that the longest in any number of
runs of type 1 is of length £ is

r '<n2 + 1)
syy in ) »
ri ri,---ru H 1 rl]! ( n >

where the sums are extended over all sets of nonnegative integers
N k B

satisfying ijl ry =ri, Zj:l Jgri=ni,rp=1lri<ni—-k+1, and

r1 < ng + 1. For example, if ny = 5,ng = 6, the longest possible run is

of length 5. There can be no other runs, so that r; =1 and

riy=rizg=ri3=ris =0, and

b) -

11\ 462
5

Similarly, we can obtain

(2)
2 \2) 42

P(K =5) =

P(K =4) =

PK =

P(K =2)

1!1!(151> 462
omls) am(a)
( ) 462
< T
( ) 462

o ()
5!(151> 462

PK=1)=
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For a significance level of at most 0.05 when n; = 5,n9 = 6, the null
hypothesis of randomness is rejected when there is a run of type 1
elements of length 5. In general, the critical region would be the
arrangements with at least one run of length ¢ or more.

Theorem 3.1 must be used if the test is to be based on the length
of the longest run of either type of element in the dichotomy. These two
theorems are tedious to apply unless n; and ng are both quite small.
Tables are available in Bateman (1948) and Mosteller (1941).

Tests based on the length of the longest run may or may not be
more powerful than a test based on the total number of runs, de-
pending on the basis for comparison. Both tests use only a portion of
the information available, since the total number of runs, although
affected by the lengths of the runs, does not directly make use of in-
formation regarding these lengths, and the length of the longest run
only partially reflects both the lengths of other runs and the total
number of runs. Power functions are discussed in Bateman (1948) and
David (1947).

3.4 RUNS UP AND DOWN

When numerical observations are available and the sequence of
numbers is analyzed for randomness according to the number or
lengths of runs of elements above and below the median, some
information is lost which might be useful in identifying a pattern in
the time-ordered observations. With runs up and down, instead of
using a single focal point for the entire series, the magnitude of
each element is compared with that of the immediately preceding
element in the time sequence. If the next element is larger, a run
up is started; if smaller, a run down is started. We can observe
when the sequence increases, and for how long, when it decreases,
and for how long. A decision concerning randomness then might be
based on the number and lengths of these runs, whether up or
down, since a large number of long runs should not occur in a truly
random set of numerical observations. Since an excessive number of
long runs is usually indicative of some sort of trend exhibited by the
sequence, this type of analysis should be most sensitive to trend
alternatives.

If the time-ordered observations were 8, 13, 1, 3, 4, 7, there is a
run up of length 1, followed by a run down of length 1, followed by a
run up of length 3. The sequence of six observations can be re-
presented by five plus and minus signs, +, —, +, +, +, indicating their
relative magnitudes. More generally, suppose there are n numbers,
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no two alike, say a1 < az < --- < a, when arranged in order of mag-
nitude. The time-ordered sequence of observations S, = (x1,x2,...,%,)
represents some permutation of these n numbers. These are n! per-
mutations, each one representing a possible set of sample observa-
tions. Under the null hypothesis of randomness, each of these n!
arrangements is equally likely to occur. The test for randomness using
runs up and down for the sequence S, of dimension n is based on the
derived sequence D, ; of dimension n — 1, whose ith element is the
sign of the difference x;,1 — x;, fori =1,2,...,n — 1. Let R; denote the
number of runs, either up or down, of length exactly i in the sequence
D,_1 or S,. We have the obvious restrictions 1<i<n-—1 and
Z;‘:—ll ir; = n — 1. The test for randomness will reject the null hypoth-
esis when there are at least r runs of length ¢ or more, where r and ¢
are determined by the desired significance level. Therefore we must
find the joint distribution of R1, Ry, ..., R,_1 under the null hypothesis

when every arrangement S,, is equally likely. Let f,,(r,_1,7n-2,...,71)
denote the probability that there are exactly r, ; runs of length
n—1,...,r; runs of length i,...,r; runs of length 1. If u, (r,_1,...,71)
represents the corresponding frequency, then
fn = i?
n!

because there are n! possible arrangements of S,,. Since the probability
distribution will be derived as a recursive relation, let us first consider
the particular case where n = 3 and see how the distribution for n = 4
can be generated from it.

Given three numbers a; < as < as, only runs of lengths 1 and 2
are possible. The 3! = 6 arrangements and their corresponding values
of r¢ and r; are given in Table 4.1. Since the probability of at least one
run of length 2 or more is 2/6, if this defines the critical region the
significance level is 0.33. With this size sample, a smaller significance

Table 4.1 Listing of arrangements when n =3

Ss Dy ro r Probability distribution
(@1,0a2,a3) (+,+) 1 0

(a1,a3,a2) (+,-) 0 2 f3(1,0) =2/6
(ag,a1,a3) (—+) 0 2

(as,a3,a1) (+,-) 0 2 £3(0,2) =4/6
(as,a1,az) (=4 0 2

(as,az,a1) (=) 1 0 f3(ra,r1) = 0 otherwise
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level cannot be obtained without resorting to a randomized decision
rule.

Now consider the addition of a fourth number a4, larger than all
the others. For each of the arrangements in Ss3,a4 can be inserted in
four different places. In the particular arrangement (ai,aq,as), for
example, insertion of a4 at the extreme left or between as and a3 would
leave ro unchanged but add a run of length 1. If a4 is placed at the
extreme right, a run of length 2 is increased to a run of length 3. If a4 is
inserted between a; and ag, the one run of length 2 is split into three
runs, each of length 1.

Extending this analysis to the general case, the extra observation
must either split an existing run, lengthen an existing run, or in-
troduce a new run of length 1. The ways in which the run lengths in
S,_1 are affected by the insertion of an additional observation a, to
make an arrangement S, can be classified into the following four
mutually exclusive and exhaustive cases:

=

An additional run of length 1 can be added in the arrangement S,,.

2. Arun oflengthi —1in S,_; can be changed into a run of length i
inS, fori=2,3,...,n—1

3. A run of length A = 2i in S,,_; can be split into a run of length i,
followed by a run of length 1, followed by a run of length i, for
1<i<|[(n—2)/2], where [x] denotes the largest integer not
exceeding x.

4. Arun oflength A =i+jin S, 1 can be split up into

a. A run of length i, followed by a run of length 1, followed by a run

of length j

b. A run of length j, followed by a run of length 1, followed by a run

of length i.

where h >1>j,3<h<n-2

For n = 4, the arrangements can be enumerated systematically
in a table like Table 4.2 to show how these cases arise. Table 4.2 gives a
partial listing. When the table is completed the number of cases which
result in any particular set (rs,re,71) can be counted and divided by 24
to obtain the complete probability distribution. This will be left as an
exercise for the reader. The results are:

(rs,ro,7r1) (1,0,0) (0,1,1) (0,0,3) Other values
fa(rs,re,r1) 2/24 12/24 10/24 0
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Table 4.2 Partial listing of arrangements when n =4

Ss3 ro ry Sy ri Case illustrated

~
w

~
)

(a1,az,a3) 1 0 (ay4,a1,a2,a3)
(a1,a4,a2,a3)
(a1,a2,a4,0a3)
(a1,a2,a3,a4)
(a1,a3,az) 0 2 (ay,a1,a3,02)
(a1,a4,a3,az)
(a1,as3,a4,a2)
(a1,as3,as,a4)

coocoroOO
OHHOOKOHR
WHHWOHWH
H NN RN R WA

There is no illustration for case 4 in the completed table of en-
umerated arrangements since here n is not large enough to permit
h = 3. For n = 5, insertion of a5 in the second position of (a1, as,as,a4)
produces the sequence (a1,as,a2,a3,a4). The one run of length 3 has
been split into a run of length 1, followed by another run of length 1,
followed by a run of length 2, illustrating case 4b with
h =3, j=1, i = 2. Similarly, case 4a is illustrated by inserting a5 in
the third position. This also illustrates Case 3.

More generally, the frequency u, of cases in S, having exactly r;
runs of length 1, rg runs of length 2,...,r,_; runs of length n — 1 can
be generated from the frequencies for S, _; by the following recursive
relation:

Un(Tn—1,Tn-2, -, Ths- s Tiye ey Tjye ., T1)

:2un,1(rn,2,...,r1 - 1)

[y

n—

+ > (rici+Dupa(rn2,...,ri—=Lri1+1,...,r1)
i—
(n-2)/2)

+ (I"h + l)un,l(l"n,g,...,l"h +1,...,r;—2,...,7r1 — 1)

h

[\

1
2i)

w
—_

i—

S

\}

+ (rn+1)

~
[\
[y

=2 j=
(h=i+))
h<n-2

><un,l(rn,g,...,rh+17...,ri—1,...,rj—17...,r1—1) (41)

=

The terms in this sum represent cases 1 to 4 in that order. For
case 1, u, 1 is multiplied by 2 since for every arrangement in S, 1
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there are exactly two places in which a, can be inserted to add a
run of length 1. These positions are always at an end or next to the
end. If the first run is a run up (down), insertion of a, at the ex-
treme left (next to extreme left) position adds a run of length 1. A
new run of length 1 is also created by inserting a, at the extreme
right (next to extreme right) in S,,_; if the last run in S, ; was a
run down (up). In case 4, we multiply by 2 because of the (a) and (b)
possibilities.

The result is tricky and tedious to use but is much easier than
enumeration. The process will be illustrated for n = 5, given

©3(10,0) =2  u4(0,1,1) =12  u4(0,0,3) = 10

u4(rs,re,r1) =0 otherwise
Using (4.1), we have

us(ra,r3,ro,r1) = 2u4(rs,ro,r1 — 1) + [(r1 + Dua(rs,ro — 1,71 + 1)]
+ (re+ Dua(rs —1,ra +1,r1)
+ (rs + Dua(rs + 1,rg,11)
+ (ro+ Dug(rs,re+1,r1 — 3)
+2(r3+ 1Dua(rs +1,r0 —1,r1 — 2)
u5(1,0,0,0) = 1us(1,0,0) =2
u5(0,1,0,1) = 2u4(1,0,0) + 1uq(0,1,1)
+2u4(2,0,1) =4+12+0=16
©5(0,0,2,0) = 1u4(0,1,1) + 1uq(1,2,0) = 12+ 0 = 12
u5(0,0,1,2) = 2u4(0,1,1) + 3u4(0,0,3) + 1uy(1,1,2)
+2u4(1,0,0) =24 +30+0+4 =58
u5(0,0,0,4) = 2u4(0,0,3) + 1ug(1,0,4) + 1uq(0,1,1)
=20+0+12=32

The means, variances, and covariances of the numbers of runs of
length # (or more) are found in Levene and Wolfowitz (1944). Tables of
the exact probabilities of at least r runs of length ¢ or more are given in
Olmstead (1946) and Owen (1962) for n < 14, from which appropriate
critical regions can be found. Olmstead gives approximate prob-
abilities for larger sample sizes. See Wolfowitz (1944a,b) regarding the
asymptotic distribution which is Poisson.
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A test for randomness can also be based on the total number of
runs, whether up or down, irrespective of their lengths. Since the total
number of runs R is related to the R;, the number of runs of length i, by

R=> R (4.2)

i=1

the same recursive relation given in (4.1) can be used to find the prob-
ability distribution of R. Levene (1952) showed that the asymptotic dis-
tribution of the standardized random variable R with mean (2n — 1)/3
and variance (16n — 29)/90 is the standard normal distribution.

APPLICATIONS

For the test of randomness based on the total number of runs up and
down, R, in an ordered sequence of n numerical observations, or
equivalently a sequence of n — 1 plus and minus signs, the appro-
priate sign is determined by comparing the magnitude of each
observation with the one immediately preceding it in the sequence.
The appropriate rejection regions for each alternative are exactly the
same as for the earlier test in Section 3.2, which was based on the
total number of runs of two types of elements. Specifically, if the
alternative is a tendency for like signs to cluster, the appropriate
rejection region is small values of R. If the alternative is a tendency
for like signs to mix with unlike signs, the appropriate rejection
region is large values of R.

The exact distribution of R under the null hypothesis of ran-
domness is given in Table E for n < 25 as left-tail probabilities for R
small and right-tail for R large. For n > 25, the critical values of R can
be found from the normal approximation to the null distribution of the
number of runs up and down statistic. If we incorporate a continuity
correction of 0.5, the left-tail and right-tail critical regions are

R+0.5—(2n—1)/3< R-05-(2n-1)/3

< o and Z 2y

(16n — 29)/90 (16n — 29)/90

The two-tailed critical region is a combination of the above with z,
replaced by z,/2.

One of the primary uses of the runs up and down test is for an
analysis of time series data. The null hypothesis of randomness is
then interpreted as meaning the data can be regarded as in-
dependent and identically distributed. The alternative of a tendency
to cluster is interpreted as an upward trend if the signs are
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predominantly plus or a downward trend if the signs are pre-
dominantly minus, and the alternative of a tendency to mix is in-
terpreted as cyclical variations. The total number of runs test could
also be used with time series data if the data are first converted to
two types of symbols by comparing the magnitude of each one to
some standard for that period or to a single focal point, like the
median of the data. The test in this situation is frequently referred to
as the runs above and below the median test. The test in the former
case was actually illustrated by Example 2.1.

Example 4.1 illustrates an application of runs up and down in
time series data.

Example 4.1 Tourism is regarded by all nations as big business be-
cause the industry brings needed foreign exchange and helps the
balance of payments. The Travel Market Yearbook publishes extensive
data on tourism. Analyze the annual data on total number of tourists
to the United States for 1970-1982 to see if there is evidence of a
trend, using the 0.01 level.

Year Number of tourists (millions)
1970 12,362
1971 12,739
1972 13,057
1973 13,955
1974 14,123
1975 15,698
1976 17,523
1977 18,610
1978 19,842
1979 20,310
1980 22,500
1981 23,080
1982 21,916

Solution We use the runs up and down test of randomness for these
n = 13 observations with the alternative of a trend. The sequence of 12
plus and minus signs is +, +,+,+,+,+,+,+,+,+,+, — so that R = 2.
The left-tail critical value from Table E is R = 4 at exact level 0.0026,
the largest value that does not exceed 0.01. Since 2 is less than 4, we
reject the null hypothesis and conclude there is a trend in number of
tourists to the United States and it is positive because the signs are
predominantly plus.
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3.5 A TEST BASED ON RANKS

Another way to test for randomness by comparing the magnitude of
each element with that of the immediately preceding element in the
time sequence is to compute the sum of the squares of the deviations of
the pairs of successive elements. If the magnitudes of these elements
are replaced by their respective ranks in the sequence before com-
puting the sum of squares of successive deviations, we can obtain a
nonparametric test.

Specifically, let the time-ordered sequence of observations be
S, = (X31,Xp,...,X,) as in Section 3.4. The test statistic

NM = ’f[rank(Xi) — rank(Xj;1))? (5.1)
=1

was proposed by Bartels (1982). A test based on a function of this
statistic is the rank version of the ratio test for randomness developed
by von Neumann using normal theory and is a linear transformation
of the rank serial correlation coefficient introduced by Wald and
Wolfowitz (1943).

It is easy to show that the test statistic NM ranges between
(n—1)and (n — 1)(n? + n — 3)/3 if n is even and between (n — 1) and
[(n —1)(n? +n —3)/3] — 1 if n is odd. The exact null distribution of
NM can be found by enumeration and is given in Bartels (1982) for
4 < n < 10. For larger sample sizes, the test statistic

Yoii [rank(X;) — rank(X; 1))
iy [rank(X;) — (n +1)/2]*

RVN = (5.2)

is asymptotically normally distributed with mean 2 and variance
4(n —2)(bn% —2n —9)/5n(n +1)(n — 1)?, which is approximately
equal to 20/(5n + 7). If there are no ties, the denominator of RVN is
equal to the constant n(n? — 1)/12.

Since a trend in either direction will be reflected by a small
value of NM and therefore RVN, the appropriate rejection region to
test randomness against a trend alternative is small values of NM
or RVN. If the alternative is a tendency for the data to alternate
small and large values, the appropriate rejection region is large
values of the test statistic. Table S of the Appending gives exact tail
probabilities for selected values of NM for n < 10 and approximate
left-tail critical values of RVN (based on the beta distribution) for
larger sample sizes. Corresponding right-tail critical values are
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found using the fact that this beta approximation is symmetric
about 2.0.

Bartels (1982) used simulation studies to show that this test is
superior to the runs up and down test in many cases. Its asymptotic
relative efficiency is 0.91 with respect to the ordinary serial correlation
coefficient against the alternative of first-order autocorrelation under
normality. Autocorrelation is defined as a measure of the dependence
between observations that occur a fixed number of time units apart.
Positive autocorrelation shows up in time series data that exhibit a
trend in either direction, while negative autocorrelation is indicated
by fluctuations over time.

Example 5.1 We illustrate this rank Von Neumann test using the data
from Example 4.1 with n = 13 where the alternative is a positive
trend. We first rank the number of tourists from smallest to largest
and obtain

1,2,3,4,5,6,7,8,9,10,12,13,11
The value of NM, the numerator of the RVN statistic, from (5.1) is then
NM=(1-2%+(2-38)>2+ -+ (18-11)>=18

and the denominator is 13(13%2 —1)/12 = 182. Thus from (5.2),
RVN = 18/182 = 0.0989, and Table S shows that the left-tail critical
value based on the beta approximation is to reject the null hypothesis
of randomness at the 0.005 level if RVN < 0.74. Therefore we reject
the null hypothesis and conclude that there is a significant positive
trend. We also use these data to illustrate the test based on the normal
approximation to the distribution of RVN. The mean is 2 and the
variance for n = 13 is 0.2778. The standard normal test statistic is
then (0.0989 — 2)/4/0.2778 = —3.61. At the 0.005 level, for example,
the appropriate rejection region from Table A is Z < —2.58, so we
again conclude that there is a significant postive trend.

3.6 SUMMARY

In this chapter we presented a number of tests that are appropriate for
testing the null hypothesis of randomness in a sequence of observa-
tions whose order has some meaning. If the observations are simply
two types of symbols, like M and F, or D and G, the total number of
runs of symbols is the most appropriate test statistic. Tests based on
the lengths of the runs are primarily of theoretical interest. If the
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observations are numerical measurements, the number of runs up and
down or the rank von Neumann (RVN) statistic provides the best test
because too much information is lost by using the test based on runs
above and below some fixed value like the median.

Usually the alternative hypothesis is simply lack of randomness,
and then these tests have no analog in parametric statistics. If the
data represent a time series, the alternative to randomness can be
exhibition of a trend. In this case the RVN test is more powerful than
the test based on runs up and down. Two additional tests for trend will
be presented later in Chapter 11.

PROBLEMS

3.1. Prove Corollary 2.1 using a direct combinatorial argument based on Lemma 1.

3.2. Find the mean and variance of the number of runs R; of type 1 elements, using the
probability distribution given in (2.2). Since E(R) = E(R;) + E(Rs), use your result to
verify (2.6).

3.3. Use Lemmas 2 and 3 to evaluate the sums in (2.5), obtaining the result given in
(2.6) for E(R).

3.4. Show that the asymptotic distribution of the standardized random variable
[R1 — E(R;)]/o(R,) is the standard normal distribution, using the distribution of R; gi-
ven in (2.2) and your answer to Problem 3.2.

3.5. Verify that the asymptotic distribution of the random variable given in (2.9) is the
standard normal distribution.

3.6. By considering the ratios fr(r)/fr(r —2) and fr(r + 2)/fr(r), where r is an even
positive integer and fr(r) is given in (2.3) show that if the most probable number of runs
is an even integer k, then £ satisfies the inequality

2n1n2

2.
M<k<T-|r2

3.7. Show that the probability that a sequence of n, elements of type 1 and ns elements
of type 2 begins with a type 1 run of length exactly % is

!
_(ma)yna where (n), = r
(nl + n2)k+1

3.8. Find the rejection region with significance level not exceeding 0.10 for a test of
randomness based on the length of the longest run when n; = ny = 6.

3.9. Find the complete probability distribution of the number of runs up and down of
various length when n = 6 using (4.1) and the results given for us(ry,rs,ro,r1).

3.10. Use your answers to Problem 3.9 to obtain the complete probability distribution
of the total number of runs up and down when n = 6.
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3.11. Verify the statement that the variance of the RVN test statistic is approximately
equal to 20/(5n+ 7).

3.12. Analyze the data in Example 4.1 for evidence of trend using total number of runs
above and below

(a) The sample median
() The sample mean

3.13. A certain broker noted the following number of bonds sold each month for a 12-
month period:

Jan. 19 July 22
Feb. 23 Aug. 24
Mar. 20 Sept. 25
Apr. 17 Oct. 28
May 18 Nov. 30
June 20 Dec. 21

(a) Use the runs up and down test to see if these data show a directional trend
and make an appropriate conclusion at the 0.05 level.
(b) Use the runs above and below the sample median test to see if these data show
a trend and make an appropriate conclusion at the 0.05 level.
(c) Compare the conclusions reached in (a) and (b) and give an explanation for the
difference.
3.14. The following are 30 time lapses in minutes between eruptions of Old Faithful
geyser in Yellowstone National Park, recorded between the hours of 8 a.m. and 10 p.m.on a
certain day, and measured from the beginning of one eruption to the beginning of the next:
68, 63, 66, 63, 61, 44, 60, 62, 71, 62, 62, 55, 62, 67, 73,
72, 55, 67, 68, 65, 60, 61, 71, 60, 68, 67, 72, 69, 65, 66
A researcher wants to use these data for inference purposes, but is concerned about
whether it is reasonable to treat such data as a random sample. What do you think?
Justify your answer.
3.15. In a psychological experiment, the research question of interest is whether a rat
“learned” its way through a maze during 65 trials. Suppose the time-ordered observa-
tions on number of correct choices by the rat on each trail are as follows:
0,1,2,1,1,2,3,2,2,2,1,1,3,2,1,2,1,2,2,1,1,2,2,1,4,3,1,2,2, 1, 2, 2,
2,2,3,2,2,3,4,3,2,3,3,2,3,3,2,3,3,2,3,4,3,3,4,2,3,3,4,3,4,4,4, 4
(a) Test these data for randomness against the alternative of a tendency to
cluster, using the dichotomizing criterion that 0, 1, or 2 correct choices indicate no
learning, while 3 or 4 correct choices indicate learning.
(b) Would the runs up and down test be appropriate for these data? Why or why not?
3.16. The data below represent departure of actual daily temperature in degrees
Fahrenheit from the normal daily temperature at noon at a certain airport on seven
consecutive days.

Day 1 2 3 4 5 6 7
Departure 12 13 12 1 5 -1 -2
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(a) Give an appropriate P value that reflects whether the pattern of positive and
negative departures can be considered a random process or exhibits a tendency to
cluster.

(b) Given an appropriate P value that reflects whether the pattern of suc-
cessive departures (from one day to the next) can be considered a random process or
exhibits a trend for these seven days.

3.17. The three graphs in Figure 1 (see below) illustrate some kinds of nonrandom
patterns. Time is on the horizontal axis. The data values are indicated by dots and
the horizontal line denotes the median of the data. For each graph, compute the
one-tailed P-value for non randomness using two different nonparametric techniques.
3.18. Bartels (1982) illustrated the rank non Neumann test for randomness using
data on annual changes in stock levels of corporate trading enterprises in Australia
for 1968-1969 to 1977-1978. The values (in $A million) deflated by the Australian
GDP are 528, 348, 264, —20, —167, 575, 410, —4, 430, —122. He tested randomness
against the alternative of autocorrelation. Random stock level changes occur when

A

Vi

JOAN
o » /

VV

(b)
./\\\/./\7/\\/,
Fig. 1 Nonrandom patterns representing (a) cyclical movement, (b) trend movement,
(c) clustering.

(e}
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companies are well managed because future demands are accurately anticipated.
“Negative autocorrelation constitutes evidence for a tendency to overreact to short-
falls or excesses in stock levels, whereas positive autocorrelation suggests there is a
long delay in reaching desired stock levels.” The test statistic is NM =169, which is
not significant. Compare this result with that of (a) runs up and down, and (b) with
runs above and below the sample median.
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Tests of Goodness of Fit

4.1 INTRODUCTION

An important problem in statistics relates to obtaining information
about the form of the population from which a sample is drawn. The
shape of this distribution might be the focus of the investigation.
Alternatively, some inference concerning a particular aspect of the
population may be of primary interest. In this latter case, in classical
statistics, information about the form generally must be postulated or
incorporated in the null hypothesis to perform an exact parametric
type of inference. For example, suppose we have a small number of
observations from an unknown population with unknown variance and
the hypothesis of interest concerns the value of the population mean.
The traditional parametric test, based on Student’s ¢ distribution, is
derived under the assumption of a normal population. The exact dis-
tribution theory and probabilities of both types of errors depend on this
population form. Therefore it might be desirable to check on the
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reasonableness of the normality assumption before forming any con-
clusions based on the ¢ distribution. If the normality assumption
appears not to be justified, some type of nonparametric inference for
location might be more appropriate with a small sample size.

The compatibility of a set of observed sample values with a normal
distribution or any other distribution can be checked by a goodness-
of-fit type of test. These are tests designed for a null hypothesis which is
a statement about the form of the cumulative distribution function or
probability function of the parent population from which the sample is
drawn. Ideally, the hypothesized distribution is completely specified,
including all parameters. Since the alternative is necessarily quite
broad, including differences only in location, scale, other parameters,
form, or any combination thereof, rejection of the null hypothesis does
not provide much specific information. Goodness-of-fit tests are custo-
marily used when only the form of the population is in question, with
the hope that the null hypothesis will be found acceptable.

In this chapter we shall consider two types of goodness-of-fit
tests. The first type is designed for null hypotheses concerning a dis-
crete distribution and compares the observed frequencies with the
frequencies expected under the null hypothesis. This is the chi-square
test proposed by Karl Pearson early in the history of statistics. The
second type of goodness-of-fit test is designed for null hypotheses
concerning a continuous distribution and compares the observed cu-
mulative relative frequencies with those expected under the null hy-
potheses. This group includes the Kolmogorov-Smirnov and the
Lilliefors’s tests. The latter is designed for testing the assumption of a
normal or an exponential distribution with unspecified parameters
and is therefore an important preliminary test for justifying the use of
parametric or classical statistical methods that require this assump-
tion. Finally, we present some graphical approaches to assessing the
form of a distribution.

4.2 THE CHI-SQUARE GOODNESS-OF-FIT TEST

A single random sample of size n is drawn from a population with
unknown cumulative distribution function Fx. We wish to test the null
hypothesis

Hy:Fx(x) = Fo(x) for all x
where Fy(x) is completely specified, against the general alternative

Hi:Fx(x) # Fo(x) for some x
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In order to apply the chi-square test in this situation, the sample
data must first be grouped according to some scheme in order to form a
frequency distribution. In the case of count or qualitative data, where
the hypothesized distribution would be discrete, the categories would
be the relevant verbal or numerical classifications. For example, in
tossing a die, the categories would be the numbers of spots; in tossing a
coin, the categories would be the numbers of heads; in surveys of
brand preferences, the categories would be the brand names con-
sidered. When the sample observations are quantitative, the cate-
gories would be numerical classes chosen by the experimenter. In this
case, the frequency distribution is not unique and some information is
necessarily lost. Even though the hypothesized distribution is most
likely continuous with measurement data, the data must be categor-
ized for analysis by the chi-square test.

When the population distribution is completely specified by the
null hypothesis, one can calculate the probability that a random ob-
servation will be classified into each of the chosen or fixed categories.
These probabilities multiplied by n give the frequencies for each ca-
tegory which would be expected if the null hypothesis were true. Ex-
cept for sampling variation, there should be close agreement between
these expected and observed frequencies if the sample data are com-
patible with the specified Fy(x). The corresponding observed and ex-
pected frequencies can be compared visually using a histogram, a
frequency polygon, or a bar chart. The chi-square goodness-of-fit test
provides a probability basis for effecting the comparison and deciding
whether the lack of agreement is too great to have occurred by chance.

Assume that the n observations have been grouped into £ mu-
tually exclusive categories, and denote the observed and expected
frequencies for the ith class by f; and e;, respectively, i =1,2,... k.
The decision regarding fit is to be based on the deviations f; — e;. The
sum of these k deviations is zero except for rounding. The test criterion
suggested by Pearson (1900) is the sum of squares of these deviations,
normalized by the expected frequency, or

Q _ a (fl _ei)2
=1

i

Mim ) (2.1)

€;

A large value of @ would reflect an incompatibility between the
observed and expected relative frequencies, and therefore the null
hypothesis used to calculate the e should be rejected for @ large.

The exact probability distribution of the random variable @
is quite complicated, but for large samples its distribution is
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approximately chi square with £ — 1 degrees of freedom, given here as
Table B of the Appendix. The theoretical basis for this can be argued
briefly as follows.

The only random variables of concern are the class frequencies
F,F,,... Fy, which constitute a set of random variables from the
k-variate multinomial distribution with 2 possible outcomes, the ith
outcome being the ith category in the classification system. With
01,02, ...,0; denoting the probabilities of the respective outcomes and
fi.1%,...,[r denoting the observed outcomes, the likelihood function of
the sample then is

k
L(01,02,....0,) =[[0F fi=01,...n;) fi=n;) 6;=1
i=1 i i

(2.2)

The null hypothesis was assumed to specify the population distribu-
tion completely, from which the 6; can be calculated. This hypothesis
then is actually concerned only with the values of these parameters
and can be equivalently stated as

Hy:0°=%  fori=1.2.. .k
)

It is easily shown that the maximum-likelihood estimates of the
parameters in (2.2) are 0; = f; / n. The likelihood-ratio statistic for this
hypothesis then is

CL(®)  L(69,60,....60) k<e_>f

L(Q) L(61,0s,...,0,) £1\6

As was stated in Chapter 1, the distribution of the random variable
—2InT can be approximated by the chi-square distribution. The
degrees of freedom are % — 1, since the restriction 3% , 0; = 1 leaves
only £ — 1 parameters in Q to be estimated independently. We have
here

_ oy fi
—2InT = -2 Zf <ln 0) — lnﬁ> (2.3)

=1

Some statisticians advocate using the expression in (2.3) as a test
criterion for goodness-of-fit. We shall now show that it is asymptoti-
cally equivalent to the expression for @ given in (2.1). The Taylor
series expansion of In6; about f; /n = 0; is
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._A.2
In 6; :lnéi+(9i —éi)lJr(e’—el) <Al> +e

0; 2! 07
so that
. . N\ 2 4,2
00 —1nfi— (g0 _fi\2_ (g0 _fi\ "
ey (l n)f; : aniZ+€
0, 0_ £32
0 —f) 0 —f)
7 2/
where € represents the sum of terms alternating in sign
00 ) N\ J Jj
Y (-1t (e? _ﬁ) > (2.4)
=3 n) jif;
Substituting (2.4) in (2.3), we have
k k 0 2k
0’ —f
—2InT =-2 (16 —f) + u4—2:(_;’
i=1 i=1 fi i=1
k 2
(fi — ei) "
=0+ ) ————+¢€

By the law of large numbers F; /n is known to be a consistent estimator
of 0;, or

r}l_glo [%P(|Fi —nb;| > e)} =0 for every € > 0
Thus we see that the probability distribution of @ converges to that of
—2InT, which is chi square with 2 — 1 degrees of freedom. An
approximate ao-level test then is obtained by rejecting Hy when @
exceeds the (1 —a)th quantile point of the chi-square distribution,
denoted by yZ_, ,. This approximation can be used with confidence as
long as every expected frequency is at least equal to 5. For any e;
smaller than 5, the usual procedure is to combine adjacent groups in
the frequency distribution until this restriction is satisfied. The
number of degrees of freedom then must be reduced to correspond to
the actual number of categories used in the analysis. This rule of 5
should not be considered inflexible, however. It is conservative, and
the chi-square approximation is often reasonably accurate for expected
cell frequencies as small as 1.5.
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Any case where the 0; are completely specified by the null hy-
pothesis is thus easily handled. The more typical situation, however,
is where the null hypothesis is composite, i.e., it states the form of the
distribution but not all the relevant parameters. For example, when
we wish to test whether a sample is drawn from some normal popu-
lation, u and o would not be given. However, in order to calculate the
expected frequencies under Hy,p and ¢ must be known. If the ex-
pected frequencies are estimated from the data as nG? for i =1,

..k, the random variable for the goodness-of-fit test in (2.1)
becomes

k no
Q=) Fionbl) (25)

nGO

The asymptotic distribution of @ then may depend on the
method employed for estimation. When the estimates are found by
the method of maximum likelihood for the grouped data, the L(®) in
the likelihood-ratio test statistic is L(6%,69,...,609), where the 6
are the MLEs of the 90 under H,. The derlvatlon of the d1str1but10n
of T and therefore @ goes through exactly as before except that the
dimension of the space o is increased. The degrees of freedom for @
then are k — 1 — s, where s is the number of independent parameters
in Fy(x) which had to be estimated from the grouped data in order to
estimate all the 9?. In the normal goodness-of-fit test, for example,
the u and o parameter estimates would be calculated from the
grouped data and used with tables of the normal distribution to find
the n@?, and the degrees of freedom for & categories would be & — 3.
When the original data are ungrouped and the MLEs are based on
the likelihood function of all the observations, the theory is different.
Chernoff and Lehmann (1954) have shown that the limiting dis-
tribution of @ is not the chi square in this case and that
P(Q > %2) > o. The test is then anticonservative. Their investigation
showed that the error is considerably more serious for the normal
distribution than the Poisson. A possible adjustment is discussed in
their paper. In practice, however, the statistic in (2.5) is often treated
as a chi-square variable anyway.

Example 2.1 A quality control engineer has taken 50 samples of size
13 each from a production process. The numbers of defectives for these
samples are recorded below. Test the null hypothesis at level 0.05 that
the number of defectives follows
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(a) The Poisson distribution
(b) The binomial distribution

Number of defects Number of samples

0 10
1 24
2 10
3 4
4 1
5 1
6 or more 0

Solution Since the data are grouped and both of the hypothesized
null distributions are discrete, the chi-square goodness-of-fit test is
appropriate. Since no parameters are specified, they must be esti-
mated from the data in order to carry out the test in both (a) and ().

Solution to (a) The Poisson distribution is f(x) =e *p* /x! for x =
0,1,2,..., where u here is the mean number of defectives in a sample
of size 13. The maximum-likelihood estimate of p is the mean number
of defectives in the 50 samples, that is,

0(10) + 1(24) +2(10) + 3(4) + 4(1) +5(1) 65
50 T 50

We use this ValAue in f(x) to estimate the probabilities as éi and to
compute ¢; = 500;. The calculations are shown in Table 2.1. Notice that
the final 0 is not for exactly 5 defects but rather for 5 or more; this is
necessary to make > 0 = 1. The final é is less than one, so it is com-
bined with the category above before calculating @. The final result is

1.3

ljt:

Table 2.1 Calculation of Q for Example 2.1(a)

Defects f ] é (f —e)%e
0 10 0.2725 13.625 0.9644
1 24 0.3543 17.715 2.2298
2 10 0.2303 11515 0.1993
3 4 0.0998 4.990 0.1964
4 1 0.0324 1.620 } 0.0111
5 or more 1 0.0107 0.535 J 2-155

3.6010
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@ = 3.6010 with 3 degrees of freedom; we start out with # —1=25
degree of freedom and lose one for estimating 6 and one more for
combining the last two categories. Table B shows the 0.05 critical
value for the chi-square distribution with 3 degrees of freedom is 7.81.
Our @ = 3.6010 is smaller than this value, so we cannot reject the null
hypothesis. In terms of the P value, the approximate P value is the
right-tail probability P(@ > 3.601) where @ follows a chi square dis-
tribution with 3 degrees of freedom. Using EXCEL, for example, the P
value is found as 0.3078. Note that using Table B, we could say that
the P value is between 0.25 and 0.50. Thus, our conclusion about the
Poisson distribution is that we cannot reject the null hypothesis.

Solution to (b) The null hypothesis is that the number of defectives
in each sample of 13 follows the binomial distribution with » = 13 and
p is the probability of a defective in any sample. The maximum-
likelihood estimate of p is the total number of defectives, which we
found in (a) to be 65, divided by the 50(13) = 650 observations, or
p = 65/650 = 0.1. This is the value we use in the binomial distribution
(or Table C) to find 0 and e =500 in Table 2.2. The final result is
Q = 2.9680, again with 3 degrees of freedom, so the critical value at
the 0.05 level is again 7.81. The approximate P value using EXCEL is
0.3966. Our conclusion about the binomial distribution is that we
cannot reject the null hypothesis.

This example illustrates a common result with chi-square good-
ness-of-fit tests, i.e., that each of two (or more) different null hy-
potheses may be accepted for the same data set. Obviously, the true
distribution cannot be both binomial and Poisson at the same time.
Thus, the appropriate conclusion on the basis of a chi-square
goodness-of-fit test is that we do not have enough information to dis-
tinguish between these two distributions.

Table 2.2 Calculation of Q for Example 2.1(b)

Defects f 0 é (f —e)Ye
0 10 0.2542 12.710 0.5778
1 24 0.3671 18.355 1.7361
2 10 0.2448 12.240 0.4099
3 4 0.0997 4.986 0.1950
4 1 0.0277 1.385 0.0492
5 or more 1 0.0065 }°~°342 0.325 }1-710

2.9680
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The STATXACT solutions to Example 2.1 are shown below. Note
that the numerical value of @ in each case agrees with the hand
calculations. Each printout shows the degrees of freedom as 4 instead
of 3 because the computer did not know that the expected frequencies
entered were calculated by estimating one parameter from the data in
each case. The P values do not agree because the degrees of freedom
are different.

AAAE R R R AR RAK AR A A R R RE AR RN TR N

STATXACT SOLUTION TO EXAMPLE 2.1(a}

sk ok ks ke ek bk ok ke Ak ek sk ok

CHI-SQUARE GCODNESS OF FIT TEST

Statistic based on the cobserved § categories :
CH({x) = Pearson Chi-Square Statistic = 3.601

Asymptotic p-value: (based on Chi-Square distribution with 4 df }
pr { CH(X) .GE. 3.601 } = 0.4627

PR P PR LRI E R LS S I R EE I L A T T

STATXACT SOLUTION TO EXAMPLE 2.1(b}

A R AR ESOR R K ok K ok ks o Ak oKk
CHI-SQUARE GOODNESS QF FIT TEST

Statistic based on the observed & categories
CH{x) = Pearson Chi-Square Statistic = 2.968

Asymptotie p-value: (based on Chi-Square distribution with 4 df }
Pr { CH{X) .GE. 2.968 |} = 0.5633

4.3 THE KOLMOGOROV-SMIRNOV ONE-SAMPLE STATISTIC

In the chi-square goodness-of-fit test, the comparison between
observed and expected class frequencies is made for a set of 2 groups.
Only £ comparisons are made even though there are n observations,
where k& < n. If the n sample observations are values of a continuous
random variable, as opposed to strictly categorical data, comparisons
can be made between observed and expected cumulative relative fre-
quencies for each of the different observed values. The cumulative
distribution function of the sample or the empirical distribution
function defined in Section 2.3 is an estimate of the population cdf.
Several goodness-of-fit test statistics are functions of the deviations
between the observed cumulative distribution and the corresponding
cumulative probabilities expected under the null hypothesis. The
function of these deviations used to perform a test might be the sum of

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



112 CHAPTER 4

squares, or absolute values, or the maximum deviation, to name only a
few. The best-known test is the Kolmogorov-Smirnov one-sample sta-
tistic,which will be covered in this section.

The Kolomogorov-Smirnov one-sample statistic is based on the
differences between the hypothesized cumulative distribution function
Fy(x) and the empirical distribution function of the sample S, (x) for
all x. The empirical distribution function of the sample was defined in
Chapter 2 as S, (x), the proportion of sample observations that are less
than or equal of x for all real numbers x. We showed there that S, (x)
provides a consistent point estimator for the true distribution F,(x).
Further, by the Glivenko-Cantelli Theorem in Chapter 2, we know
that as n increases, the step function S, (x), with jumps occurring at
the values of the order statistics X(1),X(g),...,X(,) for the sample, ap-
proaches the true distribution function Fx(x) for all x. Therefore, for
large n, the deviations between the true function and its statistical
image, |S,(x) — Fx(x)|, should be small for all values for x. This result
suggests that the statistic

D,, = sup|S,(x) — Fx(x)| (3.1)

is, for any n, a reasonable measure of the accuracy of our estimate.

This D, statistic, called the Kolmogorov-Smirnov one-sample
statistic, is particularly useful in nonparametric statistical inference
because the probability distribution of D,, does not depend on Fx(x) as
long as Fx is continuous. Therefore, D, is called a distribution-free
statistic.

The directional deviations defined as

D, = sup[S,(x) ~Fx(x)] D, = suplFx(x) = S, (x)] (3.2)
are called the one-sided Kolmogorov-Smirnov statistics. These mea-
sures are also distribution free, as proved in the following theorem.

Theorem 3.1 The statistics D,,D;" and D, are completely distribution
free for any continuous Fy.

Proof D, = sup|S,(x) — Fx(x)| = max(D;,D,)

Defining the additional order statistics X(g) = —co and X(,,;1) = 0o, we
can write

Sn(x):% fOI‘X(i)S.’XJ<X(i+1), 1=0,1,....n
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Therefore, we have

D, = suplS,(®) — Fx(x)) = max  sup [S,(x)—Fx(x)

O<iSnx;<x<Xin

= max sup [L—Fx(x)}

0<ISnXy<x<Xiy LI

= max F— inf FX(x)}

o<i<n|n X(L') < x<X(i+1)

= max [i—Fx(Xa))]

0o<i<n|n
i
= max{lrgniaé(n [ﬁ - FX(X@)} ,0} (3.3)

Similarly

D, = max{ max {FX(X(i)) ! ;L 1],0}

D, = max{ max F - FX(X@)} max [FX(X@) i 1} : 0}

1<i<n|n 1<i<n
(3.4)

The probability distributions of D,,D;, and D, therefore depend
only on the random variables Fx(X(;),i = 1,2,...,n. These are the
order statistics from the uniform distribution on (0,1), regardless
of the original Fx as long as it is continuous, because of the
probability integral transformation discussed in Chapter 2. Thus
D,,D; and D, have distributions which are independent of the
particular Fy.

A simpler proof can be given by making the transformation
u = Fx(x) in D,, D} or D; . This will be left to the reader as an exercise.
The above proof has the advantage of giving definitions of the
Kolmogorov-Smirnov statistics in terms of order statistics.

In order to use the Kolmogorov statistics for inference, their
sampling distributions must be known. Since the distributions are
independent of Fy, we can assume without loss of generality that
Fx is the uniform distribution on (0,1). The derivation of the dis-
tribution of D, is rather tedious. However, the approach below il-
lustrates a number of properties of order statistics and is therefore
included here. For an interesting alternative derivation, see Massey
(1950).
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Theorem 3.2 For D, =sup|S,(x) — Fx(x)|, where Fx(x) is any con-

tinuous cdf, we have

P<Dn < i4—\/)
2n

0 for v<0
1/2n+v r1/3n+v (2n—1)/2n+v
. f1/2n—v fl/Sn—v ”'I(Zn—l)/Zn—v
xf(ui,ug, ... . uy) duy---duy  for 0 <v< 21
on-1
1 for v> ==
where
n! forO<u;<us<---<u,<1
UL, U, ... Up) = . .
flur,us ) { 0 otherwise

Proof As explained above, Fx(x) can be assumed to be the uni-
form distribution on (0,1). We shall first determine the relevant
domain of v. Since both S,(x) and Fx(x) are between 0 and
1,0 <D, <1 always. Therefore we must determine P(D, < c¢)
only for 0 < ¢ < 1, which here requires

0ctivel o Loyl
2n 2n 2n
Now, for all —1/2n <v < (2n—1)/2n, where X =0 and

X(n+1) = 17

1
p(Dn <—+v>
2n

[ 1
p _sgp ISh(x) — x| < om + v}

1
ISh(x) — x| < §+ v, for all x

(12
Pl|l——x
n

1
< %—0— v for X(i) <x <X(i+1)7

foralli:O,l,..‘,n}
(i 1 i1
=P ;—%—v<x<;+%+v,

forallizo,l,...,n}
(20 —1 V<x<2i+1
2n 2n

for X;;) <x <X ip),foralli=0,1,...,n

+v,
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Consider any two consecutive values of i. We must have, for any
0<i<n-1,both

2i—1 2i+1
Ai:{ on —v<x < om +vf0rX(i)<x<X(,-+1)}

and

21— 1 20+ 3
Aiiq: { o v<x < on + v for X(lqu) <x <X(i+2)}
Since X(;,1) is the random variable common to both events and the
common set of x is (2i +1)/2n —v <x < (2{ +1)/2n + v for v = 0, the
event A;NA; ;1 forany0<i<n-1is

2i -1 2i4+1

—v< X < +v forall v=0

In other words,

20 —1 v<x<2i+1
2n 2n

+vV for X(L) <x < X(i+1)
foralli=0,1,...,n
if and only if

2i+1—v<X~ <2i+1 v forall;=0,1,...,n—-1
2n (+1) 2n v=0

The joint probability distribution of the order statistics is
X0y Xy Xy (X1,%2, -, %) = 1! for x; <xp<---<x, <1
Putting all this together now, we have

2n —1
2n

PDn<i+v for all —i<v<
2n 2n

2i+1 2i+1 .
_P( on —V<X(,-+1)<T+v for all 1_0,1,...,n—1)

f01°a110<v<2n_1

1 1 3 3

2n —1 2n —1
xﬂﬂ( 5 —v<Xp < o +v>]

2n —1

forall 0<v<
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which is equivalent to the stated integral.
This result is tedious to evaluate as it must be used with care.
For the sake of illustration, consider n = 2. For all 0 <i < 3/4,

1/4+v 3/4+v
P(D2<1/4+V —2'/ / dus duq
1/4—v 3/4—v

O<ui<us<l1

The limits overlap when 1/4+v>3/4 —v, or v>1/4 When 0 <
1/4, we have u; < ug automatically. Therefore, for 0 < v < 1/4,

1/4+v 3/4+v
P(Dy < 1/4+v) = 2/ / dugdu; = 2(2v)*
1/4—v 3/4—v

But for 1/4 < v < 3/4, the region of integration is as illustrated in
Figure 3.1. Dividing the integral into two pieces, we have for 1/4 <
v<3/4,

1/4+v 3/4—v
P(Dz < 1/4+V) [/ / dugdul—i-/ / duzdull
3/4—v 3/4—v

=-2v*+3v-1/8

Collecting the results for all v,

0 forv<o0
2(2v)? for 0 < v < 1/4
P(Dy < 1/4+v) =
Dz <1/4+V) =9 92,3y 0125 for 1/4 <v < 3/4
1 for v>3/4
Ha2
(11)
(0.3/4 - v)
(i +v0) “

Fig. 3.1 Shaded area is region of integration for n = 2.
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For any given v and n, we can evaluate P(D, < 1/2n + v) or use
Table 1 of Birnbaum (1952). The inverse procedure is to find that
number D, , such that P(D, > D, ,) =o. In our numerical example
with n = 2, oo = 0.05, we find v such that

P(Dy>1/4+v) =005 or PDy<1/4+v)=095

and then set Dy o5 = 1/4 + v. From the previous evaluation of the D,
sampling distribution, either

202v)=095 and O<v<1/4
or
—2v2 +3v—-0.125=0.95 and 1/4<v<3/4

The first result has no solution, but the second yields the solution
v = 0.5919. Therefore, D35 = 0.8419.

Numerical values of D, , are given in Table F of the Appendix for
n < 40 and selected tail probabilities «, and approximate values are
given for larger n. More extensive tables are given in Dunstan, Nix,
and Reynolds (1979, p. 42) for n < 100.

For large samples, Kolmogorov (1933) derived the following con-
venient approximation to the sampling distribution of D,,, and Smirnov
(1939) gave a simpler proof. The result is given here without proof.

Theorem 3.3 If Fx is any continuous distribution function, then for
every d > 0,

}LIEOP(D,L < d/ﬁ) = L(d)

where

The function L(d) has been tabulated in Smirnov (1948). Some of
the results for the asymptotic approximation to D, , = d,/\/n are:

P(D, >dy/yn) 020 015 010 005 0.01

da 1.07 114 122 136 163
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The approximation has been found to be close enough for practical
application as long as n exceeds 35. A comparison of exact and
asymptotic values of D, , for o« = 0.01 and 0.05 is given in Table 3.1.
Since the one-sided Kolmogorov-Smirnov statistics are also
distribution-free, knowledge of their sampling distributions would
make them useful in nonparametric statistical inference as well. Their
exact sampling distributions are considerably easier to derive than
that for D,. Only the statistic D, is considered in the following theo-
rem, but D and D, have identical distributions because of symmetry.

Theorem 3.4 For D) =sup[S,(x) — Fx(x)] where Fx(x) is any con-

tinuous cdf, we have

P(D; <c)
0 c<0
= fllicf(';"fl)/nic~-~ 2"/3”76 ff/znfc fui,us,...,un)duy-—-du, 0<c<l1
1 c=1
where
_)n! forO<ui<us<---<u,<l1
flusuz, . un) {0 otherwise

Proof As before, we first assume without loss of generality that
Fx is the uniform distribution on (0,1). Then we can write

Table 3.1 Exact and asymptotic values of D,, such that P(D,>D,.)=a for
«=0.01,0.05

Exact Asymptotic Ratio A/E
n 0.05 0.01 0.05 0.01 0.05 0.01
2 0.8419 0.9293 0.9612 1.1509 1.142 1.238
3 0.7076 0.8290 0.7841 0.9397 1.108 1.134
4 0.6239 0.7341 0.6791 0.8138 1.088 1.109
5 0.5633 0.6685 0.6074 0.7279 1.078 1.089
10 0.4087 0.4864 0.4295 0.5147 1.051 1.058
20 0.2939 0.3524 0.3037 0.3639 1.033 1.033
30 0.2417 0.2898 0.2480 0.2972 1.026 1.025
40 0.2101 0.2521 0.2147 0.2574 1.022 1.021
50 0.1884 0.2260 0.1921 0.2302 1.019 1.018

Source: Z. W. Birnbaum (1952): Numerical Tabulation of the Distribution of Kolmogorov’s
Statistic for Finite Sample Size, J. Am. Statist. Assoc., 47, 431, Table 2.
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D; = max{max (i —X(i)>7 O]

1<isn \Nn

the form found in (3.3). For all 0 < ¢ < 1, we have

P(D; <c) _P[max <1—X(i)) < c}

1<isn\Nn

:P(%—X(,-) <cforalli= 1,2,...,n>

—P(X;>t—cforalli=1,2,....n
0>

:/ / / f(x1,%9,...,%,)dx1 - - dxy,
1-c J(n-1)/n—c 2/n—c J1/n—c

where

f(xl,xg, e

X)) = n! forO<xi<axo < - <x,<1
o 0 otherwise

which is equivalent to the stated integral.

Another form of this result, due to Birnbaum and Tingey (1951),
which is more computationally tractable, is

P(D} >c)=(1-¢)" +c[n§)] <?> <lc£>n_j (c +i>j_1 (3.5)

s

The equivalence of the two forms can be shown by induction.
Birnbaum and Tingey give a table of those values D}, which satisfy
PD, > D)) = o for o.=0.01,0.05,0.10 and selected values of n. For
large samples, we have the following theorem, which is given here

without proof.

Theorem 3.5 If Fx is any continuous distribution function, then for
every d = 0,

lim P(Df <d/v) =1-¢ 2

As a result of this theorem, chi-square tables can be used for the
distribution of a function of D, because of the following corollary.
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Corollary 3.5 If Fx is any continuous distribution function, then for
every d > 0, the limiting distribution of V = 4nD;?, as n — oo, is
the chi-square distribution with 2 degrees of freedom.

Proof We have D;} < d/\/n if and only if 4nD;? < 4d? or V < 4d2.
Therefore

n—oo

lim P(V < 4d?) = lim P(D,j < d/\/ﬁ> —1-e 2 — 12

lim P(V <c¢)=1—e 2 foralle >0
The right-hand side is the cdf of a chi-square distribution with 2
degrees of freedom.

As a numerical example of how this corollary enables us to ap-
proximate D, let o = 0.05. Table B of the Appendix shows that 5.99

is the 0.05 critical point of chi square with 2 degrees of freedom. The
procedure is to set 4nD,+L,%'O5 = 5.99 and solve to obtain

Dy 05/ 1.4975/n = 1.22/Vn

4.4 APPLICATIONS OF THE KOLMOGOROV-SMIRNOV ONE-SAMPLE
STATISTICS

The statistical use of the Kolmogorov-Smirnov statistic in a goodness-
of-fit type of problem is obvious. Assume we have the random sample
X1,Xs,...,X, and the hypothesis-testing situation Hy: Fx(x) = Fy(x)
for all x, where Fy(x) is a completely specified continuous distribution
function.

Since S, (x) is the statistical image of the population distribution
Fx(x), the differences between S, (x) and Fy(x) should be small for all x
except for sampling variation, if the null hypothesis is true. For the
usual two-sided goodness-of-fit alternative.

Hi: Fx(x) # Fo(x) for some x

large absolute values of these deviations tend to discredit the
hypothesis. Therefore, the Kolmogorov-Smirnov goodness-of-fit test
with significance level o is to reject Hy when D, > D, ,. From the
Glivenko-Cantelli theorem of Chapter 2, we know that S,, (x) converges
to Fx(x) with probability 1, which implies consistency.
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The value of the Kolmogorov-Smirnov goodness-of-fit statistic D,,
in (3.1) can be calculated using (3.4) if all n observations have different
numerical values (no ties). However, the expression below is con-
siderably easier for algebraic calculation and applies when ties are
present. The formula is

Dy, = sup| Sy (x) — Fo(x)| = max(|S, (x) — Fo(@)|, [Sn(x — &) — Fo(@)]

where ¢ denotes any small positive number. Example 4.1 will illustrate
this easy algebraic method of calculating D,. Quantiles of the exact
null distribution of D,, are given in Table F in the Appendix for n < 40,
along with approximate values for n > 40. The appropriate critical
region is for D, large.

Example 4.1 The 20 observations below were chosen randomly from
the continuous uniform distribution over (0,1), recorded to four sig-
nificant figures, and rearranged in increasing order of magnitude.
Determine the value of D,, and test the null hypothesis that the
square roots of these numbers also have the continuous uniform dis-
tribution, over (0,1).

0.0123 0.1039 0.1954 0.2621 0.2802
0.3217 0.3645 0.3919 0.4240 0.4814
0.5139 0.5846 0.6275 0.6541 0.6889
0.7621 0.8320 0.8871 0.9249 0.9634

Solution The calculations needed to find D,, are shown in Table 4.1.
The entries in the first column, labeled x, are not the observations
above, but their respective square roots, because the null hypothesis is
concerned with the distribution of these square roots. The S, (x) are
the proportions of observed values less than or equal to each different
observed x. The hypothesized distribution here is Fy(x) = x, so the
third column is exactly the same as the first column. The fourth col-
umn is the difference S, (x) — Fo(x). The fifth column is the difference
S, (x —g) — Fy(x), that is, the difference between the S, value for a
number slightly smaller than an observed x and the Fy value for that
observed x. Finally the sixth and seventh columns are the absolute
values of the differences of the numbers in the fourth and fifth col-
umns. The supremum is the largest entry in either of the last two
columns; its value here is D,, = 0.36. Table F shows that the 0.01 level
rejection region for n =20 is D, > 0.352, so we reject the null hy-
pothesis that these numbers are uniformly distributed.
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Table 4.1 Calculation of D, for Example 4.1

x  Sp(x) Fo(x) Sa(x)—Fo(x) Sa(x—g)—Fox) [Sn(x)—Fox)| [Sn(x—e)—Fox)

0.11 0.05 0.11 —0.06 -0.11 0.06 0.11
0.32 0.10 0.32 -0.22 —-0.27 0.22 0.27
0.44 0.15 0.44 -0.29 —0.34 0.29 0.34
0.51 0.20 0.51 -0.31 —0.36 0.31 0.36
0.53 0.25 0.53 -0.28 -0.33 0.28 0.33
0.57 0.30 0.57 -0.27 —0.32 0.27 0.32
0.60 0.35 0.60 -0.25 —-0.30 0.25 0.30
0.63 0.40 0.63 -0.23 —0.28 0.23 0.28
0.65 045 0.65 -0.20 -0.25 0.20 0.25
0.69 0.50 0.69 -0.19 -0.24 0.19 0.24
0.72 055 0.72 -0.17 —0.22 0.17 0.22
0.76 0.60 0.76 -0.16 -0.21 0.16 0.21
0.79 0.65 0.79 —-0.14 -0.19 0.14 0.19
0.81 0.70 0.81 -0.11 —0.16 0.11 0.16
0.83 0.75 0.83 —0.08 -0.13 0.08 0.13
0.87 0.80 0.87 -0.07 —-0.12 0.07 0.12
091 085 0091 —0.06 —-0.11 0.06 0.11
0.94 0.90 0.94 —0.04 —0.09 0.04 0.09
0.96 0.95 0.96 -0.01 —0.06 0.01 0.06
0.98 1.00 0.98 0.02 —0.03 0.02 0.03

The theoretical justification behind this example is as follows. Let
Y have the continuous uniform distribution on (0,1) so that fy(y) =1
for 0 <y < 1. Then the pdf of X = v/Y can be shown to be (the reader
should verify this) fx(x) = 2x for 0 < x < 1, which is not uniform. In
fact, this is a beta distribution with parameters a = 2 and b6 = 1.

ONE-SIDED TESTS

With the statistics D and D,, it is possible to use Kolmogorov-
Smirnov statistics for a one-sided goodness-of-fit test which would
detect directional differences between S, (x) and Fy(x). For the alter-
native

H, : Fx(x) = Fo(x) for all x
the appropriate rejection region is D} > D , and for the alternative
H,_: Fx(x) < Fy(x) for all x

H, is rejected when D, > D, . Both of these tests are consistent
against their respective alternatives.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



TESTS OF GOODNESS OF FIT 123

Most tests of goodness of fit are two-sided and so applications of
the one-sided Kolmogorov-Smirnov statistics will not be demonstrated
here in detail. However, it is useful to know that the tail probabilities
for the one-sided statistics are approximately one-half of the corres-
ponding tail probabilities for the two-sided statistic. Therefore, ap-
proximate results can be obtained for the one-sided statistics by using
the entries in Table F with each quantile being one-half of the value
labeled. In our example, we find D;; = 0.02 as the largest entry in the
fourth column of Table 4.1. Now from Table F we see that for n = 20,
the smallest critical value corresponding to a two-tailed P value of
0.200 is 0.232. Since the observed value 0.02 is smaller than 0.232, we
conclude that the approximate P value for testing H, against
H;.: Fx(x) > Fy(x) for all x is larger than 0.100 so we fail to reject Hy
in favor of H;.. For the alternative H;_: Fx(x) < Fo(x) we find
D, = 0.36 from the fifth column of Table 4.1. The approximate P value
from Table F is P < 0.005 and so we reject Hy in favor of Hy _. If, for
example, we observed D, = 0.30, the approximate P value is between
0.01 and 0.025.

The STATXACT solution to Example 4.1 is shown below. The
values of all three of the D, statistics and P values agree with ours.
The STATXACT package also provides Kolmogorov-Smirnov type tests
of goodness of fit for some specific distributions such as the binomial,
Poisson, uniform, exponential and normal. Some of these will be dis-
cussed and illustrated later in this chapter.

o e o RSk o e sk e R ek s o ek

STATXACT SOLUTION TO EXAMPLE 4.1

i ko A ok o o o R S R R R R K R

KOLMOGOROV - SMIRNOV ONE -SAMPLE TEST

Hypothesized distribution F(X} : Uniformi{Cont.}:

Min = 0.0000 Max = 1.000
Let 5(X] be the empirical distributien.
Sample size : 20
Inference :
Statistic
Item sup{|5(X) - Fi{X}[} Sup{S{x} - F{xX)} Sup{F{X} - s(X)}
Observed Statistic 0.3600 0.02000 0.36800
Stand. Statistie 1.610 “0.085244 1.510
Asymptotic p-value 0.0112 0.5841 0.0056
Exact p-value 0.04079 0.9708 0.0040
Exact Peoint Prob. 0.0000 0.0000 00000

MINITAB offers the Kolmogorov-Smirnov test for the normal
distribution and this will be discussed later in this chapter.
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Two other useful applications of the Kolmogorov-Smirnov
statistics relate to point and interval estimations of the unknown
cdf Fy.

CONFIDENCE BANDS

One important statistical use of the D,, statistic is in finding confidence
bands on Fx(x) for all x. From Table F in the Appendix, we can find the
number D, , such that

PD, >D,,) =a

This is equivalent to the statement

Plsup|S,(x) — Fx(x)| < D4 =1-a

which means that
P[S,(x) —Dpy < Fx(x) <Sp(x)+ Dy, forallx] =1 —a

But we know that 0 < Fx(x) < 1 for all x, whereas the inequality
in this probability statement admits numbers outside this range. Thus
we define

L, (x) = max[S,(x) — Dy, 0]
and
U, (x) =min[S, (x) + D, 4, 1]

and call L, (x) a lower confidence band and U, (x) an upper confidence
band for the cdf Fx, with associated confidence coefficient 1 — a.

The simplest procedure in application is to graph the observed
S, (x) as a step function and draw parallel lines at a distance D, , in
either direction, but always within the unit square. When n > 40, the
value D, can be determined from the asymptotic distribution. Of
course, this confidence-band procedure can be used to perform a test of
the hypothesis Fx(x) = Fy(x), since Fy(x) lies wholly within the limits
L,(x) and U, (x) if and only if the hypothesis cannot be rejected at a
significance level a.

Similar applications of the D, or D, statistics are obvious.

One criticism of confidence bands is that they are too wide, par-
ticularly in the tails of the distribution, where the order statistics have
a lot of variation. Keeping this in mind, other approaches to con-
structing a confidence band on the cdf have been considered in the
literature. One general idea is to base bands on sup,[w{F(x)}|S,(x)—
F(x)|], where w(x) is a suitable weight function. Some authors have
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also considered restricting the range of x to a finite interval. For

[Sn (x)—F(x)|
F 1 F ) where a and

b are constants with 0 <a < b < 1, to set up a confidence band for

example, Doksum (1977) used max, < g, (x) <5

Fx(x). The resulting band is slightly wider in the middle but is much
narrower in the tails.

SAS provides confidence bands for the cdf for various confidence
levels. We present an example using the data in Example 4.1 and the
module “Interactive data analysis.” Figure 4.1 shows a screenshot,
helping the reader find the procedure under SAS Version 8. The
output is shown in Figure 4.2. Note the slider in the output, which
allows one to change, for example, the confidence level interactively,
and examine the effect on the bands. Note also that the output in-
cludes the K-S test statistic and the associated P value, together
with the estimates of the population mean and the standard devia-
tion. The K-S test for the normal distribution with unknown mean
and standard deviation is called Lilliefors’s test and is discussed
later in Section 4.5. In Figure 4.3 we show the output using data
from Example 5.1.

Next we consider an application of the K-S test statistic to de-
termine sample size.

DETERMINATION OF SAMPLE SIZE

In the case of a point estimate, the D,, statistic enables us to determine
the minimum sample size required to guarantee, with a certain
probability 1 — a, that the error in the estimate never exceeds a fixed
positive value c¢. This allows us to formulate the sample size deter-
mination problem as follows. We want to find the minimum value of n
that satisfies

PD, <c)=1—-ua
This is equivalent to saying
1-PWD, <c)=PD, >c)=ua

and therefore ¢ equals the value of D,, given in Table F of the
Appendix. This means that the value of n can be read directly from
Table F as that sample size corresponding to D,, , = c¢. If no n < 40 will
meet the specified accuracy, the asymptotic distribution of Theorem
3.3 can be used by solving ¢ = d/+/n for n, where d//n is given in the
last row of Table F in the Appendix.
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For example, suppose we want to take a sample of size n and use
the resulting S, (x) as a point estimate of Fx(x) for each x. We want the
error in this estimate to be no more than 0.25 with probability 0.98.
How large a sample should be taken? We look down the 0.02=1—0.98
column in Table F of the Appendix until we find the largest ¢ that is
less than or equal to 0.25. This entry is 0.247, which corresponds to a
sample size of n = 36. If we want more precision in our point estimate
and thereby specify a maximum error of 0.20 but keep the probability
at 0.98, Table F shows that n > 40. The value is found by solving
1.52//n = 0.20 and we get n = 57.76, which is rounded up to require a
sample size of 58 observations.

It should be noted that all of the theoretical properties of the
Kolmogorov-Smirnov statistics required the assumption that Fx be
continuous, since this is necessary to guarantee their distribution-
free nature. The properties of the empirical distribution function
given in Section 2.3, including the Glivenko-Cantelli theorem, do not
require this continuity assumption. Furthermore, it is certainly de-
sirable to have a goodness of fit test which can be used when the
hypothesized distribution is discrete. Noether (1967, pp. 17-18) and
others have shown that if the D, , values based on a continuous Fx
are used in a discrete application, the same significance level is at
most o. However, Slakter (1965) used Monte Carlo techniques to
show that this procedure is extremely conservative. Conover (1972)
found recursive relationships for the exact distribution of D, for F
discrete.

Pettitt and Stephens (1977) give tables of exact tail probabilities
of nD, that can be used with F discrete and also for grouped data
from a continuous distribution as long as the expected frequencies are
equal. They show that in these two cases, the test statistic can be
written as

nD, = max
1<j<k

j
> (Fi—e)
i=1

because
J Fi J e;
S, (x) = Z — and  Fo(g) = Z;
i=1 =1
for ordered x; <xo < --- <x,. This expression shows that the dis-

tribution of D, depends on the chosen grouping and also shows
explicitly the relationship between D, and the chi-square statistic @.
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This exact test has greater power than the chi-square test in the case
of grouped data.

4.5 LILLIEFORS’S TEST FOR NORMALITY

In this section we consider the problem of a goodness-of-fit test for
the normal distribution with no specified mean and variance. This
problem is very important in practice because the assumption of a
general normal distribution with unknown p and o is necessary to so
many classical statistical test and estimation procedures. In this
case, note that the null hypothesis is composite because it states that
the underlying distribution is some normal distribution. In general,
K-S tests can be applied in the case of composite goodness-of-fit
hypotheses after estimating the unknown parameters [Fo(x) will
then be replaced by Fyy(x)]. Unfortunately, the null distribution of the
K-S test statistic with estimated parameters is far more complicated.
This, of course, affects the P-value calculations. In the absence of any
additional information, one approach could be to use the tables of the
K-S test to approximate the P value or to find the approximate cri-
tical value. For the normal distribution, Lilliefors (1967) showed that
using the usual critical points developed for the K-S test gives
extremely conservative results. He then used Monte Carlo simula-
tions to develop a table for the Kolmogorov-Smirnov statistic that
gives accurate critical values. As before, the Kolmogorov-Smirnov
two-sided statistic is defined as

D, = sup|S, (x) — Fo(x)

Here Fy(x) is computed as the cumulative standard normal distribution
®(z) where z = (x —x)/s for each observed x, ¥ is the mean of the
sample of n observations, and s? is the unbiased estimator of o2
(computed with n — 1 in the denominator). The appropriate rejection
region is in the right tail and Appendix Table O gives the exact tail
probabilities computed by Monte Carlo simulations. This table is taken
from Edgeman and Scott (1987), in which more samples were used to
improve the accuracy of the original results given by Lilliefors (1967).

Example 5.1 A random sample of 12 persons is interviewed to esti-
mate median annual gross income in a certain economically depressed
town. Use the most appropriate test for the null hypothesis that in-
come data below are normally distributed.
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9,800
8,600

10,200
9,600

9,300
12,200

8,700
15,500

15,200
11,600

6,900
7,200

Solution Since the mean and variance are not specified, the most
appropriate test is the Lilliefors’s test. The first step is to calculate x
and s. From the data we get 3" x = 124,800 and " (x — %)? = 84,600,000
so that x = 10,400 and s = /84,600,000/11 = 2,773.25. The corres-
ponding standard normal variable is then z = (x — 10,400)/2,773. The
calculations needed for D, are shown in Table 5.1 (p. 132). We find
D, =0.1946 and P > 0.10 for n = 12 from Table O. Thus, the null
hypothesis that incomes are normally distributed is not rejected.

The following computer printouts illustrate the solution to
Example 5.1 using the SAS and MINITAB packages.

EX I TR ST LS L R LR LR e e b ok kb ]

SAS/ANALYST SOLUTION TC EXAMPLE 5.1

IR R T RS LRI SRR R A RS R EL LR LR ERE EEE NS

The UNIVARIATE Procedure
Fitted Distribution for a

Parameters for Normal Distribution

Parameter Symbol Estimate
Mean Mu 10400
Std Dev Sigma 2773.24%

Goodness-of -Fit Tests for Normal Distribution

Test ---Btatistic~----  ----- p Value-----
Kolmogorov-Smirnov D 0.19541250 Pr » D »0.150
Cramer-von Mises W-Sg 0.07074246 Pr » W-Sq >0.250
Anderson-Darling A-8g 0.45877863 Pr » A-Sq 0.223

Note that both the MINITAB and SAS outputs refer to this as the
K-S test and not the Lilliefors’s test. Both calculate a modified K-S
statistic using formulas given in D’Agostino and Stephens (1986); the
results agree with ours to two decimal places. SAS also provides the
results for two other tests, called the Anderson-Darling and
the Cramér-von Mises tests (see Problem 4.14). In this particular ex-
ample, each of the tests fails to reject the null hypothesis of normality.
In MINITAB one can go from Stat to Basic Statistics to Normality Test
and the output is a graph, called Normal Probability Plot. The grid on
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[IEEAEELEE R RS SRR SRR EE SRR EE RS A SRS & RN

MINITAB SQOLUTION TO EXAMPLE 5.1

IR TFESEEEE RS EEEEEEERE RS EEEE S L KX LS & & R 8 kN

Normal Probability Plot

999 -
99 : _ :
= . ‘ __ﬂ_//_ .
€ sl i, B BT .
-8 . : »—"')':f :
D‘: 20 .--l/_"g" -
05 4 Wi s 3
0 e
001 +
8000 10,500 13,000 15,500
C4
Average: 10400 Kolmogorov-Smimov Nommality Test
StDev: 2773.25 D+:0.195 D-:0.125 D:0.195
N: 12 Approximate P-Value > 0.15

Table 5.1 Calculations for Lilliefors’s statistic in Example 5.1

x : Sie) OGS -0  [Si—2)-0)
6900 —1.26 0.0833 0.1038 0.0205 0.1038
7200 -1.15 0.1667 0.1251 0.0416 0.0418
8600 —-0.65 0.2500 0.2578 0.0078 0.0911
8700 -0.61 0.3333 0.2709 0.0624 0.0209
9300 —0.40 0.4167 0.3446 0.0721 0.0113
9600 —-0.29 0.5000 0.3859 0.1141 0.0308
9800 —0.22 0.5833 0.4129 0.1704 0.0871

10200 —0.07 0.6667 0.4721 0.1946 0.1112

11600 0.43 0.7500 0.6664 0.0836 0.0003

12200 0.65 0.8333 0.7422 0.0911 0.0078

15200 1.73 0.9167 0.9582 0.0415 0.1249

15500 1.84 1.0000 0.9671 0.0329 0.0504

1.0000 0
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this graph resembles that found on a normal probability paper. The
vertical axis is a probability scale and the horizontal axis is the usual
data scale. The plotted points are the S, (x) values; the straight line is
a least-squares line fitted to these points. If the points fall reasonably
close to this straight line, the normal distribution hypothesis is sup-
ported. The P value given by both packages is an approximation based
on linear interpolation in tables that are not the same as our Table O.
See the documentation in the packages and D’Agostino and Stephens
(1986) for additional details.

The SAS software package also provides a number of excellent
(interactive) ways to study goodness of fit. We have given one il-
lustration already for confidence bands using data from Example
4.1. Now we illustrate some of the other possibilities in Figures 5.1
through 5.6, using the data from Example 5.1 and the Interactive
Data Analysis and the Analyst options, respectively, under SAS
version 8.0. The highlights include a plot of the empirical cdf, a box
plot, confidence bands, tests for a specific distribution the choices for
which includes the normal, the lognormal, the exponential and the
Weibull, a Q-Q plot together with a reference line and other avail-
able options. Also interesting is a slider (the bottom panel in the
output shown) where one can “try out” various means and standard
deviations to be compatible with the data on the basis of the K-S
test. For details on the features, the reader is referred to SAS
version 8.0 online documentations.

4.6 LILLIEFORS’S TEST FOR THE EXPONENTIAL DISTRIBUTION

Another important goodness-of-fit problem in practice is to test for the
exponential distribution with no specified mean. This problem is
important because the assumption of an exponential distribution with
an unknown mean p is made in many applications, particularly where
the random variable under study is the waiting time, the time to the
occurrence of an event. Lilliefors (1969) developed an analog of the
Kolmogorov-Smirnov test in this situation and gave a table of critical
values based on Monte Carlo simulations. As in the normal case with
unknown parameters, the Kolmogorov-Smirnov two-sided statistic is
defined as

D, = sup | S, (x) — Fo(x) |

Here Fy(x) is computed as 1 — e /% = Fy(z) = 1 — e %, say, where % is
the sample mean and z = x/x for each observed x. Thus one forms

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



"PAAISSAI SIYSU [V *ou] “Ioyye(] [99reN © WSuAdoD

"T°g opdwexy] 10J 3 Jo sSoUp0oS SISA[BUY BIR(] 9AIPRINU[/SVS L' ‘Bi4

CHAPTER 4

SpuDaIas Q' 2 auiy |99
IPasn uoIIBZI |BIJIUL SUiE

rasojie|d g6 NIM 843 uvo BulInaexe S| UD)|SsSas n_r_”.
"900052E8000 =!8 'H/L-S83NISNG 40 TO0HIS 01 pasuas

(OWISL) 1'8 aseajay adenzjog Eo.knonn_F%Lw g
“YSI CIN ‘Aae] CCou @3niisul GYS Aq 0002-6661 (9) 140! addo

134

|

MarceL DEkkER, Inc.

270 Madison Avenue, New York, New York 10016



135

TESTS OF GOODNESS OF FIT

"PAAISSAI SIYSU [V *ou] “Ioyye(] [99reN © WSuAdoD

‘ponunquod ‘1'g ojduwrexy J0j 31 Jo sSoupoosd SISA[eUy Bje(] 9ATORINUI/SYS g'G “Bid

A
i
u
u
a
.
N

MarceL DEkkER, Inc.

270 Madison Avenue, New York, New York 10016



CHAPTER 4

136

"PAAISSAI SIYSU [V *ou] “Ioyye(] [99reN © WSuAdoD

‘penurjuod ‘7°g sjdwrexy I0J 11 Jo ssoupoos Jo SISA[eUy BIe(] 9AIPIRINUI/SVS €°G B4

MarceL DEkkER, Inc.

270 Madison Avenue, New York, New York 10016



137

TESTS OF GOODNESS OF FIT

"PAAISSAI SIYSU [V *ou] “Ioyye(] [99reN © WSuAdoD

‘ponurpuod ‘1'g ardurexy Joj 31 Jo sSaUpood Jo SISA[eUy BJe(] 9AIPRINUI/SYS 1°G "Bid

v - H
05291 0S261  0Sgll 0528 0529
v
A
1
15000070 ,
s
u
a2
-1000°0 g
|
__
[
u_ v |
_“ 000¥1 00021 00001 0008
: _ u

MIANHISNSYS # uonngusiq ™

MarceL DEkkER, INc.

270 Madison Avenue, New York, New York 10016



CHAPTER 4

138

i =

"PAAISSAI SIYSU [V *ou] “Ioyye(] [99reN © WSuAdoD

‘ponurnuod ‘1'g ojdurexy JIoj 41j Jo ssouUpPoos Jo SISATeUy Bje(] 9AIIBINUI/SYS §°G "Bi4

B8¥2ELLé 00007 00F0I

~uoiynqiysiQ 4oy $3SIL

eEbig  ®jayL ueay  uoiInqraasiq .

| |EEEE ] 06vz 217 | BUSS R 0000 00y01 910w

| eubig I eyay) sueay | poyaay

4 | SU0130UNg UOIINGIA3SIQ 314

. Egmm.o_
pueg Jaddp | pueg Jamo U311 3330 _
400 404 spueg aouap| juo) 4

B222'0  BJJBSk'0 | OUl|4e(-UOSJDpUY |
0052°< erLolo’o SAS1|| UOA=RER.1)
0051°< ZIPSEL'0  Aoudiug-sosobiou|o

g 0661°0  259/06°0 AL in-odrdeys |
0 Tanjea~d T anjepq T 213513@3§ 358 |
 Ajewioy doy 53S9 [

|ouioy |
uoiIngiasiqQ

SINIUD4S 314

s

MarceL DEkkER, Inc.

270 Madison Avenue, New York, New York 10016

®



139

TESTS OF GOODNESS OF FIT

SUenD ruLoN

‘1°g ordwrexy 10y jord

"paAIasal SIYSU 1V ou] Iopie [9dre © WSukdoD

b 1sLeuy/SVS 96 "Bidg

MarceL DEkkER, Inc. ﬂ
®

270 Madison Avenue, New York, New York 10016



140 CHAPTER 4

the standardized variable z; = x;/x, for each observed x;, and cal-
culates the usual K-S statistic between the empirical cdf and Fy(z;).
The appropriate rejection region is in the right tail and Table T in
the Appendix gives the necessary critical values obtained by Monte
Carlo simulations. This table is taken from Edgeman and Scott
(1987) who used more samples to improve the accuracy of the ori-
ginal results given by Lilliefors (1969). Durbin (1975) provided exact
quantiles.

Example 6.1 Test the null hypothesis that the data below arose from a
one-parameter exponential distribution.

1.5,2.3,4.2,7.1,10.4,8.4,9.3,6.5,2.5,4.6

Solution Since the mean of the exponential distribution is not spe-
cified under the null hypothesis, we estimate it from the data by
X = 5.68. The standardized variable is z = x/5.68. The calculations for
the Lilliefors’s test are summarized in Table 6.1. We find D,, = 0.233
and using Table T with n = 10, the approximate P value is greater
than 0.10.

At the time of this writing, MINITAB does not provide any formal
test for the exponential distribution, although some graphical proce-
dures are available. The output from SAS/ANALYST for Example 6.1
is shown below. Note that the K-S test with the estimated mean is not
referred to as Lilliefors’s test but the numerical result agrees with
ours. The approximate P value for Lilliefors’s test (K-S test on the

Table 6.1 Calculations for Lilliefors’s test in Example 6.1

X z Sh (%) Fo(x) =Fo(z)  |Sa(x) —Fo(2)] |Sn(x — &) = Fo(2) |
15 026  0.1000 0.2321 0.1321 0.2321
2.3 040  0.2000 0.3330 0.1330 0.2330
25 044  0.3000 0.3561 0.0561 0.1561
42 074  0.4000 0.5226 0.1226 0.2226
46 081  0.5000 0.5551 0.0551 0.1551
65 114  0.6000 0.6816 0.1816 0.1816
71 125  0.7000 0.7135 0.0135 0.1135
84 148  0.8000 0.7721 0.0279 0.0721
9.3 164  0.9000 0.8055 0.0945 0.0055

104  1.83  1.0000 0.8397 0.1603 0.0603
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printout) is shown to be greater than 0.15. Thus, as with the hand
calculations, we reach the same conclusion that there is not sufficient
evidence to reject the null hypothesis of an exponential distribution.
SAS uses internal tables that are similar to those given by D’Agostino
and Stephens (1986) to calculate the P value. Linear interpolation is
used in this table if necessary. SAS provides the values of two other
test statistics, called the Cramér-von Mises and Anderson-Darling
tests; each fails to reject the null hypothesis and the P values are
about the same.

EEEEEEEEREREEREEEEEREEERERREESEEREREREEJEXE:EJERE.]

SAS/ANALYST SOLUTION FOR EXAMPLE 6.1

R R R R R R R R R R R R R R R R R R

The UNIVARIATE Procedurs
Fitted Distribution for A

Parameters for Exponential Distribution

Parameter Symbol Estimate
Threshold Theta 0
Scale Sigma S.68
Mean 5.68
Std Dev 5.68

Goodneaa-of -Fit Teats for Exponential Distributicn

Test ---8tatistic---- ---p Value-----

Kolmogorov-Smirnov D 0.23297622 Pr > D »0.150
Cramer-von Mises W-8q 0.16302537 Pr = W-5¢g 0.117%7
Andersgon-Darling A-5q 0.94547938 Pr » A-8g 0.120

We now redo Example 6.1 for the null hypothesis of the ex-
ponential distribution with mean specified as p = 5.0. This is a simple
null hypothesis for which the original K-S test of Section 4.5 is ap-
plicable. The calculations are shown in Table 6.2 (p. 142). The K-S test
statistic is D, = 0.2687 with n = 10, and we do not reject the null
hypothesis since Table F gives P > 0.200.

The SAS solution in this case is shown below. Each of the
tests fails to reject the null hypothesis and the P values are about the
same.
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Table 6.2 Calculations for the K-S test with p = 5.0 for the data in Example 6.1

x z=x/p S (x) Fo(z) |Sn(x) — Fo(2) | |Sn(x —¢) = Fo(z)
1.5 0.30 0.1 0.2592 0.1592 0.2592
2.3 0.46 0.2 0.3687 0.1687 0.2687
2.5 0.50 0.3 0.3935 0.0935 0.1935
4.2 0.84 0.4 0.5683 0.1683 0.2683
4.6 0.92 0.5 0.6015 0.1015 0.2015
6.5 1.30 0.6 0.7275 0.1275 0.2275
7.1 1.42 0.7 0.7583 0.0583 0.1583
8.4 1.68 0.8 0.8136 0.0136 0.1136
9.3 1.86 0.9 0.8443 0.0557 0.0443

10.4 2.08 1.0 0.8751 0.1249 0.0249

EE RS R e S S R e R R e RS SRR E R EE R R R

SAS/BNALYST SOLUTION FOR EXAMPLE &.1 WITH MEAMN 5

AHERERE R R EEFF A A A ERR AT AR R A A AR Rk kA kAR Rk kb wmadddddddt

The UNIVARIATE
Fitted Distribution

Procedure
for A

Parameters for Exponential Distribution

Parameter Symbol Eztimate
Threshold Theta 0
Scale Sigma 5
Mean 5
std Dev 5

Goodness-of-Fit Tests for Bxponential Distribution

Test ~--Statistic----
Kclmogorov-Smirnov D G.26871635
Cramer-von Mises W-Sg 0.24402323
Anderson-Darling A-8g 1.23014013

----- p Value-----
r > D >0.250
°r » W-8q 0.221

Pr » A-Sq  0.238

Finally suppose that we want to test the hypothesis that the
population is exponential with mean p = 3.0. Again, this is a simple
null hypothesis for which SAS provides three tests mentioned earlier
and all of them reject the null hypothesis. However, note the difference
in the magnitudes of the P values between the K-S test and the other
two tests.
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S o ke K kR ok R R R b R R sk ko o o ok o ok ok o o ok R ok K
SAS/RENALYST SOLUTION FOR EXAMPLE 6.1 WITH MEAN 3

R R R R R R B R R R R R R b kb b R R R X R R R

The UNIVARIATE Procedure
Fitted Distribution for A

Parameters for Fxponential Distribution

Parameter Symibol Estimale

Threshold Theta ]
Scale Sigma 3
Mean 2
std Dev 3

Goodness-of -¥it Teats for Exponential Diskributicon

Test ---8tatistic----  ----- P Value----
Kolmogorov-Smnirnov D 0.45340304 Pr > D .023
Cramer-von Mises W-Sg 0.874028416 Pr » W-5g C.004
Anderson-Darling B-Sg 4.77072B98 Pr » B-8gq 0.004

Currently MINITAB does not provide a direct goodness-of-fit test
for the exponential distribution but it does provide some options under
a general visual approach. This is called probability plotting and is
discussed in the next section.

4.7 VISUAL ANALYSIS OF GOODNESS OF FIT

With the advent of easily available computer technology, visual
approaches to statistical data analysis have become popular. The sub-
ject is sometimes referred to as exploratory data analysis (EDA),
championed by statisticians like John Tukey. In the context of goodness-
of-fit tests, the EDA tools employed include dot plots, histograms,
probability plots, and quantile plots. The idea is to use some graphics
to gain a quick insight into the underlying distribution and then, if
desired, carry out a follow-up analysis with a formal confirmatory test
such as any of the tests covered earlier in this chapter. Dot plots and
histograms are valuable exploratory tools and are discussed in almost
all statistics books but the subject of probability and quantile plots is
seldom covered, even though one of the key papers on the subject was
published in the 1960s [Wilk and Gnanadesikan (1968)]. In this section
we will present a brief discussion of these two topics. Fisher (1983)
provided a good review of many graphical methods used in nonpara-
metricstatistics along with extensive references. Note that there are two-
sample versions of each of these plots but we do not cover that topic here.
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In what follows we distinguish between the theoretical and the
empirical versions of a plot. The theoretical version is presented to
understand the idea but the empirical version is the one that is
implemented in practice. When there is no chance of confusion, the
empirical plot is referred to as simply the plot.

Two types of plots are popular in practice. The first is the so-
called probability plot, which is actually a probability versus prob-
ability plot, or a P-P plot. This plot is also called a percent-percent plot,
for obvious reasons. In general terms, the theoretical P-P plot is the
graph of a cdf F(x) versus a cdf G(x) for all values of x. Since the cdf’s
are probabilities, the P-P plot is conveniently confined to the unit
square. If the two cdfs are identical, the theoretical P-P plot will be the
main diagonal, the 45 degree line through the origin.

The second type of plot is the so-called quantile plot, which is
actually a quantile versus quantile plot, or a Q-Q plot. The theoretical
Q-Q plot is the graph of the quantiles of a cdf F versus the corre-
sponding quantiles of a cdf G, that is, the graph [F~1(p),G(p)] for
0 < p < 1. If the two cdf’s are identical, the theoretical Q-Q plot will
be the main diagonal, the 45-degree line through the origin. If
F(x) = G(X2), it is easily seen that F1(p) = p+ oG 1(p), so that the
pth quantiles of F' and G have a linear relationship. Thus, if two dis-
tributions differ only in location and/or scale, the theoretical Q-Q plot
will be a straight line with slope ¢ and intercept .

In a goodness-of-fit problem, there is usually a specified target
cdf, say Fo. Then the theoretical Q-Q plot is the plot [Fy1(p),Fx'(p)],
0 < p < 1. Since Fx is unknown, we can estimate it with the em-
pirical cdf based on a random sample of size n, say S,. Noting that
the function S, jumps only at the ordered values X|;), the empirical
Q-Q plot is simply the plot of F;1(i/n) on the horizontal axis versus
S 1i/n) = X(;) on the vertical axis, for i = 1,2,...,n. As noted before,
F, is usually taken to be the standardized form of the hypothesized
cdf, so that to establish the Q-Q plot (location and/or scale), under-
lying parameters do not need to be specified. This is one advantage of
the Q-Q plot. The quantities a; = i/n are called plotting positions. At
i =n, there is a problem since a, = F;1(1) = co; modified plotting
positions have been considered, with various objectives. One simple
choice is a; =1 —0.5/n; other choices include a; =i/n+1 and
a; = (i — 0.375)/n + 0.25, the latter being highly recommended by
Blom (1958). We found that many statistical software package graph
[Fo'((i —0.375)/(n +0.25)), X(;)] as the empirical Q-Q plot. For a
given standardized cdf F, the goodness-of-fit null hypothesis Fx = F
is not rejected if this plot is approximately a straight line through
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the origin. Departures from this line suggest the types of differences
that could exist between Fx and F,. For example, if the plot re-
sembles a straight line but with a nonzero intercept or with a slope
other than 45 degrees, a location-scale model is indicated. This
means Fy belongs to the specified family of distributions but the
location and the scale parameters of Fx, namely p and o, are dif-
ferent from the standard values. When the empirical Q-Q plot is
reasonably linear, the slope and the intercept of the plot can be used
to estimate the scale and location parameter, respectively. When F is
taken to be the standard normal distribution, the Q-Q plot is called a
normal probability plot. When F, is taken to be the standard ex-
ponential distribution (mean =1), the Q-Q plot is called an ex-
ponential probability plot.

In summary, either the empirical P-P or Q-Q plot can be used
as an informal tool for the goodness-of-fit problem but the Q-Q plot
is more popular. If the plots appear to be close to the 45 degree
straight line through the origin, the null hypothesis Fy =F, is
tentatively accepted. If the Q-Q plot is close to some other straight
line, then F is likely to be in the hypothesized location-scale family
(as Fy) and the unknown parameters can be estimated from the
plot. For example, if a straight line is fitted to the empirical Q-Q
plot, the slope and the intercept of the line would estimate the
unknown scale and the location parameter, respectively; then the
estimated distribution is Fx = Fy (’%‘ggm(?. An advantage of the Q-
Q plot is that the underlying parameters do not need to be specified
since Fy is usually taken to be the standard distribution in a family
of distributions. By contrast, the construction of a P-P plot requires
specification of the underlying parameters, so that the theoretical
cdf can be evaluated at the ordered data values. The P-P plot is
more sensitive to the differences in the middle part of the two
distributions (the data distribution and the hypothesized distribu-
tion), whereas the Q-Q plot is more sensitive to the differences in
the tails of the two distributions.

One potential issue with using plots in goodness-of-fit problems is
that the interpretation of a plot, with respect to linearity or near lin-
earity, is bound to be somewhat subjective. Usually a lot of experience
is necessary to make the judgment with a reasonable degree of con-
fidence. To make such an assessment more objective, several proposals
have been made. One is based on the “correlation coefficient” between
the x and y coordinates; see Ryan and Joiner (1976) for a test in the
context of a normal probability plot. For more details, see D’Agostino
and Stephens (1986, Chap. 5).
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Table 7.1 Calculations for normal and exponential Q-Q plot for data in Example 6.1

Ordered Standard Standard exponential
data Plotpos normal quantiles quantiles
y i a; =318 O ;) —In(1—-a)
1.5 1 0.060976 —1.54664 0.062914
2.3 2 0.158537 —1.00049 0.172613
2.5 3 0.256098 —0.65542 0.295845
4.2 4 0.353659 —0.37546 0.436427
4.6 5 0.451220 —0.12258 0.600057
4.5 6 0.548780 0.12258 0.795801
7.1 7 0.646341 0.37546 1.039423
84 8 0.743902 0.65542 1.362197
9.3 9 0.841463 1.00049 1.841770
104 10 0.939024 1.54664 2.797281

Example 7.1 For the sample data given in Example 6.1 using
a; = (i —0.375)/(n + 0.25), the calculations for a normal and
exponential Q-Q plots are shown in Table 7.1. The two Q-Q plots are
plotted in EXCEL and are shown in Figures 7.1 and 7.2. In each case a
least-squares line is fitted to the plot. The slope and the intercept of

Normal G-Q Plot
and Estimation of Parameters

12 -
210

-

3 s *

2 y = 3.2020x + 5.48
=

& 6

o
W

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
standard normal quantiles

Fig. 7.1 Normal Q-Q plot for Example 7.1.
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Exponential Q-Q Plot
and Estimation of Parameters

14 -
y = 3.5235x + 2.1664
12 |
g 10
ju]
3 8
®
d B
-
S 4
2
0 . . .
0 05 1 15 2 25 3

standard exponential quantiles

Fig. 7.2 Exponential Q-Q plot for Example 7.1.

the scale and the location parameter under the respective model. For
these data it appears that the normal distribution with mean 5.48 and
standard deviation 3.3 provides a better fit than the exponential dis-
tribution with mean 3.52.

4.8 SUMMARY

In this chapter we presented procedures designed to help identify the
population from which a random sample is drawn. The primary test
criteria are the normalized sum of squares of deviations, and the dif-
ference of the cumulative distribution functions, between the hypo-
thesized and observed (sample) distributions. Chi-square tests are
based on the first criterion and the K-S type tests are based on the
second (including the Lilliefors’s tests).

The chi-square test is specifically designed for use with catego-
rical data, while the K-S statistics are for random samples from con-
tinuous populations. However, when the data are not categorical as
collected, these two goodness-of-fit tests can be used interchangeably.
The reader is referred to Goodman (1954), Birnbaum (1952), and
Massey (1951c) for discussions of their relative merits. Only a brief
comparison will be made here, which is relevant whenever raw un-
grouped measurement data are available.
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The basic difference between the two tests is that chi square
is sensitive to vertical deviations between the observed and ex-
pected histograms, whereas K-S type procedures are based on
vertical deviations between the observed and expected cumulative
distribution functions. However, both types of deviations are
useful in determining goodness-of-fit and probably are equally
informative. Another obvious difference is that chi square requires
grouped data whereas K-S does not. Therefore, when the hy-
pothesized distribution is continuous, the K-S test allows us to
examine the goodness-of-fit for each of the n observations, instead
of only for the % classes, where £ < n. In this sense, the K-S type
procedures make more complete use of the available data. Further,
the chi-square statistic is affected by the number of classes and
their widths, which are often chosen arbitrarily by the experi-
menter.

One of the primary advantages of the K-S test is that the exact
sampling distribution of D, is known or can be simulated and ta-
bulated when all parameters are specified, whereas the sampling
distribution of @ is only approximately chi square for any finite n.
The K-S test can be applied for any size sample, while the chi-
square test should be used only for n large and each expected cell
frequency not too small. When cells must be combined for chi-
square application, the calculated value of @ is no longer unique, as
it is affected by the scheme of combination. The K-S statistic is
much more flexible than chi square, since it can be used in esti-
mation to find minimum sample size and confidence bands. With the
one-sided D, or D, statistics, we can test for deviations in a par-
ticular direction, whereas the chi-square is always concerned
equally with differences in either direction. In most cases, K-S is
easier to apply.

However, the chi-square test also has some advantages over K-
S. A hypothesized distribution which is discrete presents no pro-
blems for the chi-square test, while the exact properties of D, are
violated by the lack of continuity. As already stated, however, this is
a minor problem with D, which can generally be eliminated by
replacing equalities by inequalities in the probabilities. Perhaps the
main advantage of the chi-square test is that by simply reducing
the number of degrees of freedom and replacing unknown para-
meters by consistent estimators, a goodness-of-fit test can be per-
formed in the wusual manner even when the hypothesized
distribution is not completely specified. If the hypothesized Fy(x) in
D, contains unspecified parameters which are estimated from the
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data, we obtain an estimate D, whose sampling distribution is dif-
ferent from that of D,. The test is conservative when the D, critical
values are used.

As for relative performance, the power functions of the two sta-
tistics depend on different quantities. If Fy(x) is the hypothesized
cumulative distribution and Fx(x) the true distribution, the power of
K-S depends on

sup |[Fx(x) — Fo(x)]

while the power of chi square depends on

" {[Fx(ais1) — Fx(a:)] — [Fo(ais1) — Fo(a:)]}?
— Fo(ait1) — Fo(ai)

1

where the a; are the class limits in the numerical categories.

The power of the chi-square test can be improved by clever
grouping in some situations. In particular, Cochran (1952) and others
have shown that a choice of intervals which provide equal expected
frequencies for all classes is a good procedure in this respect besides
simplifying the computations. The number of classes £ can be chosen
such that the power is maximized in the vicinity of the point where
power equals 0.5. This procedure also eliminates the arbitrariness of
grouping. The expression for @ in (2.1) reduces to (kY F? —n?)/n
whene; =n/k fori=1,2,... k.

Many studies of power comparisons have been reported in the
literature over the years. Kac, Kiefer, and Wolfowitz (1955) showed
that the K-S test is asymptotically more powerful than the chi-square
test when testing for a completely specified normal distribution. Fur-
ther, when the sample size is small, the K-S provides an exact test
while the chi-square does not.

When the hypothesized distribution is the normal or exponential
and the parameters are specified (the null hypothesis is simple), the
K-S test based on Table F gives an exact goodness-of-fit test. This test
is conservative when parameters need to be estimated (the null
hypothesis is composite). In these cases, the modified version of the D,
statistic sometimes known as the Lilliefors’s test statistic should
be used. The exact mathematical-statistical derivation of the dis-
tribution of this test statistic is often very complicated but Monte
Carlo estimates of the percentiles of the null distribution can be
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obtained. The tables given in Lilliefors (1967, 1969) were generated in
this manner, as are our Tables O and T. Edgeman and Scott (1987)
gave a step-by-step algorithm that included goodness-of-fit testing for
the lognormal, the Rayleigh, Weibull and the two-parameter ex-
ponential distribution.

Iman (1982) provided graphs for performing goodness-of-fit tests
for the normal and the exponential distributions with unspecified
parameters. These graphs are in the form of confidence bands based
on Lilliefors’s (1967) critical values for the normal distribution test
and Durbin’s (1975) critical values for the exponential distribution
test. On a graph with these bands, the empirical distribution func-
tion of the standardized variable S,,(z) is plotted on the vertical axis
as a step function in order to carry out the test. If this plot lies en-
tirely within the confidence bands, the null hypothesis is not re-
jected. These graphs can be obtained by running some MINITAB
macro programs.

Finally, we have the option of using P-P or Q-Q plots to glean
information about the population distribution. The interpretation is
usually subjective, however.

PROBLEMS

4.1. Two types of corn (golden and green-striped) carry recessive genes. When these
were crossed, a first generation was obtained which was consistently normal (neither
golden nor green-striped). When this generation was allowed to self-fertilize, four dis-
tinct types of plants were produced: normal, golden, green-striped, and golden-green-
striped. In 1200 plants this process produced the following distribution:

Normal: 670

Golden: 230
Green-striped: 238
Golden-green-striped: 62

A monk named Mendel wrote an article theorizing that in a second generation of such
hybrids, the distribution of plant types should be in a 9:3:3:1 ratio. Are the above data
consistent with the good monk’s theory?

4.2. A group of four coins is tossed 160 times, and the following data are obtained:

Number of heads 0 1 2 3 4
Frequency 16 48 55 33 8

Do you think the four coins are balanced?

4.3. A certain genetic model suggests that the probabilities for a particular trinomial
distribution are, respectively, 0; =p2 02 =2p(1 —p), and 03 = (1 —p)2,0 <p<l
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Assume that X7,X5, and X3 represent the respective frequencies in a sample of n in-
dependent trials and that these numbers are known. Derive a chi-square goodness-of-fit
test for this trinomial distribution if p is unknown.

4.4, According to a genetic model, the proportions of individuals having the four blood
types should be related by

Type 0: ¢*

Type A: p? + 2pq
Type B: r2 + 2gr
Type AB: 2pr

where p + ¢ +r = 1. Given the blood types of 1000 individuals, how would you test the
adequacy of the model?

4.5. If individuals are classified according to gender and color blindness, it is hy-
pothesized that the distribution should be as follows:

Male Female
Normal p/2 p%/2+pq
Color blind q/2 q%/2

for some p + g = 1, where p denotes the proportion of defective genes in the relevant
population and therefore changes for each problem. How would the chi-square test be
used to test the adequacy of the general model?

4.6. Show that in general, for @ defined as in (2.1),

k (Fifei)z - k nei(lfei) (neifei)Z
2 e; =2 ei A

i=1 =1

EQ)=E

From this we see that if the null hypothesis is true, n6; = ¢; and E(Q) = & — 1, the mean
of the chi-square distribution.

4.7. Show algebraically that where e; = n0; and & = 2, we have

o n91(1 - 91)

o 2 (Fifei)z (Flfnel)z
Q= )

-1 ¢
sothat whenk = 2, \/Q is the statistic commonly used for testing a hypothesis concerning
the parameter of the binomial distribution for large samples. By the central-limit theo-
rem, /@ approaches the standard normal distribution as n — oo and the square of any
standard normal variable is chi-square-distributed with 1 degree of freedom. Thus we
have an entirely different argument for the distribution of @ when & = 2.

4.8. Give a simple proof that D,,D;’, and D, are completely distribution-free for any
continuous Fx by appealing to the transformation u = Fx(x) in the initial definitions of
D,.D;, and D, .
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4.9. Prove that

1<i<n

-1
D, = max{ max [FX(Xm) L P },0}
4.10. Prove that the probability distribution of D, is identical to the distribution of D;':

(a) Using a derivation analogous to Theorem 3.4
(b) Using a symmetry argument

4.11. Using Theorem 3.3, verify that
lim P(D, > 1.07/v/n) = 0.20

4.12. Find the minimum sample size n required such that P(D, < 0.05) > 0.99.

4.13. Use Theorem 3.4 to verify directly that P(D} > 0.447) = 0.10. Calculate this
same probability using the expression given in (3.5).

4.14. Related goodness-of-fit test. The Cramér-von Mises type of statistic is defined for
continuous Fx(x) by

o0

o = [ 18,(0) ~ PP ficlo)

o0
(@) Prove that o? is distribution free.

(b) Explain how o? might be used for a goodness-of-fit test.
(¢) Show that

1 & 2i — 1\1?
2 _ S( o —
no, = 1on + i; {h{( @) n )}

This statistic is discussed in Cramér (1928), von Mises (1931), Smirnov (1936), and
Darling (1957).

4.15. Suppose we want to estimate the cumulative distribution function of a con-
tinuous population using the empirical distribution function such that the probability is
0.90 that the error of the estimate does not exceed 0.25 anywhere. How large a sample
size is needed?

4.16. If we wish to estimate a cumulative distribution within 0.20 units with prob-
ability 0.95, how large should n be?

4.17. A random sample of size 13 is drawn from an unknown continuous population
Fx(x), with the following results after array:

3.5,4.1,4.8,5.0,6.3,7.1,7.2,7.8,8.1,8.4,8.6,9.0

A 90% confidence band is desired for Fx(x). Plot a graph of the empirical distribution
function S, (x) and resulting confidence bands.

4.18. In a vibration study, a random sample of 15 airplane components were subjected
to severe vibrations until they showed structural failures. The data given are failure
times in minutes. Test the null hypothesis that these observations can be regarded as a
sample from the exponential population with density function f(x) = e=*/1°/10 for x > 0.
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1.6,10.3,3.5,13.5,18.4,7.7,24.3,10.7,8.4,4.9,7.9,12.0,16.2,6.8,14.7

4.19. For the data given in Example 6.1 use the most appropriate test to see if the dis-
tribution can be assumed to be normal with mean 10,000 and standard deviation 2,000.

4.20. The data below represent earnings per share (in dollars) for a random sample of
five common stocks listed on the New York Stock Exchange.

1.68,3.35,2.50,6.23, 3.24

(a) Use the most appropriate test to see if these data can be regarded as a
random sample from a normal distribution.

(b) Use the most appropriate test to see if these data can be regarded as a
random sample from a normal distribution with p = 3,6 =1.

(¢) Determine the sample size required to use the empirical distribution function
to estimate the unknown cumulative distribution function with 95% confidence such
that the error in the estimate is (i) less than 0.25, (ii) less than 0.20.

4.21. It is claimed that the number of errors made by a typesetter is Poisson dis-
tributed with an average rate of 4 per 1000 words set. One hundred random samples of
sets of 1000 words from this typesetter output are examined and the numbers of errors
are counted as shown below. Are these data consistent with the claim?

No. of errors 0 1 2 3 4 5
No. of samples 10 16 20 28 12 14

4.22. For the original data in Example 3.1 (not the square roots), test the null hy-
pothesis that they come from the continuous uniform distribution, using level 0.01.

4.23. Use the D, statistic to test the null hypothesis that the data in Example 2.1:

(a) Come from the Poisson distribution with p = 1.5
() Come from the binomial distribution with n =13, p =0.1

These tests will be conservative because both hypothesized distributions are discrete.

4.24. Each student in a class of 18 is asked to list three people he likes and three he
dislikes and label the people 0, 1, 2, 3, 4, 5 according to how much he likes them, with 0
denoting least liked and 5 denoting most liked. From this list each student selects the
number assigned to the person he thinks is the wealthiest of the six. The results in the
form of an array are as follows:

0,0,0,0,1,2,2,2,2,3,3,4,4,4,4,4,4,5

Test the null hypothesis that the students are equally likely to select any of the numbers
0, 1, 2, 3, 4, 5, using the most appropriate test and the 0.05 level of significance.

4.25. During a 50-week period, demand for a certain kind of replacement part for TV
sets was distributed as shown below. Find the theoretical distribution of weekly de-
mands for a Poisson model with the same mean as the given data and perform an ap-
propriate goodness-of-fit test.
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Weekly demand Number of weeks

0 28
1 15
2

3

M

(= ]

ore than 3

50

4.26. Suppose that monthly collections for home delivery of the New York Times in a
large suburb of New York are approximately normally distributed with mean $150 and
standard deviation $20. A random sample of 10 delivery persons in a nearby suburb is
taken; the arrayed data for monthly collections in dollars are:

90,106,109, 117, 130, 145, 156, 170, 174, 190

Test the null hypothesis that the same normal distribution model applies to this suburb,
using the most appropriate test.

4.27. A bank frequently makes large installment loans to builders. At any point in
time, outstanding loans are classified in the following four repayment categories:

A: Current

B: Up to 30 days delinquent
C: 30-60 days delinquent
D: Over 60 days delinquent

The bank has established the internal standard that these loans are “in control” as long
as the percentage in each category is as follows:

A:80% B:12% C:7% D: 1%

They make frequent spot checks by drawing a random sample of loan files, noting their
repayment status at that time and comparing the observed distribution with the stan-
dard for control. Suppose a sample of 500 files produces the following data on number of
loans in each repayment category:

A:358 B:83 C:44 D:15
Does it appear that installment loan operations are under control at this time?
4.28. Durtco Incorporated designs and manufactures gears for heavy-duty construc-

tion equipment. One such gear, 9973, has the following specifications:

(@) Mean diameter 3.0 in.
(b) Standard deviation 0.001 in.
(¢) Output normally distributed

The production control manager has selected a random sample of 500 gears from the
inventory and measured the diameter of each. Nothing more has been done to the data.
How would you determine statistically whether gear 9973 meets the specifications?
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Be brief but specific about which statistical procedure to use and why it is preferred and
outline the steps in the procedure.

4.29. Compare and contrast the chi-square and Kolmogorov-Smirnov goodness-of-fit
procedures.

4.30. For the data x: 1.0,2.3,4.2,7.1,10.4, use the most appropriate procedure to test
the null hypothesis that the distribution is

(@) Exponential Fy(x) = 1 —e ™ (estimate A by 1/x)

(b) Normal
In each part, carry the parameter estimates to the nearest hundredth and the dis-
tribution estimates to the nearest ten thousandth.

4.31. A statistics professor claims that the distribution of final grades from A to F in a
particular course invariably is in the ratio 1:3:4:1:1. The final grades this year are 26 A’s,
50 B’s, 80 C’s, 35 D’s, and 10 F’s. Do these results refute the professor’s claim?

4.32. The design department has proposed three different package designs for the
company’s product; the marketing manager claims that the first design will be twice as
popular as the second design and that the second design will be three times as popular as
the third design. In a market test with 213 persons, 111 preferred the first design, 62
preferred the second design, and the remainder preferred the third design. Are these
results consistent with the marketing manager’s claim?

4.33. A quality control engineer has taken 50 samples, each of size 13, from a pro-
duction process. The numbers of defectives are recorded below.

Number of defects Sample frequency

0
1
2
3
4
5
6

O HHKM OO O

or more

(a) Test the null hypothesis that the number of defectives follows a Poisson
distribution.

(b) Test the null hypothesis that the number of defectives follows a binomial
distribution.

(¢) Comment on your answers in (a) and (b).

4.34. Ten students take a test and their scores (out of 100) are as follows:
95, 80,40,52, 60, 80, 82, 58,65, 50

Test the null hypothesis that the cumulative distribution function of the proportion of
right answers a student gets on the test is

0 x<1
Fo(x) = ¢ x2(3 — 2x) 0<x<1
1 x>1
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One-Sample and Paired-Sample
Procedures

5.1 INTRODUCTION

In the general one-sample problem, the available data consist of a
single set of observations, usually a random sample, from a cdf Fx on
which inferences can be based regarding some aspect of Fx. The tests
for randomness in Chapter 3 relate to inferences about a property of
the joint probability distribution of a set of sample observations which
are identically distributed but possibly dependent, i.e., the probability
distribution of the data. The hypothesis in a goodness-of-fit study in
Chapter 4 is concerned with the univariate population distribution
from which a set of independent variables is drawn. These hypotheses
are so general that no analogous counterparts exist within the realm
of parametric statistics. Thus these problems are more suitable to be
viewed under nonparametric procedures. In a classical one-sample
inference problem, the single-sample data are used to obtain infor-
mation about some particular aspect of the population distribution,

156
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usually one or more of its parameters. Nonparametric techniques are
useful here too, particularly when a location parameter is of interest.

In this chapter we shall be concerned with the nonparametric
analog of the normal-theory test (variance known) or Student’s
t test (variance unknown) for the hypotheses Hy: n=p, and
Hy: py — py = pp =1y for the one-sample and paired-sample pro-
blems, respectively. The classical tests are derived under the as-
sumption that the single population or the population of differences
of pairs is normal. For the nonparametric tests, however, only certain
continuity assumptions about the populations need to be postulated
to determine sampling distributions of the test statistics. The hy-
potheses here are concerned with the median or some other quantile
rather than the mean as the location parameter, but both the mean
and the median are good indexes of central tendency and they do
coincide for symmetric populations. In any population, the median
always exists (which is not true for the mean) and it is more robust
as an estimate of location. The procedures covered here include
confidence intervals and tests of hypotheses about any specified
quantile. The case of the median is treated separately and the pop-
ular sign test and the Wilcoxon signed-rank test, including both
hypothesis testing and confidence interval techniques, are presented.
The complete discussion in each case will be given only for the single-
sample case, since with paired-sample data once the differences of
observations are formed, we have essentially only a single sample
drawn from the population of differences and thus the methods of
analysis are identical.

We also introduce rank-order statistics and present a measure of
the relationship between ranks and variate values.

5.2 CONFIDENCE INTERVAL FOR A POPULATION QUANTILE

Recall from Chapter 2 that a quantile of a continuous random variable
X is a real number that divides the area under the probability density
function into two parts of specified amounts. Only the area to the left
of the number need be specified since the entire area is equal to 1. Let
Fx be the underlying cdf and let x,, for all 0 < p < 1, denote the pth
quantile, or the 100pth percentile, or the quantile of order p of Fy.
Thus, «, is defined to be any real number which is a solution to the
equation Fx(x,) =p, and in terms of the quantile function,
k¥, = Qx(p) = Fx'(p). We shall assume here that a unique solution
(inverse) exists, as would be the case for a strictly increasing function
Fx. Note that x, is a parameter of the population F'x, and to emphasize
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this point we use the Greek letter «, instead of the Latin letter Qx(p)
used before in Chapter 2. For example, kg5 is the median of the dis-
tribution, a measure of central tendency.

First we consider the problem where a confidence interval esti-
mate of the parameter x, is desired for some specified value of p, given
a random sample X7,Xs,...,X,, from the cdf Fx. As discussed in
Chapter 2, a natural point estimate of x, would be the pth sample
quantile, which is the (np)th-order statistic, provided of course that np
is an integer. For example, since 100p percent of the population values
are less than or equal to the pth population quantile, the estimate of «,
is that value from a random sample such that 100p percent of the
sample values are less than or equal to it. We define X, to be the pth
sample quantile where r is defined by

~_lnp if np is an integer
\[rp +1] if np is not an integer

and [x] denotes the largest integer not exceeding x. This is just a
convention adopted so that we can handle situations where np is not
an integer. Other conventions are sometimes adopted. In our case, the
pth sample quantile Qx(p) is equal to X, if np is an integer, and
X(jnp+1)) if np is not an integer.

A point estimate is not sufficient for inference purposes. We know
from Theorem 10.1 of Chapter 2 that the rth-order statistic is a con-
sistent estimator of the pth quantile of a distribution when n — oo and
r/n — p. However, consistency is only a large-sample property. We
would like a procedure for interval estimation of k, which will enable
us to attach a confidence coefficient to our estimate for the given (fi-
nite) sample size. A logical choice for the confidence interval endpoints
are two order statistics, say X and X,r <s, from the random
sample drawn from the population Fx. To find the 100(1 — «)% con-
fidence interval, we must then find the two integers r and
s,1 <r <s<n, such that

P(X(,«) < Kp <X(s)) =1-«

for some given number 0 < o < 1. The quantity 1 — o, which we fre-
quently denote by v, is called the confidence level or the confidence
coefficient. Now the event X, <k, occurs if and only if either
Xy <1p <X or 1, >X(5), and these latter two events are clearly
mutually exclusive. Therefore, for all r < s,

P(X(r) < Kp) :P(X(,.) <Kp <X(S)) +P(Kp >X(S))
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or, equivalently,

P(X() <xp < X5)) = PXr) < p) = P(X(5) < x5p) (2.1)
Since we assumed that F is a strictly increasing function,

Xy <%p if and only if Fx(X() < Fx(xp) =p

But when F is continuous, the PIT implies that the probability dis-
tribution of the random variable Fx(X(,) is the same as that of Uj,),
the rth-order statistic from the uniform distribution over the interval
(0,1). Further, since Fx(x,) = p by the definition of «,, we have

P(X(r) < Kp) :P[FX(X(,«)) <p]

M e —ard 2.2
_/0 oDyt LT (2.2)
Thus, while the distribution of the rth-order statistic depends on the
population distribution Fx, the probability in (2.2) does not. A con-
fidence-interval procedure based on (2.1) is therefore distribution free.
In order to find the interval estimate of «,, substitution of (2.2)
back into (2.1) indicates that r and s should be chosen such that

P n-1
/ n(n )xrl(l —x)" " dx
0 r—1

_/Opn(z:11>xs1(1—x)”sdx:1—oc (2.3)

Clearly, this one equation will not give a unique solution for the two
unknowns, r and s, and additional conditions are needed. For example,
if we want the narrowest possible interval for a fixed confidence
coefficient, r and s should be chosen such that (2.3) is satisfied and
X — X, or E[X(;) — Xy}, is as small as possible. Alternatively, we
could minimize s — r.

The integrals in (2.2) or (2.3) can be evaluated by integration
by parts or by using tables of the incomplete beta function. However,
(2.2) can be expressed in another form after integration by parts as
follows:

P n-1
P(X(,)<Kp):/ n<n )xrl(l—x)”rdx
0

r—1
n—1Y\ [x" . n—r (P "

— _1_ n—r rl_ n—r

n(r—l){r( x) 0+ p /Ox( x) dx

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



160 CHAPTER 5

= (:)pr(l -p)" + n<n ; 1) [;:11 (1—x)" "1 Z
+<n;4’:Il) /Op (L — )2 dx]

- (':>pr(1 ey (Z 1>pr+1(1 e
e

After repeating this integration by parts n — r times, the result
will be

(’:)pr(l -p)"+ (r: 1)1)’“(1 —p)"T T
) )p 1(1—p)+n<2_1)/0px”1(1—x>°dx

n n
1
n r+j 1— n—r—j
(r +j>p (1-p)

or, after substituting r +j =1,

t_<,

Py <) = 37 Jpia - 2.4)

< l
i=r

In this final form, the integral in (2.2) is expressed as the sum of
the last n —r + 1 terms of the binomial distribution with parameters
n and p. Thus, the probability in (2.1) can be expressed as

PX) <xp <X5) = i(?)p"(l -p)" - i(?)pi(l —p)

s—1 n ) o
=5 (7 )pa-»
i=r l
=Pr<K<s-1) (2.5)

where K has a binomial distribution with parameters n and p. This
form is probably the easiest to use in choosing r and s such that s —r
is a minimum for fixed o. Note that from (2.5) it is clear that this
probability does not depend on the underlying cdf as long as it is
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continuous. The resulting confidence interval is therefore distribution
free.

In order to find the confidence interval for k, based on two-order
statistics, the right-hand side of (2.5) is set equal to 1 — o and the
search for r and s is begun. Because of the discreteness of the binomial
distribution, the exact nominal confidence level frequently cannot be
achieved. In such cases, the confidence level requirement can be
changed from “equal to” to “at least equal to” 1 — a. We usually let
v = 1 — o denote the exact confidence level.

The result obtained in (2.4) found by integration of (2.2) can also
be obtained by arguing as follows. This argument, based on simple
counting, is used frequently in the context of various nonparametric
procedures where order statistics are involved. Note that for any p, the
event X,y < x, occurs if and only if at least r of the n sample values,
Xi,Xs,...,X,, are less than x,. Thus

P(X( < x,) = P(exactly r of the n observations are < )
+ P(exactly (r + 1) of the n observations
are <kp)+---
+ P(exactly n of the n observations are < ;)

In other words,

PX) <xp) = ZP(exactly i of the n observations are < «,)

i=r

This is a key observation. Now, the probability that exactly i of
the n observations are less than «k, can be found as the probability of i
successes in n independent Bernoulli trials, since the sample ob-
servations are all independent and each observation can be classified
either as a success or a failure, where a success is defined as any ob-
servation being less than «,. The probability of a success is
P(X; < x,) = p. Thus, the required probability is given by the binomial
probability with parameters n and p. In other words,

n—i

P(exactly i of the n sample values are < «,) = (?)pi(l -D)

and therefore
& n i n—i
Py <) = Y7 )it -p)

This completes the proof.
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In summary, the (1 —)100% confidence interval for the pth
quantile is given by (X, X(,)), where r and s are integers such that
1<r<s<nand

s—1

PXy) <xp <Xi)) = Z(?)pi(l -p)" i z1-ua (2.6)

i=r

As indicated earlier, without a second condition, the confidence
interval endpoints will not be unique. One common approach in this
case is to assign the probability o/2 in each (right and left) tail. This
yields the so-called “equal-tails” interval, where r and s are the largest
and smallest integers (1 < r < s < n) respectively such that

r—1 s—1
n i o\ g n i _ )i 7%
;_0:<i)p 1-pyi<? and ;_o:<i>p(1 pris1-2
2.7)

respectively. These equations are easy to use in conjunction with
Table C of the Appendix, where cumulative binomial probabilities are
given. The exact confidence level is found from Table C as

Zl(’j )pi<1 —p

i=r

=§(?)pi(1—p)"i—i(?)#ﬂ—p)“ =y (2.8)

=0

If the sample size is larger than 20 and therefore beyond the
range of Table C, we can use the normal approximation to the binomial
distribution with a continuity correction. The solutions are

r=np+0.5—z,9np(l-p) (2.9)
and s=np+0.5+2z,9v/np(1l—-p) .

where z,/; satisfies ®(z,/2) =1 —a/2, as defined in Chapter 3. We
round the result in (2.9) down to the nearest integer for r and round up
for s in order to be conservative (or to make the confidence level at
least 1 — o).

Example 2.1 Suppose n = 10,p = 0.35, and 1 — o = 0.95. Using (2.7)
with Table C shows that r —1 =0 and s —1 =7, making »r =1 and

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



ONE-SAMPLE AND PAIRED-SAMPLE PROCEDURES 163

s = 8. The confidence interval for the 0.35th quantile is (X(1), X(g)) with
exact confidence level from (2.8) equal to 0.9952 — 0.0135 = 0.9817.
The normal approximation gives r =1 and s =7 with approximate
confidence level 0.95.

Now suppose that n =10,p =0.10, and 1 — o = 0.95. Table C
shows that s — 1 = 3 and no value of r — 1 satisfies the left-hand con-
dition of (2.7) so we take the smallest possible value r — 1 = 0. The
confidence interval for the 0.10th quantile is then (X(1),X(4)) with ex-
act confidence 0.9872 — 0 = 0.9872.

Another possibility is to find those values of r and s such that
s —r is a minimum. This requires a trial-and-error solution in making
(2.8) at least 1 — a.. In the two situations described in Example 2.1, this
approach yields the same values of  and s as the equal-tails approach.
But if n=11,p=0.25 and 1 —a =0.95, (2.7) gives r=0 and s =7
with exact confidence coefficient 0.9924 from (2.8). The values of r and
s that make s — r as small as possible and make (2.8) at least 0.95 are
r =0 and s = 6, with exact confidence coefficient 0.9657. The reader
can verify these results.

5.3 HYPOTHESIS TESTING FOR A POPULATION QUANTILE

In a hypothesis testing type of inference concerned with quantiles, a
distribution-free procedure is also possible. Given the order statistics
Xq) <Xp@) <--- <X from any unspecified but continuous distribu-
tion Fyx, a null hypothesis concerning the value of the pth quantile is
written

Hy: x, = Kg
where Kg and p are both specified numbers. Under Hy, since KS is the
pth quantile of Fx, we have, by definition, P(X < KS) = p and therefore
we expect about np of the sample observations to be smaller than Kg if
H is true. If the actual number of sample observations smaller than
Kg is considerably smaller than np, the data suggest that the true pth
quantile is larger than KS or there is evidence against Hy in favor of the
one-sided upper-tailed alternative

Hy:x, > Kg
This implies it is reasonable to reject Hy in favor of H; if at most r — 1

sample observations are smaller than k%, for some r. Now if at most
r — 1 sample observations are smaller than Kg, then it must be true
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that the rth-order statistic X(,) in the sample satisfies X, > Kg.

Therefore an appropriate rejection region R is
X(r) €ER for X(r) > Kg (31)

For a specified significance level o, the integer r should be chosen such
that

P(X(r) > Kg |Hyp) = 1—P(X(,> < Kg | Hy) <o

or, using (2.4), r is the largest integer such that

n r—1

1- ’f‘)il— i (’?)il— "<y 3.2
;(lp( p) ;Lp( p) (3.2)
We now express the rejection region in another form in order to
be consistent with our later presentation in Section 5.4 for the sign
test. Note that X,) > Kg if and only if at most  — 1 of the observations
are less than Kg, so that at least n — (r—1)=n —r+ 1 of the ob-
servations are greater than «%. Define the random variable K as the
total number of plus signs among the n differences X; — Kg (the
number of positive differences). Then the rejection region in (3.1) can

be equivalent stated as

KeR forK>n—-r+1

The differences X; — Kg, i=1,2,...,n, are independent random vari-
ables, each having either a plus or a minus sign, and the probability of
a plus sign under Hj is

PX;—x)>0)=PX;>x))=1-p

Hence, since K is the number of plus signs, we can write
K=" IX;> Kg) where I(A) = 1 when the event A occurs and is 0
otherwise. From the preceding discussion, the indicator variables
I(X; > Kg), 1 =1,2,...,n, are independent Bernoulli random variables
with probability of success 1 —p under Hj. Thus under Hy, the dis-
tribution of K is binomial with parameters n and 1 — p and so r must
be chosen to satisfy

P(K>n—-r+1H) = Z (’?)(1—p)"pni<oc (3.3)

l
i=n—-r+1

which can be shown to agree with the statement in (3.2), by a change
of summation index from i to n — i. The advantage of using (3.2) is that
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cumulative binomial probabilities are directly involved and these are
given in Table C.

On the other hand, if many more than np observations are
smaller than Kg, there is support against Hy in favor of the one-sided
lower-tailed alternative H;: x, < Kg. Then we should reject Hy if the
number of sample observations smaller than k? is at least, say s. This

)
leads to the rejection region
X(s) €R for X(s) < Kg

but this is equivalent to saying that the number of observations larger
than Kg must be at most n — s. Thus, based on the statistic K, defined
before as the number of positive differences, the appropriate rejection

region for the one-sided lower-tailed alternative Hi: k, < k) is
KcR forK<n-s

where s is the largest integer such that

n—s

P <n-slHo) =3 () -pp"i <o (3.4)
=0

For the two-sided alternative H;: k, # k0, the rejection region
consists of the union of the two pieces specified above,

KeR forK<n—-sorKzn-r+1 (3.5)

where r and s are integers such that each of (3.2) and (3.4) is less than
or equal to a/2.

Note that Table C can be used to find the exact critical values for
n < 20, where 6 = p in (3.2) and 6 = 1 — p in (3.4). For example sizes
larger than 20 the normal approximation to the binomial distribution
with a continuity correction can be used. The rejection region for
Hi: xp > k) is

K>05+n(1l-p)+z4,/np(l—p)
For H;: , < K, the rejection region is
K< -054+n(1—p)—z4/np(l-p)

The rejection region for H;: x, # Kg is the combination of these two
with z, replaced by z,/;. Note that in all these formulas the standard
normal deviate, say z;, is such that the area to the right is b; in other
words, z; is the 100(1 — b)th percentile [or the (1 — b)th quantile] of
the standard normal distribution.
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Table 3.1 (p. 167) summarizes the appropriate rejection regions
for the quantile test and the corresponding P values, both exact and
approximate, where Ky is the observed value of the statistic K, the
number of positive differences.

Example 3.1 The Educational Testing Service reports that the 75th
percentile for scores on the quantitative portion of the Graduate Re-
cord Examination (GRE) is 693 in a certain year. A random sample of
15 first-year graduate students majoring in statistics report their GRE
quantitative scores as 690, 750, 680, 700, 660, 710, 720, 730, 650, 670,
740, 730, 660, 750, and 690. Are the scores of students majoring in
statistics consistent with the 75th percentile value for this year?

Solution The question in this example can be answered either by a
hypothesis testing or a confidence interval approach. We illustrate
both approaches at the 0.05 level. Here we are interested in the 0.75th
quantile (the third quartile) so that p = 0.75, and the hypothesized
value of the 0.75th quantile, «3 s, is 693. Thus, the null hypothesis
Hy: o975 =693 is to be tested against a two-sided alternative
Hji: o775 # 693. The value of the test statistic is K = 8, since there are
eight positive differences among X; — 693, and the two-sided rejection
region is K € R for K <n—sor K >n —r+ 1, where r and s are the
largest integers that satisfy (3.2) and (3.4) with «/2 = 0.025. For
n=15p =0.75, Table C shows that 0.0173 is the largest left-tail
probability that does not exceed 0.025, so r — 1 =7 and hence r = §;
similarly, 0.0134 is the largest left-tail probability that does not exceed
0.025 for n =15 and 1—p = 0.25 (note the change in the success
probability) so that n —s = 0 and s = 15. The two-sided critical region
then is K < 0 or K > 8, and the exact significance level for this dis-
tribution-free test is (0.0134+0.0173) = 0.0307. Since the observed
K = 8 falls in this rejection region, there is evidence that for this year,
the scores for the graduate majors in statistics are not consistent with
the reported 75th percentile for all students in this year.

In order to find the P value, note that the alternative is two-sided
and so we need to find the two one-tailed probabilities first. Using
Table C with n = 15 and 6 = 0.25 we find P(K < 8|Hp) = 0.9958 and
P(K > 8|Hp) =1 —0.9827 = 0.0173. Taking the smaller of these two
values and multiplying by 2, the required P value is 0.0346, which also
suggests rejecting the null hypothesis.

In order to find a 95% confidence interval for xg75, we use
(2.7). For the lower index r, the inequality on the left applies. From
Table C with n =15 and 6=0.75, the largest value of x such that
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Table 3.1 Hypothesis testing guide for quantiles
Alternative Rejection region P value
Exact Exact
Kp > KD 0
X >« n
(r) vy n k. _n—k
Py = Z( )(l—p)p
or P A
K>zn-r+1,
r from (3.2)
Approximate Approximate
K>05+n(1-p Ki—05—n(1—
(1-p) py_1_oKo=05-n(1-p)
+24v/n(1—p)p np(1-p)
Exact Exact
K > K9 o
X(s) < Kp Ko n r
P = 1-p)fpr*
o L ; L |1-p)p
K<n-s,
s from (3.4)
Approximate Approximate
K< -05+n(1-p) P oK t05-n(1-p)
| 2
—zy\/n(1-p)p np(1—p)
Exact Exact
Kp # Kg 2 min (Py, Pr)

X > K'g or X5 < K'g

or
K>n—-r+1lorK<n-s,
r and s from (3.5)

Approximate

K>05+n(1-p)

+ZOL/2 V n(l _p)p
or
K< -05+n(1-p)

—29/2 n(l _p)p

Approximate

2 min (P, P)
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the cumulative probability is less than or equal to 0.025 is 7, which
yields r=8 with corresponding probability 0.0173. For the upper
index s, the inequality on the right in (2.7) applies, again with
n=15 and 6=0.75. From Table C, the smallest value of x such that
the cumulative probability is greater than or equal to 0.975 is 14, so
that s =15 with corresponding probability 0.9866. The desired 95%
confidence interval endpoints are X, and X(;5) which are 700 and
750, respectively. The exact confidence level using (2.8) is
v=0.9866 —0.0173 =0.9693. Thus we have at least 95% confidence,
or exactly 96.93% confidence, that the 75th percentile (or the 0.75th
quantile) score of students majoring in statistics lies somewhere
between 700 and 750. Note that, on the basis of this confidence
interval we would again reject Hy: ko75 = 693 in favor of the alter-
native Hi: Ko75 # 693, since the hypothesized value of the 75th
percentile lies outside of the confidence interval.

One of the special quantiles of a distribution is the median (the
0.5th quantile or the 50th percentile). The median is an important and
useful parameter in many situations, particularly when the under-
lying distribution is skewed. This is mainly because the median is a far
more robust estimate of the center of a distribution than the mean.
Quantile tests and confidence intervals discussed earlier can both be
applied to the case of the median with p = 0.5. However, because of its
special importance, the case for the median is treated separately in the
next section.

5.4 THE SIGN TEST AND CONFIDENCE INTERVAL FOR THE MEDIAN

Suppose that a random sample of N observations X1,Xs,...,Xy is
drawn from a population Fx with an unknown median M, where F is
assumed to be continuous and strictly increasing, at least in the vici-
nity of M. In other words, the N observations are independent and
identically distributed, and F'(0.5) = M, uniquely. The total sample
size notation is changed from n to N in this section in order to be
consistent with the notation in the rest of this book.

The hypothesis to be tested concerns the value of the population
median

H(): M:M()

where M, is a specified value, against a corresponding one- or two-
sided alternative. Since by assumption Fx has a unique median, the
null hypothesis states that M is that value of X which divides the area
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under the pdf into two equal parts. An equivalent symbolic repre-
sentation of Hj is

Hy: 0 = P(X > M) = P(X < M) = 0.50

Recalling the arguments used in developing a distribution-free test for
an arbitrary quantile, we note that if the sample data are consistent
with the hypothesized median value, on the average half of the sample
observations will lie above My and half below. Thus the number of
observations larger than My, denoted by K, can be used to test the
validity of the null hypothesis. Also, when the sample observations are
dichotomized in this way, they constitute a set of n independent ran-
dom variables from the Bernoulli population with parameter
0 = P(X > M,), regardless of the population Fx. The sampling dis-
tribution of the random variable K then is the binomial probability
distribution with parameters N and 0, and 6 equals 0.5 if the null
hypothesis is true. Since K is actually the number of plus signs among
the N differences X; — My, i =1,2,...,N, the nonparametric test
based on K is called the sign test.
The rejection region for the upper-tailed alternative

Hi: M > M, or 0 =PX > M) > P(X < My)
is
KeR forK >k,
where &, is chosen to be the smallest integer which satisfies
P(K >k, | Hy) = i (N> 05" <o (4.1)
ik, \

Any table of the binomial distribution, like Table C of the Appendix,
can be used with 6 = 0.5 to find the particular value of &, for the given
N and o, but Table G of the Appendix is easier to use because it gives
probabilities in both tails. Similarly, for a one-sided test with the
lower-tailed alternative

Hy: M < M, or 0=PX > M,) < P(X < M,)
the rejection region for an a-level test is

KeR forK <k,
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where £/, is the largest integer satisfying

i(N ) 05" <o (4.2)

i=o \ !
If the alternative is two-sided,
Hi: M+ M, or 0 =PX > M) # P(X < M,)

the rejection region is K > k,5 or K < k;/Q, where k,/; and k&/z are
respectively, the smallest and the largest integers such that

5 (?)(05)1%% and %(7)(0.5)ng 43)

i=kaf i=0

Obviously, we have the relation k, 3 = N — &, J2-

The sign test statistics with these rejection regions are consistent
against the respective one- and two-sided alternatives. This is easy to
show by applying the criterion of consistency given in Chapter 1. Since
E(K/N)=0and var(K/N)=6(1-0)/N — co as N — oo,K provides a
consistent test statistic.

P VALUE

The P value expressions for the sign test can be obtained as in the case
of a general quantile test with p = 0.5. The reader is referred to
Table 3.1, with n replaced by N throughout. For example, if the
alternative is upper-tailed, Hy: M > My, and Ky is the observed value
of the sign statistic, the P value for the sign test is given by the
binomial probability in the upper-tail

iv: <]:7 ) 0.5~

i=Ko

This value is easily read as a right-tail probability from Table G for the
given N.

NORMAL APPROXIMATIONS

We could easily generate tables to apply the exact sign test for any
sample size N. However, we know that the normal approximation to
the binomial is especially good when 6 = 0.50. Therefore, for moderate
values of N (say at least 12), the normal approximation to the binomial
can be used to determine the rejection regions. Since this is a continuous
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approximation to a discrete distribution, a continuity correction of 0.5
may be incorporated in the calculations. For example, for the alter-
native Hi: M > My, H, is rejected for K > k,, where k, satisfies

ky = 0.5N + 0.5 + 0.5V Nz, (4.4)

Similarly, the approximate P value is

- @(Ko ~05- O.5N>
V0.25N

(4.5)

ZERO DIFFERENCES

A zero difference arises whenever X; = M, for at least one i. Theore-
tically, zero differences do not cause a problem because the population
was assumed to be continuous in the vicinity of the median. In reality,
of course, zero differences can and do occur, either because the
assumption of continuity is in error or because of imprecise mea-
surements. Many zeros can be avoided by taking measurements to a
larger number of significant figures.

The most common treatment of zeros is simply to ignore them
and reduce N accordingly. The inferences are then conditional on the
observed number of nonzero differences. An alternative approach is to
treat half of the zeros as plus and half as minus. Another possibility is
to assign to all that sign which is least conducive to rejection of Hy;
this is a strictly conservative approach. Finally, we could let chance
determine the signs of the zeros by, say, flipping a balanced coin. These
procedures are compared in Putter (1955) and Emerson and Simon
(1979). A complete discussion, including more details on P values, is
given in Pratt and Gibbons (1981). Randles (2001) proposed a more
conservative method of handling zeros.

POWER FUNCTION

In order to calculate the power of any test, the distribution of the test
statistic under the alternative hypothesis should be available in a
reasonably tractable form. In contrast to most nonparametric tests,
the power function of the quantile tests is simple to determine since, in
general, the random variable K follows the binomial probability dis-
tribution with parameters N and 60, where, for the pth quantile,
0=P(X,; >x,). For the sign test the quantile of interest is the median
and 0 = P(X; > M,). For illustration, we will only consider the power of
the sign test against the one-sided upper-tailed alternative H1: M > M.
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The power of the test is a function of the unknown parameter 6, and
the power curve or the power function is a graph of power versus
various values of 0, under the alternative. By definition, the power of
the sign test against the alternative H; is the probability

Pw(0) = P(K > ky|H))

Under H,, the distribution of K is binomial with parameters N and
0=PX;>M,|H) so the expression for power can be written as

Pw(0) = XN: <N)ei(1 gy

i
i=k,

where &, is the smallest integer such that

N
Z(Z:’) 05N <o
i=k,

Thus, in order to evaluate the power function for the sign test, we
first need to find the critical value %, for a given level o, say 0.05. Then
we need to calculate the probability 6 = P(X; > My|H;). If the power
function is desired for a more parametric type of situation where the
population distribution is fully specified then 6 can be calculated. Such
a power function would be desirable for comparisons between the sign
test and some parametric test for location.

As an example, we calculate the power of the sign test of
Hy: M = 28 versus Hy: M > 28 for N = 16 at a significance level 0.05,
under the assumption that the population is normally distributed with
standard deviation 1 and the median is M =29.04. Table G shows that
the rejection region at o=0.05 is K > 12 so that £, = 12 and the exact
size of this sign test is 0.0384. Now, under the assumptions given, we
can evaluate the underlying probability of a success 0 as

0 = P(X > 28|H;)

(X —29.04 28— 29.04)
=P >

1 1
=P(Z > -1.04)
=1-®(-1.04) = 0.8505
= 0.85, say

Note that the value of 0 is larger than 0.5, which is in the legitimate
region of the alternative H;. Thus,
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Pw(0.85) — 3 ( 18 ) (0.85)(0.15)1%~

=12

11
16 i —i
=1- Z;( ; )(0.85) (0.15)*" = 0.9209

This would be directly comparable with the normal theory test of
Hy: p =28 versus H;: p = 29.04, say with c=1, since the mean and
median coincide for the normal distributions. The rejection region for
this parametric test with o =0.05 is X > 28 +20_05/\/E = 2841, and
the power is

Pw(29.04) = P[X > 28.41|X ~ normal(29.04,1)]
B P(X ~29.04 28 - 29.04>

>
1/V/16 0.25
=P(Z > -2.52)

=0.9941

Thus, the power of the normal theory test is larger than the power of
the sign test, which is of course expected, since the normal theory test
is known to be the best test when the population is normal. The pro-
blem with a direct comparison of the exact sign test with the normal
theory test is that the powers of any two tests are comparable only
when their sizes or significance levels are the same or nearly the same.
In our case, the sign test has an exact size of 0.0384 whereas the
normal theory test has exact size 0.05. This increase in the size of the
test inherently biases the power comparison in favor of the normal
theory test.

In order to ensure a more fair comparison, we might make the
exact size of the sign test equal to 0.05 by using a randomized version
of the sign test (as explained in Chapter 1). Alternatively, we might
find the normal theory test of size o = 0.0384 and compare the power of
that test with the sign-test power of 0.9209. In this case, the rejection
region is X > 28 + z03s84/Vv/16 = 28.44 and the power is Pw(29.04) =
0.9918. This is still larger than the power of the sign test at o =0.0384
but two comments are in order. First and foremost, we have to assume
that the underlying distribution is normal to justify using the normal
theory test. No such assumption is necessary for the sign test. If the
sample size N is larger, the calculated power is an approximation to
the power of the normal theory test, by the central limit theorem.
However, for the sign test, the size and the power calculations can be
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made exactly for all sample sizes and no distribution assumptions are
needed other than continuity. Further, the normal theory test is af-
fected by the assumption about the population standard deviation o,
whereas the sign test calculations do not demand such knowledge. In
order to obtain the power function, we can calculate the power at
several values of M in the alternative region (M > 28) and then plot the
power versus the values of the median. This is easier under the normal
approximation and is shown below.

Since under the alternative hypothesis H, the sign test statistic
K has a binomial distribution with parameters N and 6=
P(X > My|H;), and the binomial distribution can be well approxi-
mated by the normal distribution, we can derive expressions to ap-
proximate the power of the sign test based on the normal
approximation. These formulas are useful in practice for larger sample
sizes and/or 0 values for which exact tables are unavailable, although
this appears to be much less of a problem with currently available
software. We consider the one-sided upper-tailed case H1: M1 > M, for
illustration; approximate power expressions for the other cases are left
as exercises for the reader. The power for this alternative can be
evaluated using the normal approximation with a continuity correc-
tion as

Pw ( P(K ke |H1 M, >M0)
P<Z _ha—NO-0. 5)
V/NO(1—0)
—1- @(—Ne 0 5) (4.6)
NO(1—0)

where 6 = P(X > M;1|M; > M,) and k, is such that

o = P(K > ky|Ho)

:P<Z k- N/2 - 0.5)
N/4

—1- @(%‘—Vg‘ﬁ (4.7)

The equality in (4.7) implies that k, = [N + 1+ VNO (1 — a)]/2.
Substituting this back into (4.6) and simplifying gives
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Table 4.1 Normal approximation to power of the sign test for the median when
N=16

0 0.5 0.55 0.6 0.65 0.70 0.75 0.80 0.85 0.90
Power 0.0461 0.0918 0.1629 0.2639 0.3960 0.5546 0.7255 0.8802 0.9773

Pw(My) = P{z JOBN 41+ VNOTI(1 —a)] - NO - 0.5}

No(1 - 0)
1 o|NO5-0)+ 0.5\/Nzu] (48
NO(1-_0)

where z, = ® (1 — o) is the (1 — a)th quantile of the standard normal
distribution. For example, zp 95 = 1.645 and zpg5 = —1.04. Note that
2z, = —21_4. The approximate power values are calculated and shown
in Table 4.1 for N =16 and o« =0.05. A graph of the power function is
shown in Figure 4.1.

0.9 1
0.8 1
0.7 A
0.6
0.5 A

Power

0.4 1
0.3 1
0.2 1
0.1 1

O T T T T T ]
0.4 0.5 0.6 0.7 038 0.9 1

theta

Fig. 4.1 Normal approximation to the power function of the sign test for the median.
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It should be noted that the power of the sign test depends on the
alternative hypothesis through the probability 6 = P(X > My|H;:
My > My). Under Hy, we have 6 =0.5, whereas 6 > 0.5 under H;, since
if M1 > M,

P(X>M0|H1:M:M1 >M0) >P(X>M1|H1:M:M1 >M0)

and therefore 6 =P(X > My|H;) > P(X > M;|H;) =0.5. Thus, the
power of the sign test depends on the “distance” between the values of
0 under the null hypothesis (0.5) and under the alternative and spe-
cification of a value of 6 > 0.5 is necessary for the power calculation.
Noether (1987) suggested choosing a value of 6 based on past infor-
mation or a pilot study, or based on an “odds-ratio.” In the normal
theory test (such as the ¢ test), however, the power depends directly on
the “distance” M;— M,, the values of the median under the null
hypothesis and under the alternative. Note also that the approximate
power is exactly equal to the nominal size of the test when 6 =0.5 (i.e.,
the null hypothesis is true). Expressions for approximate power
against other alternatives are left as exercises for the reader.

SIMULATED POWER

The power function for the sign test is easily found, particularly when
the normal approximation is used for calculations. For many other
nonparametric tests, however, the power function can be quite difficult
to calculate. In such cases, computer simulations can be used to
estimate the power. Here we use a MINITAB Macro program to
simulate the power of the sign test when the underlying distribution is
normal with mean = median =M and variance . The null hypothesis
is Hy: M = My and the alternative is Hy: M = M1 > M. First we need
to find the relationship between M,, M; and 6. Recall that
0 = P(X; > My|H1), so assuming X is normally distributed with var-
iance o2, we get

e:P(X—Ml >M0—M1>

(&) (o)

_ @<M>
(&

This gives (M; — My)/c = ®1(0). Now let us assume arbitrarily that
My =05 and o2 =1. Then if 6=0.55, say, ® *(0.55)=0.1256 and
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M, = 0.6256. Next we need to specify a sample size and probability of a
type I error for the test. We arbitrarily choose N =13 and o= 0.05.
From Table G, 0.0461 is closest to 0.05 and this gives a test with
rejection region K > 10 for exact size 0.0461.

First we generate 1000 random samples, each of size 13, from a
normal distribution with M =0.6256 and compute the value of the
sign test statistic for each sample generated, i.e., the number of X; in
that sample for which X; — My = X; — 0.5 > 0. Then we note whether
or not this count value is in the rejection region K > 10. Then we
count the number of times we found the count value in the rejection
region among the 1000 random samples generated. This count di-
vided by 1000 is the simulated power at the point 6 =0.55 (which
corresponds to M, =0.6256) in the case N=13, My=0.50, c =1, and
a=0.0461. Using a MINITAB Macro program, this value was found
as 0.10. Note that from Table 4.1, the normal approximation to the
power in this case is 0.0918. The program code is shown below for
this situation:

macro sign

# simulates power of sign test with N=13, alpha =0.0461
sign

mcolumn ¢l c2 cl( powl
mconstant mu ki k3 k5 cow theta
let k5=1

let mu=0.59

let theta=0.0

mlabel 4

let cow=1

let powl (k5)=0

miabel 1

random 13 c1;

normal mu 1.

let cil=c1-.50

# calculate Sign test statistic
let c2 = {(ct gt Q)

let k1 = sum{c2}

# k1 = value of Sign stat

let k3 = 10

if k1 ge 10

let powl (k5}=powl (k5)+1

elsge

let powl {k5)=powl(k5}+0

endif

let cow=cow+l
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if cow gt 1000
go to 2
else
go to 1
endif
mlabel 2
let powl (k5)=powl{k5) /1000
print k5 powl{k5)
let k5=k5+1
let mu=mu+.05
if mu gt 0.9
go to 3
else
go to 4
endif
mlakbel 3
set c10
.5{.05}.9
end
print cl10 powl
plot powl*cle;
connectkt;
color 1 2;
axis 2;
label 'simulated power’'.
endmacro

To run such a program, type the statements into a plain text file,
using a text editor (not a word processor) and save it with a .mac ex-
tension to a floppy disk, say, in drive a. Suppose the name of the file is
sign.mac. Then in MINITAB, go to edit, then to command line editor
and then type % a:\sign.mac and click on submit. The program will
print the simulated power values as well as a power curve. Output
from such a simulation is shown later in Section 5.7 as Figure 7.1.

SAMPLE SIZE DETERMINATION

In order to make an inference regarding the population median using
the sign test, we need to have a random sample of observations. If we
are allowed to choose the sample size, we might want to determine the
value of N such that the test has size o and power 1—, given the null
and the alternative hypotheses and other necessary assumptions. For
example, for the sign test against the one-sided upper-tailed alter-
native Hi: M > M,, we need to find N such that
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(N ) N S (N ) i N-i
. 1(0.5)" <« and . ]ef(1—0 >1-
Zk( V) (05) (% )ra-o p
where o, 1-B and 6 = P(X > M|H;) are all specified. Note also that
the size and the power requirements have been modified to state “at
most” o and “at least” 1—p, in order to reflect the discreteness of the
binomial distribution. Tables are available to aid in solving these
equations; see for example, Cohen (1972). We illustrate the process
using the normal approximation to the power because the necessary
equations are much easier to solve.

Under the normal approximation, the power of a size o sign
test with Hi: M > M, is given in (4.8). Thus we require that 1—
®[N(0.5— 0) +0.5v/Nz,//NO(1 - 0)] = 1 — B or, solving for N, we get

N:

01— )0 1(B) — 0.52,]"  [\/B(L —0)zp + 052,
05-6 1 = [ 05-6 ] (4.9)

which should be rounded up to the next integer. The approximate
sample size formula for the one-sided lower-tailed alternative
Hy: M < M, is the same except that here 6 = P(X > My|H;) < 0.5. A
sample size formula for the two-sided alternative is the same as (4.9)
with o replaced by o/2. The derivation is left as an exercise for the
reader.

For example, suppose 6 =0.2. If we set « =0.05 and p=0.90, then
2, = 1.645 and z = 1.282. Then (4.9) yields VN = 4.45 and N=19.8.
Thus we need at least 20 observations to meet the specifications.

CONFIDENCE INTERVAL FOR THE MEDIAN

A two-sided confidence-interval estimate for an unknown population
median can be obtained from the acceptance region of the sign test
against the two-sided alternative. The acceptance region for a two-
sided test of Hy: M = M, using (4.3), is

kyjg+1<K<kys—1 (4.10)

where K is the number of positive differences among X, — M,
i=1,2,...,N and k;/z and k,; are integers such that

P(Rys+ 1<K <k, —1)>1-0

As we found for the quantile test, the equal-tailed confidence interval
endpoints for the unknown population median are the order statistics
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X, and X, where r and s are the largest and smallest integers
respectively, such that

g(lj)(o.mfv <2 and i(f)(o.mfv <3 (4.11)

We note that » — 1 and s are easily found from Table G in the columns
labeled Left tail and Right tail, respectively.
For larger sample sizes,

r==Fky,+1=05+05N—05VNz,p (4.12)
and
s =kys = 0.5+ 0.5N + 0.5V Nz, o (4.13)

We round down for r and round up for s for a conservative solution.

In order to contrast the exact and approximate confidence in-
terval endpoints suppose N=15 and 1-a=7y=0.95. Then, using
Table G with 6 = 0.5, r = 4 for significance level 0.0176 so that the exact
endpoints of the 95% confidence interval are X4, and X(12) with exact
confidence level y=0.9648. For the approximate confidence interval
r=0.5+17.5-0.5v/15(1.65)=4.21 which we round down. So the con-
fidence interval based on the normal approximation is also given by
(X4, X(12)) with exact confidence level y=0.9648.

PROBLEM OF ZEROS

Zeros do not present a problem in finding a confidence interval esti-
mate of the median using this procedure. As a result, the sample size
N is not reduced for zeros and zeros are counted as many times as they
occur in determining confidence-interval endpoints. If the real interest
is in hypothesis testing and there are many zeros, the power of the test
will be greater if the test is carried out using a confidence-interval
approach.

PAIRED-SAMPLE PROCEDURES

The one-sample sign-test procedures for hypothesis testing and con-
fidence interval estimation of M are equally applicable to paired-
sample data. For a random sample of N pairs (X{,Y7),...,( Xx,Yn), the
N differences D; = X; — Y; are formed. If the population of differences
is assumed continuous at its median Mp, so that P(D = Mp) = 0, and 0
is defined as 6 = P(D > Mp), the same procedures are clearly valid
here with X; replaced everywhere by D;.
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It should be emphasized that this is a test for the median dif-
ference Mp, which is not necessarily the same as the difference of the
two medians Mx and My. The following simple example will serve to
illustrate this often misunderstood fact. Let X and Y have the joint
distribution

1/2  fory-1<x<y,-1<y<l1
fxy(x,y) = ory+1<x<1,-1<y<0
0 otherwise

Then X and Y are uniformly distributed over the shaded region in
Figure 4.2. It can be seen that the marginal distributions of X and Y
are identical, both being uniform on the interval (—1,1), so that
Mx = My = 0. It is clear that where X and Y have opposite signs, in
quadrants II and IV,

PX<Y)=PX>Y)

while in quadrants I and III, X < Y always. For all pairs, then, we have
P(X <Y)=3/4, which implies that the median of the population of
differences is smaller than zero. It will be left as an exercise for the
reader to show that the cdf of the difference random variable
D=X-Yis

0 ford< -1
(d+1)(d+3)/4 for —1<d<0
Fp(d) =1 3/4 for0<d<1 (4.14)
d(4-d)/4 for1<d<2
1 ford > 2
y

=1

Fig. 4.2 Region of integration is the shaded area.
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The median difference is that value Mp, of the distribution of D, such
that Fp(Mp)=1/2. The reader can verify that this yields
MD = -2+ \/§

In general, then, it is not true that Mp = Mx — My. On the other
hand, itis true that a mean of differences equals the difference of means.
Since the mean and median coincide for symmetric distributions, if the
X and Y populations are both symmetric and Mx = My, and if the dif-
ference population is also symmetric,' then Mp = My — My and
Mx = My is a necessary and sufficient condition for Mp = 0. Note that
for the case where X and Y are each normally distributed, the difference
of their medians (or means) is equal to the median (or mean) of their
difference X — Y, since X — Y is also normally distributed with median
(or mean) equal to the difference of the respective medians (or means).

Earlier discussions of power and sample size also apply to the
paired-sample data problems.

APPLICATIONS

We note that the sign test is a special case of the quantile test with
p =0.5, since the quantile specified is the population median. This test
is easier to apply than the general quantile test because the binomial
distribution for 6=0.5 is symmetric for any N. We write the null
hypothesis here as Hy: M = M. The appropriate rejection regions in
terms of K, the number of plus signs among X; — My, Xs — My, ...,
XN — My, and corresponding exact P values, are summarized as follows:

Alternative Rejection region Exact P value

N
M>M, K>k, > <N> 05N

Ko\ !

K,
M < M, K<k, i(f)(o.mN

i=0
M # M, K < k;/z or K > kg 2(smaller of the one-tailed

P values)

Table C with 6 =0.5 and n (representing N) can be used to determine
the critical values. Table G is simpler to use because it gives both left-
tail and right-tail binomial probabilities for N < 20 when 6 = 0.5.

IThe difference population is symmetric if X and Y are symmetric and independent or if
fX‘Y(xvy) = fX,Y(fxﬁ 7y)
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For large sample sizes, the appropriate rejection regions and the
P values, based on the normal approximation to the binomial dis-
tribution with a continuity correction, are as follows:

Alternative Rejection region Approximate P value
M > M, K > 0.5N + 0.5+ 0.52,VN 1-@(W>
0.5vN
Ko —0.5N + 0.5
M <M K > 05N —-05—0.5z2,v/N ®<7>
0 ¢ 05VN
M # M, Both above with z,; 2(smaller of the one-tailed
P values)

If any zeros are present, we will ignore them and reduce N ac-
cordingly. As we have seen, a prespecified significance level o often
cannot be achieved with nonparametric statistical inference because
most of the applicable sampling distributions are discrete. This pro-
blem is avoided if we determine the P value of a test result and use
that to make our decision.

For a two-sided alternative, the common procedure is to define
the P value as twice the smaller of the two one-sided P values, as
described in the case for general quantiles. The “doubling” is parti-
cularly meaningful when the null distribution of the test statistic is
symmetric, as is the case here. For example, suppose that we observe
four plus signs among N =12 nonzero sample differences. Table G
shows that the left-tail P value is 0.1938; since there is no entry in the
right-tail column, we know that the right-tail P-value exceeds 0.5.
Thus the two-sided P value is 2 times 0.1938, or 0.3876.

Another way of looking at this is as follows. Under the null hy-
pothesis the binomial distribution is symmetric about the expected
value of K, which here is N(0.5) = 6. Thus, for any value of K less than
6, the upper-tail probability will be greater than 0.5 and the lower-tail
probability less than 0.5. Conversely, for any value of K greater than 6,
the upper-tail probability is less than 0.5 and the lower-tail probability
is greater than 0.5. Also, by symmetry, the probability of say 4 or less
is the same as the probability of 8 or more. Thus, to calculate the P
value for the two-sided alternative, the convention is to take the
smaller of the two one-tailed P values and double it. If instead we used
the larger of the P values and doubled that, the final P value could
possibly be more than 1.0, which is not acceptable. Note also that when
the observed value of K is exactly equal to 6, the two-sided P value will
be taken to be equal to 1.0.
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In our example, the observed value 4 for N =12 is less than 6, so
the smaller one-tailed P value is in the lower tail and is equal to 0.1938
and this leads to a two-sided P value of 0.3876 as found earlier. If we
have a prespecified o, and wish to reach a decision, we should reject Hy
whenever the P value is less than or equal to o and accept Hy other-
wise.

The exact distribution-free confidence interval for the median
can be found from Table C but is particularly easy to find using
Table G. The choice of exact confidence levels is limited to 1—-2P, where
P is a tail probability in Table G for the appropriate value of N. From
(4.10), the lower confidence limit is the (k. + 1)th = rth-order sta-
tistic in the sample, where %/, , is the left-tail critical value of the sign
test statistic K from Table Cér, for the given o and N such that the
P figure is less than or equal to o/2. But since the critical values are all
of the nonnegative integers, k. , + 1 is simply the rank of £ , among
the entries in Table G for that N. The calculation of this rank will
become clearer after we do Example 4.1.

For consistency with the results given later for confidence in-
terval endpoints based on other nonparametric test procedures, we
note that r is the rank of the left-tail entry in Table G for this N, and
we denote this rank by u. Further, by symmetry, we have
X(s) = X(n—r4+1)- The confidence interval endpoints are the uth from the
smallest and the uth from the largest order statistics, where u is the
rank of the left-tail critical value of K from Table G that corresponds to
P < a/2. The corresponding exact confidence coefficient is then
v =1 —2P. For sample sizes outside the range of Table G we have

u=0.5+0.5N — 0.5V Nz, (4.15)

from (4.4), and we always round the result of (4.15) downward.

For example, for a confidence level of 0.95 with N =15,
a/2 = 0.025, the P figure from Table G closest to 0.025 but not ex-
ceeding it is 0.0176. The corresponding left-tail critical value is 3,
which has a rank of 4 among the left-tail critical values for this N.
Thus u = 4 and the 95% confidence interval for the median is given by
the interval (X(4),X(12)). The exact confidence level for this distribution-
free interval is 1 — 2P =1 — 2(0.0176) = 0.9648.

Note that unlike in the case of testing hypotheses, if zeros occur
in the data, they are counted as many times as they appear for de-
termination of the confidence interval endpoints.

Example 4.1 Suppose that each of 13 randomly chosen female regis-
tered voters was asked to indicate if she was going to vote for
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candidate A or candidate B in an upcoming election. The results show
that 9 of the subjects preferred A. Is this sufficient evidence to con-
clude that candidate A is preferred to B by female voters?

Solution With this kind of data, the sign test is one of the few sta-
tistical tests that is valid and can be applied. Let 6 be the true prob-
ability that candidate A is preferred over candidate B. The null
hypothesis is that the two candidates are equally preferred, that is,
Hy: 6 =0.5 and the one-sided upper-tailed alternative is that A is
preferred over B, that is H;: 6 > 0.5. The sign test can be applied here
and the value of the test statistic is K = 9. Using Table G with N = 13,
the exact P value in the right-tail is found to be 0.1338; therefore this
is not sufficient evidence to conclude that the female voters prefer A
over B, at a commonly used significant level such as 0.05.

Example 4.2 Some researchers claim that susceptibility to hypnosis
can be acquired or improved through training. To investigate this
claim six subjects were rated on a scale of 1 to 20 according to their
initial susceptibility to hypnosis and then given 4 weeks of training.
Each subject was rated again after the training period. In the ratings
below, higher numbers represent greater susceptibility to hypnosis. Do
these data support the claim?

Subject Before After
1 10 18
2 16 19
3 7 11
4 4 3
5 7 5
6 2 3

Solution The null hypothesis is Hy: Mp = 0 and the appropriate al-
ternative is Hi: Mp > 0 where Mp is the median of the differences,
after training minus before training. The number of positive differences
is Kp = 4 and the right-tail P value for N = 6, Ky = 4 from Table G is
0.3438. Hence the data do not support the claim at any level smaller
than 0.3438 which implies that 4 is not an extreme value of K under Hy;
rejection of the null hypothesis is not warranted. Also, from Table G, at
o = 0.05, the rejection region is K > 6, with exact size 0.0156. Since the
observed value of K equals 4, we again fail to reject Hy.

The following computer printouts illustrate the solution to Ex-
ample 4.2 based on the STATXACT, MINITAB, and SAS packages. The
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STATXACT solution agrees with ours for the exact one-sided P value.
Their asymptotic P value (0.2071) is based on the normal approx-
imation without the continuity correction. The MINITAB solution
agrees exactly with ours. The SAS solution gives only the two-tailed
P values. The exact sign test result in 2 times ours; they also give
P values based on Student’s ¢ test and the signed-rank test discussed
later in this chapter.

ER RS FETEE R E RS RLERLE S AR R E LSS &8

STATXACT SOLUTION TO EXAMPLE 4.2

TR R SIS R R R RS SRR E T TR RS R AN LR

SIGN TEST

summary of Exact distribution of SIGN statistiec:

Min Max Mean sStd-dev Observed Standardized
0.0000 6,000 3.000 1.225 2.000 -0.8165

Asymptatic Inference:

One-sided p-value: Pr { Test Statistic .LE. Observed ] = 0.2071
Two-sided p-value: 2 * One-sided = G.4142
Exact Inference:

one-sided p-value: Pr { Test Statistic .LE. Cbserved ] =  (.3438
Pr { Test Statistic ,EQ. Observed | = 0.2344

Two-sided p-value: 2*0One-Sided = 0.6875

IR EEE R EESEEEERE SEA RS ER R RS E LR LS]

MINITAB SOLUTICN TO EXAMPLE 4.2

FYRIEER A RS R R RS EE AR ER LERE LS &0 KRS

Sign Test for Median: Af-Be
gign test of median = 0.00000 versus > 0.00000

N Below Egual Above P Median
Af-Be [ 2 a 4 0.3438 2.000

Now suppose we wanted to know, before the investigation star-
ted, how many subjects should be included in the study when we plan
to use the sign test for the median difference at a level of significance
o = 0.05, and we want to detect P(D > 0) = 0.6 with a power 0.85.
Note that P(D > 0) = 0.6 means that the median difference, Mp, is
greater than 0, the hypothesized value, and thus the test should have
an upper-tailed alternative. With 0 = 0.6,z905 = 1.645, and zp15 =
1.0365, Eq. (4.9) gives N = 176.96 which we round up to 177.

The MINITAB solution to this example is shown below. It also
uses the normal approximation and the result 177 agrees with ours.
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The solution also shows N = 222 observations will be required for a
two-tailed test. The reader can verify this. The solution is labeled “Test
for One Proportion” instead of “Sign Test” because it is applicable for a
test for a quantile of any order p (as in Section 5.3).

(2R RS RS RS SEE R S R EEEERE RS REELE R LR LRSS

MINITABR SOLUTION TO POWER AND SAMPLE SIZE

LA RS R SRR SRR LR EREREEREERELEERESEERERSE SN

Power and Sample Size
Test for One Proportion
Testing proportion = 0.5 {versus > 0.5)

Calculating power for proportiomn = 0.6
Alpha = 0.05 Difference = 0.1

Sample Target Actual
Size Power Power
3177 0.8500 0.8501

Power and Sample Size
Test for One Proportion

Testing proportion = 0.5 {(versus not 0.5}
Calculating power for proporticn = 0.

Alpha = 0.05% Difference = 0.1

&

Sample Target Actual
Size Power Power
222 0.8500 0.8511

Example 4.3 Nine pharmaceutical laboratories cooperated in a study
to determine the median effective dose level of a certain drug. Each
laboratory carried out experiments and reported its effective dose. For
the results 0.41, 0.52, 0.91, 0.45, 1.06, 0.82, 0.78, 0.68, 0.75, estimate
the interval of median effective dose with a confidence level 0.95.

Solution We go to Table G with N =9 and find P = 0.0195 is the
largest entry that does not exceed 0.025, and this entry has rank
u=2. Hence the second smallest and second largest (or the
9 — 2 4+ 1 = 8th smallest) order statistics of the sample data, namely
X(9) and X(g), provide the two endpoints as 0.45 < M < 0.91 with exact
confidence coefficient 1 —2(0.0195) = 0.961. The MINITAB solution
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shown gives the two confidence intervals with the exact confidence
coefficient on each side of 0.95, as well as an exact 95% interval, based
on an interpolation scheme between the two sets of endpoints, lower
and upper, respectively. This latter interval is indicated by NLI on the
output. The interpolation scheme is a nonlinear one due to Hett-
mansperger and Sheather (1986).

5.5 RANK-ORDER STATISTICS

The other one-sample procedure to be covered in this chapter in the
Wilcoxon signed-rank test. This test is based on a special case of what
are called rank-order statistics. The rank-order statistics for a random
sample are any set of constants which indicate the order of the
observations. The actual magnitude of any observation is used only in
determining its relative position in the sample array and is thereafter
ignored in any analysis based on rank-order statistics. Thus any sta-
tistical procedures based on rank-order statistics depend only on the
relative magnitudes of the observations. If the jth element X; is the ith
smallest in the sample, the jth rank-order statistics must be the ith
smallest rank-order statistic. Rank-order statistics might then be
defined as the set of numbers which results when each original
observation is replaced by the value of some order-preserving function.
Suppose we have a random sample of N observations X7,Xo,...,Xy.
Let the rank-order statistics be denoted by r(Xi),r(Xs),...,r(Xw)
where r is any function such that r(X;) < r(X;) whenever X; < X;. As
with order statistics, rank-order statistics are invariant under mono-
tone transformations, i.e., if r(X;) < r(Xj), then r[F(X;)] < r[F(X;)], in
addition to F[r(X;)] < F[r(X;)], where F is any nondecreasing function.

For any set of N different sample observations, the simplest set of
numbers to use to indicate relative positions is the first N positive in-
tegers. In order to eliminate the possibility of confusion and to simplify
and unify the theory of rank-order statistics, we shall assume here that
unless explicitly stated otherwise, the rank-order statistics are always
a permutation of the first N integers. The ith rank-order statistic r(X;)
then is called the rank of the ith observation in the original unordered
sample. The value it assumes, r(x;), is the number of observations
xj, j=1,2,...,N, such that x; < x;. For example, the rank of the ith-
order statistic is equal to i, or r(x;)) = i. A functional definition of the
rank of any «x; in a set of N different observations is provided by

N
rXi)=> Sl —x)=1) S(x —x) (5.1)
J=1

A
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ONE-SAMPLE AND PAIRED-SAMPLE PROCEDURES 191

where

_Jo if u<0

S(”)_{l ifu>0 (5:2)
The random variable r(X;) is discrete and for a random sample from a
continuous population it follows the discrete uniform distribution, or

Pr(X;))=j]=1/N forj=1,2,....N

Although admittedly the terminology may seen confusing at the
outset, a function of the rank-order statistics will be a called a rank
statistic. Rank statistics are particularly useful in nonparametric in-
ference since they are usually distribution free. The methods are ap-
plicable to a wide variety of hypothesis-testing situations depending
on the particular function used. The procedures are generally simple
and quick to apply. Since rank statistics are functions only of the ranks
of the observations, only this information is needed in the sample data.
Actual measurements are often difficult, expensive, or even impossible
to obtain. When actual measurement are not available for some reason
but relative positions can be determined, rank-order statistics make
use of all of the information available. However, when the funda-
mental data consist of variate values and these actual magnitudes are
ignored after obtaining the rank-order statistics, we may be concerned
about the loss of efficiency that may ensue. One approach to a judg-
ment concerning the potential loss of efficiency is to determine the
correlation between the variate values and their assigned ranks. If the
correlation is high, we would feel intuitively more justified in the re-
placement of actual values by ranks for the purpose of analysis. The
hope is that inference procedures based on ranks alone will lead to
conclusions which seldom differ from a corresponding inference based
on actual variate values.

The ordinary product-moment correlation coefficient between
two random variables X and Y is

x.y) - FIX —m) (¥~ )] BXY) - BGOB(Y)
P ’ o OxOy OxOy

Assume that for a continuous population denoted by a cdf Fx (pdf fx)
we would like to determine the correlation between the random vari-
able X and its rank r(X). Theoretically, a random variable from an
infinite population cannot have a rank, since values on a continuous
scale cannot be ordered. But an observation X;, of a random sample of
size N from this population, does have a rank r(X;) as defined in (5.1).
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The distribution of X; is the same as the distribution of X and the r(X;)
are identically distributed though not independent. Therefore, it is
reasonable to define the population correlation coefficient between
ranks and variate values as the correlation between X; and Y; = r(X;),
or

EX;Y;) — EX)E(Y;)

OxOy;

plX,r(X)] = (5.3)

The marginal distribution of Y; for any i is the discrete uniform,
so that

fr(j)== forj=12,....N (5.4)

N
Ey)=S LN+l 55
(Y3) ;N 5 (5.5)
N -2
By?) - N~ _ N+ DN +1)
var(Y,) - N+1)@2n+1) (N+1 N*-1 (5.6)

6 4 12
The joint pdf of X; and its rank Y; is

. . . X)) (x) .
fx.y,(x,0) = fxyv,=i (x| )y, (J) = N forj=1,2,...,N

where X ;) denotes the jth-order statistic of a random sample of size N
from the cdf Fx. From this expression we can write

o0 N N ’ B
EX)Y;) :]l\f/ E Jxfx; (x) dx = E JE(;]((J)) (5.7)
—o0 T .

J=1

Substituting the results (5.5), (5.6), and (5.7) back into (5.3), we obtain

(5.8)

12 N GE(X() — IN(N +1)/2)E(X
p[X,r(X)]_(Nzli 1) 2j-1/EX () A}@E +1)/2]EX)
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Since theresulthereisindependent ofi, our definitionin (5.3) may be con-
sidered a true correlation. The same result is obtained if the covariance
between X and r(X) is defined as the limit as M approaches infinity of
the average of the M correlations that can be calculated between sample
values and their ranks when M samples of size N are drawn from this
population. This method will be left as an exercise for the reader.

The expression given in (5.8) can be written in another useful
form. If the variate values X are drawn from a continuous population
with distribution F, the following sum can be evaluated:

ol iN!
3 B0} iy

i=1

« [ e Fx )l 1 Fy ()] e ()

o0

Z (z]v+1JN1' / P @) [1-Fr(o) 7 ()

_N(N-1) / " Py ()
N-1 N —
(Y - B e
=1
oo N-1 _ . .
v [ Wx;(Nj ) Ex 1 - P o)
NNV - 1) / " iy ()fx(¥)dx + N / " () dx
— N(N — 1)E[XFx(x)] + NE(X) (5.9)
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If this quantity is now substituted in (5.8), the result is

12 >1/2 1

o0 = (3 ph 2y

a{(N— DEXFx(X)|+EX)~—5—E(X)

12 \?21 N-1
_ <N2_1> GX{(N— 1)EXFx(X)] —ZE(X)}
1/2
_ [12;111)} ;{E[XFX(X)]—;E(X)} (5.10)
and
Jim plX, r(X)] = %g {E[)@(X)] - %E(X)} (5.11)

Some particular evaluations of (5.11) are given in Stuart (1954).

5.6 TREATMENT OF TIES IN RANK TESTS

In applying tests based on rank-order statistics, we usually assume
that the population from which the sample was drawn is continuous.
When this assumption is made, the probability of any two observations
having identical magnitudes is equal to zero. The set of ranks as
defined in (5.1) then will be N different integers. The exact properties
of most rank statistics depend on this assumption. Two or more
observations with the same magnitude are said to be tied. We may say
only that theoretically no problem is presented by tied observations.
However, in practice ties can certainly occur, either because the
population is actually discrete or because of practical limitations on
the precision of measurement. Some of the conventional approaches to
dealing with ties in assigning ranks will be discussed generally in this
section, so that the problem can be ignored in presenting the theory of
some specific rank tests later.

In a set of N observations which are not all different, arrange-
ment in order of magnitude produces a set of r groups of different
numbers, the ith different value occurring with frequency ¢;, where
> t;i =N. Any group of numbers with ¢; > 2 comprises a set of tied
observations. The ranks are no longer well defined, and for any set of
fixed ranks of N untied observations there are [][¢;! possible assign-
ments of ranks to the entire sample with ties, each assignment leading
to its own value for a rank test statistic, although that value may be
the same as for some other assignment. If a rank test is to be per-
formed using a sample containing tied observations, we must have
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either a unique method of assigning ranks for ties so that the test
statistic can be computed in the usual way or a method of combining
the many possible values of the rank test statistic to reach one deci-
sion. Several acceptable methods will be discussed briefly.

RANDOMIZATION

In the method of randomization, one of the []¢;! possible assignments
of ranks is selected by some random procedure. For example, in the set
of observations

3.0,4.1,4.1,5.2,6.3,6.3,6.3,9

there are 2!(3!) or 12 possible assignments of the integer ranks 1 to 8
which this sample could represent. One of these 12 assignments is
selected by a supplementary random experiment and used as the
unique assignment of ranks. Using this method, some theoretical
properties of the rank statistic are preserved, since each assignment
occurs with equal probability. In particular, the null probability dis-
tribution of the rank-order statistic, and therefore of the rank statistic,
is unchanged, so that the test can be performed in the usual way.
However, an additional element of chance is artificially imposed,
affecting the probability distribution under alternatives.

MIDRANKS

The midrank method assigns to each member of a group of tied
observations the simple average of the ranks they would have if dis-
tinguishable. Using this approach, tied observations are given tied
ranks. The midrank method is perhaps the most frequently used, as it
has much appeal experimentally. However, the null distribution of
ranks is affected. Obviously, the mean rank is unchanged, but the
variance of the ranks would be reduced. When the midrank method is
used, for some tests a correction for ties can be incorporated into the
test statistic. We discuss these corrections when we present the
respective tests.

AVERAGE STATISTIC

If one does not wish to choose a particular set of ranks as in the pre-
vious two methods, one may instead calculate the value of the test
statistic for all the []¢;! assignments and use their simple average as
the single sample value. Again, the test statistic would have the same
mean but smaller variance.
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AVERAGE PROBABILITY

Instead of averaging the test statistic for each possible assignment of
ranks, one could find the probability of each resulting value of the test
statistic and use the simple average of these probabilities for the
overall probability. This requires availability of tables of the exact null
probability distribution of the test statistic rather than simply a table
of critical values.

LEAST FAVORABLE STATISTIC

Having found all possible values of the test statistic, one might choose
as a single value that one which minimizes the probability of rejection.
This procedure leads to the most conservative test, i.e., the lowest
probability of committing a type I error.

RANGE OF PROBABILITY

Alternatively, one could compute two values of the test statistic: the
one least favorable to rejection and the one most favorable. However,
unless both fall inside or both fall outside the rejection region, this
method does not lead to a decision.

OMISSION OF TIED OBSERVATIONS

The final and most obvious possibility is to discard all tied observa-
tions and reduce the sample size accordingly. This method certainly
leads to a loss of information, but if the number of observations to be
omitted is small relative to the sample size, the loss may be minimal.
This procedure generally introduces bias toward rejection of the null
hypothesis.

The reader is referred to Savage’s Bibliography (1962) for dis-
cussions of treatment of ties in relation to particular nonparametric
rank test statistics. Pratt and Gibbons (1981) also give detailed dis-
cussions and many references. Randles (2001) gives a different ap-
proach to dealing with ties.

5.7 THE WILCOXON SIGNED-RANK TEST AND CONFIDENCE INTERVAL

Since the one-sample sign test in Section 5.4 utilizes only the signs of
the differences between each observation and the hypothesized med-
ian M,, the magnitudes of these observations relative to M, are
ignored. Assuming that such information is available, a test statistic
which takes into account these individual relative magnitudes might
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be expected to give better performance. If we are willing to make the
assumption that the parent population is symmetric, the Wilcoxon
signed-rank test statistic provides an alternative test of location which
is affected by both the magnitudes and signs of these differences. The
rationale and properties of this test will be discussed in this section.

As with the one-sample situation of Section 5.4, we have a ran-
dom sample of N observations X;,Xs,...,Xy from a continuous cdf F
with median M, but now we assume that F' is symmetric about M.
Under the null hypothesis

Hy: M =M,

the differences D; = X; — M, are symmetrically distributed about zero,
so that positive and negative differences of equal absolute magnitude
have the same probability of occurrence; i.e., for any ¢ > 0,

Fp(—c)=P(D; < —¢)=P(D; 2¢)=1-PD; <c)=1-Fp(c)

With the assumption of a continuous population, we need not be
concerned theoretically with zero or tied absolute differences |D;|.
Suppose we order these absolute differences |D4|, |Ds,...,|Dy| from
smallest to largest and assign them ranks 1,2, ..., N, keeping track of
the original signs of the differences D;. If M is the true median of the
symmetrical population, the expected value of the sum of the ranks of
the positive differences T'" is equal to the expected value of the sum of
the ranks of the negative differences 7'~. Since the sum of all the ranks
is a constant, that is, 7" + T~ = YN ;i = N(N + 1)/2, test statistics
based on T only, T~ only, or T" — T~ are linearly related and
therefore equivalent criteria. In contrast to the ordinary one-sample
sign test, the value of T, say, is influenced not only by the number of
positive differences but also by their relative magnitudes. When the
symmetry assumption can be justified, 7" may provide a more effi-
cient test of location for some distributions.

The derived sample data on which these test statistics are based
consist of the set of NV integer ranks {1,2,... N} and a corresponding
set of N plus and minus signs. The rank i is associated with a plus or
minus sign according to the sign of D; = X; — My, where D; occupies
the ith position in the ordered array of absolute differences |D;|. If we
let r(.) denote the rank of a random variable, the Wilcoxon signed-rank
statistic can be written symbolically as

N N

T =3"Zr(Di) T =Y (1-Z)r(Di)) (7.1)

i=1 i=1
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where
7. _ 1 if D; >0
710 if D; <0
Therefore,
N
B NN +1)
+ _ — Y I
T —T =2 riD| 5

=1

Under the null hypothesis, the Z; are independent and iden-
tically distributed Bernoulli random Variables with P(Z;=1) =
P(Z; =0) =1/2 so that E(Z;) = 1/2 and var(Z;) = 1/4. Using the fact
that 7" in (7.1) is a linear combination of these Variables, its exact null
mean and variance can be determined. We have

N
+ _N~r(Di) _NIN+1)
Also, since Z; is independent of r(|D;|) under Hy (see Probem 5.25), we
can show that

i r|D;|)? _NW+1)@2N +1)

(T* | Hy)
var(T" | od

(7.2)
=1

A symbolic representation of the test statistic 7' that is more
convenient for the purpose of deriving its mean and variance in gen-

eral is
> Ty (7.3)

1<i<j<N

T — 1 if D;+D; >0
Y 0 otherwise

The D;’s are identically distributed under Hy. Now define for all dis-

tinct i,j, k the probabilities
=P(D; > 0)

D;+D; > 0)

(

(

D; >0andDi+Dj>O)

P
P
P(D; +D; > 0 and D; + D, > 0)
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The moments of the indicator variables for all distinct i,/, &, h are then

E(T;) = p: E(Ty) =p2
var(Ti;) = p1 —p% var(Ty) =po — p%
cov(Ty, Tix) =ps —p1p2 cov(Ty, Tix) = pa — p3

cov(Ty, Tia) = 0

The mean and variance of the linear combination in (7.3) in terms of
these moments are

NN - 1)ps

E(T") 5

:NE(T,‘L') + = Np1 + (7.5)

var(T") = Nvar(Ty;) + )Var i)+ 2N(N — 1) cov(Tyi, Tir,)

N-1 N
+ 2N( 9 )cov Ty, Ti) + < 4 )cov(T,-j, Thr)

2NN~ 1)(ps — p1p) + NN — DN = 2)(ps — p?)
=Np1(1—p1) + NN — 1)(N — 2)(ps — p3)
N 1) (po(1 — o) + 4(ps ~ prp2) (76)

The relevant probabilities from (7.4) are now evaluated under the
assumption that the population is symmetric and the null hypothesis
is true.

D1 ZP(D,' > 0) = 1/2
—P0+D;>0) = [ [ fowhp(v)dude

- [ n-Fo-olfoav

o] 1
FD(U)fD(v)dv:/ xdx=1/2
—00 0
Ps3 :P(Di > 0 and D; +Dj > 0)

_ /Ooo /zofD(u)fD(v) dudv = /Ooc[l — Fp(—0)|fp(v) dv
o0 1

— [ Fofol)do= [ wdx—3/8
0 1/2
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= (D‘+Dj>0andDi+Dk>0)
(0 <D;+D;<D;+D;)+P(0<D;+D;, <D;+Dj)
—D; <D; <Dy)

/ / / Fo w)foo (0)fi (w) du doduw

2 [ [ 1-Fololfo(fo(w)dedu
2 / N / " fo(0)fp(w)dvdw —2 / N / " P (0)fp (0)fp (w) dvdw
2 [ L= Fp(—w))fp(w)duw — / (1 Fo(-w) Y (w) dw

o0

:2/_OOFD(w)dFD(w) - 1+/_°° 1= Fp(w)>dFp (w)
_9(1/2)—1+(1/3)=1/3

The reader may verify that substitution of these results back in (7.5)
and (7.6) gives the mean and variance already found in (7.2).

We use the method described in Chapter 1 to investigate the
consistency of T.
We can write

2TJr - 2p1 (N—].)p2
NN+1)] N+1 N+1

which equals { under Hy and var[2T" /N (N + 1)] clearly tends to zero
as N — oco. Therefore, the test with rejection region

2T+

+ -
T eR forN(N+1)

>k

[\

is consistent against alternatives of the form py = P(D; +D; > 0) >
0.5. This result is reasonable since if the true population median
exceeds M, the sample data would reflect this by having most of the
larger ranks correspond to positive differences. A similar two-sided
rejection region of T centered on N(N + 1)/4 is consistent against
alternatives with pg # 0.5.

To determine the rejection regions precisely for this consistent
test, the probability distribution of 7" must be determined under the
null hypothesis

Hy: GZP(X>M0):O5
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The extreme values of Tt are zero and N(N + 1)/2, occurring when all
differences are of the same sign, negative or positive, respectively. The
mean and variance were found in (7.2). Since T is completely deter-
mined by the indicator variables Z; in (7.1), the sample space can be
considered to be the set of all possible N-tuples {z1,z9,...,z5} with
components either one or zero, of which there are 2V. Each of these
distinguishable arrangements is equally likely under H,. Therefore,
the null probability distribution of 7" given by

P(T*=t) =u(t)/2N (7.7)
where u(¢) is the number of ways to assign plus and minus signs to the
first N integers such that the sum of the positive integers equals ¢.

Every assignment has a conjugate assignment with plus and minus
signs interchanged, and T'" for this conjugate is

N NN+1) ..
(1-Z)=——F———-) 1Z;
; (1-Z) 5 ; :
Since every assignment occurs with equal probability, this implies that
the null distribution of 7" is symmetric about its mean N(N + 1)/4.

Because of the symmetry property, only one-half of the null dis-
tribution need be determined. A systematic method of generating the
complete distribution of 7" for N = 4 is shown in Table 7.1.

1/16 t=20,1,2,8,9,10
fr-(t)=42/16 t=3,4,56,7
0 otherwise
Tables can be constructed in this way for all V.
To use the signed-rank statistics in hypothesis testing, the entire

null distribution is not necessary. In fact, one set of critical values is
sufficient for even a two-sided test, because of the relationship

Table 7.1 Enumeration for the distribution of 7"

Ranks associated with
Value of T™ positive differences Number of sample points u(t)

—

oY 900 O o

1,2,3,4

2,3,4

1,3,4
1,2,4; 3,4
1,2,3; 2,4
1,4; 2,3

N NN = =
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T*+T-=N(N+1)/2 and the symmetry of T about N(N +1)/4.
Large values of T correspond to small values of T~ and T'" and T~ are
identically distributed since

P(T">c)=P T+_w ZC_W]
b N(N+1)_T+>C_N(N+1)]
T4 4
i 2
—P(T" >¢)

Since it is more convenient to work with smaller sums, tables of the
left-tailed critical values are generally set up for the random variable
T, which may denote either 7" or T~. If #, is the number such that
P(T <t,) =a, the appropriate rejection regions for size o tests of
Hy: M = M, are as follows:

T <ty for Hi: M > M,

T <t, for Hi: M < M,

T+<ta/2 or T~ SR for Hi : M # M,

Suppose that V = 8 and critical values are to be found for one-
or two-sided tests at nominal o= 0.05. Since 28 =256 and
256(0.05) = 12.80, we need at least 13 cases of assignments of signs.
We enumerate the small values of T+ in Table 7.2. Since
P(T* < 6)=14/256 > 0.05 and P(T" < 5) = 10/256 = 0.039,%9.05 = 5;

the exact probability of a type I error is 0.039. Similarly, we find
to.025 = 3 with exact P(fpL < 3) =0.0195.

Table 7.2 Partial distribution of Ty, for N =8

Ranks associated with

Value of T™ positive differences Number of sample points
0 1
1 1 1
2 2 1
3 3:1,2 2
4 4; 1,3 2
5 5;1,4;2,3 3
6 6; 1,5; 2,4; 1,2,3 4
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When the distribution is needed for several sample sizes, a sim-
ple recursive relation can be used to generate the probabilities. Let T’
denote the sum of the ranks associated with positive differences D; for
a sample of N observations. Consider a set of N — 1 ordered |D;|, with
ranks 1,2,...,N — 1 assigned, for which the null distribution of T}, ,
is known. To obtain the distribution of T}, from this, an extra ob-
servation Dy is added, and we can assume without loss of generality
that |Dy| > |D;| for all i <N —1. The rank of |Dy| is then N. If
IDy| > 0, the value of T, will exceed that of T, _; by the amount N for
every arrangement of the N — 1 observations, but if [Dy| < 0, Ty, will
be equal to T, ;. Using the notation in (7.7), this can be stated as
B un (k) B un_1(k —N)P(Dy > 0) + uny_1(k)P(Dy < 0)

P(Ty =k) = ON ON-1

_un-1(k=N) +un-1(k)

v (7.8)

If N is moderate and systematic enumeration is desired, classi-
fication according to the number of positive differences D; is often
helpful. Define the random variable U as the number of positive dif-
ferences; U follows the binomial distribution with parameter 0.5, so
that

= iP(U:i)P(T+ —t|U =1)

- i<N> (05)NP(T+ =t|U =)

A table of critical values and exact significance levels of the
Wilcoxon signed-rank test is given in Dunstan, Nix, and Reynolds
(1979) for N < 50, and the entire null distribution is given in Wilcoxon,
Katti, and Wilcox (1972) for N < 50. Table H of the Appendix of this
book gives left-tail and right-tail probabilities of 7" (or 7) for N < 15.
From a generalization of the central-limit theorem, they asymptotic
distribution of T is the normal. Therefore, in the null case, using the
moments given in (7.2), the distribution of

AT+ —N(N +1)

Z= V2NN + 1)2N +1)/3 (79)
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approaches the standard normal as N — oco. The test for, say,
Hi: M > M, can be performed for large N by computing (7.9) and
rejecting Hy for Z > z,. The approximation is generally adequate for N
at least 15. A continuity correction of 0.5 generally improves the
approximation.

THE PROBLEM OF ZERO AND TIED DIFFERENCES

Since we assumed originally that the random sample was drawn from
a continuous population, the problem of tied observations and zero
differences could be ignored theoretically. In practice, generally any
zero differences (observations equal to Mp) are ignored and N is
reduced accordingly, although the other procedures described for the
ordinary sign test in Section 5.4 are equally applicable here. In the
case where two or more absolute values of differences are equal, that
is, |d;| = |d;| for at least one i # j, the observations are tied. The ties
can be dealt with by any of the procedures described in Section 5.6.
The midrank method is usually used, and the sign associated with the
midrank of |d;| is determined by the original sign of d; as before. The
probability distribution of T is clearly not the same in the presence of
tied ranks, but the effect is generally slight and no correction need be
made unless the ties are quite extensive. A thorough comparison of the
various methods of treating zeros and ties with this test is given in
Pratt and Gibbons (1981).

With large sample sizes when the test is based on the standard
normal statistic in (7.9), the variance can be corrected to account for
the ties as long as the midrank method is used to resolve the ties.
Suppose that ¢ observations are tied for a given rank and that if they
were not tied they would be given the ranks s + 1,s +2,...,s +¢. The
midrank is then s + (¢ + 1)/2 and the sum of squares of these ranks is

t[s—i-(t—;l)r—t

(t+1)*
4

s2+s(t+1)+

If these ranks had not been tied, their sum of squares would have been

d 1)(2t+1
D (s+i)® =ts® +st(t+1) +w
i=1

The presence of these ¢ ties then decreases the sum of squares by
te+1)(2t+1) tt+1)° e+ D(E-1)

6 4 12

(7.10)
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Therefore the reduced variance from (7.2) is

N(N+1)2N+1) Y ¢t*-1)
24 48

where the sum is extended over all sets of ¢ ties.

var(T"|Hy) = (7.11)

POWER FUNCTION

The distribution of 7" is approximately normal for large sample sizes
regardless of whether the null hypothesis is true. Therefore a large
sample approximation to the power can be calculated using the mean
and variance given in (7.5) and (7.6). The distribution of X — M, under
the alternative would need to be specified in order to calculate the
probabilities in (7.4) to substitute in (7.5) and (7.6).

The asymptotic relative efficiency of the Wilcoxon signed-rank
test relative to the ¢ test is at least 0.864 for any distribution con-
tinuous and symmetric about zero, is 0.955 for the normal distribu-
tion, and is 1.5 for the double exponential distribution.

It should be noted that the probability distribution of 7' is not
symmetric when the null hypothesis is not true. Further, 7" and T~
are not identically distributed when the null hypothesis is not true. We
can still find the probability distribution of T~ from that of 7", how-
ever, using the relationship

NN +1)

P(T" =k) =P|—=

—Tt =k (7.12)

SIMULATED POWER

Calculating the power of the signed-rank test, even using the normal
approximation, requires a considerable amount of work. It is much
easier to simulate the power of the test, as we did for the sign test in
Section 5.4. Again we use a MINITAB Macro program for the calcu-
lations and in order to compare the results with those obtained for the
sign test, we use N = 13,a = 0.05, My = 0.5 and M; = 0.6256.
Simulating the power of the signed-rank test consists of the fol-
lowing steps. First, we determine the rejection region of the signed-
rank test from Table H of the Appendix as 7" > 70 with exact
o = 0.047. We generate 1000 random samples each of size N = 13 from
a normal distribution with mean 0.6256 and variance 1 and calculate
the signed-rank statistic 7" for each. For each of these statistics we
check to see if it exceeds the critical value 70 or not. Finally, we count
the number of times, out of 1000, that the signed-rank test rejects
the null hypothesis and divide this number by 1000. This gives a
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Fig. 7.1 Simulated power of the sign and the signed-rank rank test for the normal
distribution.

simulated (estimated) value of the power of the sign test with
N =13,00=0.0461,M, = 0.50,M, = 0.6256. The program code is
shown below. Note that the program also calculates the simulated
power of the sign test and plots the two simulated power curves on the
same graph. This graph is shown in Figure 7.1.

macro signrank

# simulates powers of sign and the signed-rank test
signrank

mcolumn ¢l ¢2 o3 ¢4 powl pow2 theta phiinv mu
mconstant k1l k2 k3 k4 ko cow mul
let kS=1

set theta

{.5:.9/.05)1

end

#print theta

invcdf theta phiinwv;

normal 0.0 1.0.

let mu=.5+phiinv

mlable 4

let cow=1

let powl (k5)=0

let pow2 (k5)=0
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mlabel 1

let mul=mu(k5)

random 13 cl;

normal mul 1.

let ¢l=cl-.-50

# calculate Sign and Signed Rank
let c2={cl gt 0)

let kl=sum{c2)

# kl=value of Sign stat

let ¢3=abs{cl)

let c3=rankic3)

let cd=c2%c3

let k2=sum{c4)

# k2=value of Signed-Rank stat

# print cl <2 ¢3 ¢4 k1 k2

# k4 is the critical value of sign test from Table G
# at n=13,exact alpha=0.0461

let k3=10

# k4 iz the critical value for the signed
¥ rank test from Table H at n=13, exact alpha=0.47
let k4=70

if k1 ge 10

let powl (k5)=powl(k5)+1

elge

let powl (k5)=powl(k5}+0

endif

if k2 ge 70

let pow2 (k5)=pow2 (k5)+1

else

let pow2 (k5)=pow2{k5)+0

endif

let cow=cow+l

if cow gt 1000

go to 2

elze

go to 1

endif

mlabel 2

let powl{k5}=powl(k5) /1000

let pow2(k5)=pow2(k5}/1000

print kS mu(kS)}theta{k5} powl{k5)pow2(k5)
let k5=k5+1

if k5 gt ¢

go to 3

else

go to 4

endif
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mlabel 3

plotl*mu pow2*mu;
connect ;

color 1 2;

axig 2;

label 'simulated power';
overlay.

endmacro

The output from the MACRO is shown below; powl and pow?2
are, respectively, the computed powers of the sign and the signed-rank
test, based on 1000 simulations.

mu theta powl pow2

0.50000 0.50 0.033 0.036
0.62566 0.55 0.095 0.100
0.75335 0.60 0.166 0.211

0.88532 0.65 0.292 0.352
1.02440 0.70 0.465 0.568
1.17449 0.75 0.582 0.710
1.34162 0.80 0.742 0.885
1.53643 0.85 0.897 0.974
1.78155 0.90 0.968 ¢.994

SAMPLE SIZE DETERMINATION

In order to make an inference regarding the population median using
the signed-rank test, we need to have a random sample of observa-
tions. If we are allowed to choose the sample size, we might want to
determine the value of N such that the test has size o and power 1—J,
given the null and the alternative hypotheses and other necessary
assumptions. Recall that for the sign test against the one- sided upper-
tailed alternative, we solved for NV such that

Size = i<7>(05)N <a

i—ky
N /N\ . N
d = (1-0)"">1-
an power §<i> ( ) B

where o, 1-, and 6 = P(X > My|H;) are all specified. We noted there
that the solution is much easier to obtain using the normal approx-
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imation; the same is true for the Wilcoxon signed-rank test, as we now
illustrate. Note that the theory is presented here in terms of the
signed-rank statistic 7" but the same approach will hold for any test
statistic whose distribution can be approximated by a normal dis-
tribution under both the null and the alternative hypotheses.

Under the normal approximation, the power of a size o signed-
rank test against the alternative Hy : M > My is P(T" = pg + z,00/H1),
where 1y and o are, respectively, the null mean and the null standard
deviation of T". It can be easily shown (see Noether, 1987) that this
power equals a specified 1§ if

TN
(=) = @t p2p)” (7.13)
where p and o are, respectively, the mean and the standard deviation
of TT under the alternative hypothesis. We denote the relation
between standard deviations by p=c/0¢. Since o is unknown and is
difficult to evaluate [see (7.6)], p is unknown. One possibility is to take
p equal to 1 and this is what is done; such an assumption is reasonable
for alternative hypotheses that are not too different from the null
hypothesis.

If we substitute the expressions for yg, oo, and p [see (7.5)] into
(7.13), we need to solve for N in

[N(p1 — 0.5) + (N(N — 1)(pz — 0.5)) /2

N(N +1)(2N +1)/24 = (22 +2p)” (7.14)

Note that p; =P(X; > M,) and ps =P(X;+X; >2M;) under the
alternative H1 : M > M,. The sample size calculations from (7.14) are
shown in Table 7.3 for o =0.05, 1— =0.95, assuming the underlying
distribution is standard normal. These calculations are the solution for
N in (7.14) done in EXCEL using the solver application. Note that the
answer for the sample size N, shown in the fifth column, needs to be
rounded up to that next larger integer. Thus, for example, assuming
normality and the My=0, M; =0.5, «=0.05, we need to have
approximately 33 observations in our sample for a power of 0.95 and a
one-sided alternative.

A similar derivation can be used to find a sample size formula
when the alternative is two-sided. The details are left to the reader as
an exercise.

It may be noted that the sample size formula in (7.14) is not
distribution-free since it depends on the underlying distribution
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through the parameters p; and p,. Noether (1987) proposed approx-
imating the left-hand side of (7.14) as 3N (p2 — 0.5)% and solving for N,
which yields

(e t2p)”

 3(py—0.5)° (7.15)

This formula still depends on ps; Noether (1987) suggested a choice for
this parameter in terms of an “odds-ratio.” The reader is referred to his
paper for details.

For a two-sided test, we can use (7.15) with o replaced by o/2.

We illustrate the use of (7.15) for this example where o =0.05,
1-=0.95.If M; = 0.1 and ps = 0.579, we find N = 578.12 from (7.15);
if M;=1.0 and p,=0.977, we find N =15.86 from (7.15). The corres-
ponding values shown in Table 7.1 are N=575.72 and N =16.44,
respectively.

CONFIDENCE-INTERVAL PROCEDURES

As with the ordinary one-sample sign test, the Wilcoxon signed-rank
procedure lends itself to confidence-interval estimation of the
unknown population median M. In fact, two methods of interval
estimation are available here. Both will give the confidence limits as
those values of M which do not lead to rejection of the null hypothesis,
but one amounts to a trial-and-error procedure while the other is
systematic and provides a unique interval. For any sample size N, we
can find that number ¢, 5 such that if the true population median is M
and T is calculated for the derived sample values X; — M, then

P(T* <t,) :% and  P(T~ <t,p) :%
The null hypothesis will not be rejected for all numbers M which make
T* >t,9 and T~ >t,)5. The confidence interval technique is to find
those two numbers, say M7 and Ms where M; < My, such that when T
is calculated for the two sets of differences X; — M1 and X; — Ms, at the
significance level o, T or T, whichever is smaller, is just short of
significance, i.e., slightly larger than ¢,/5. Then the 100(1 — o) percent
confidence-interval estimate of M is M1 < M < M.

In the trial-and-error procedure, we simply choose some suitable
values of M and calculate the resulting values of 7" or 7", stopping
whenever we get numbers slightly larger than ¢, 5. This generally does
not lead to a unique interval, and the manipulations can be tedious
even for moderate sample sizes. The technique is best illustrated by an
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example. The following eight observations are drawn from a con-
tinuous, symmetric population:

~1,6,13,4,2,3,5,9 (7.16)

For N =8 the two-sided rejection region of nominal size 0.05 was found
earlier by Table 7.2 to be ¢,/ = 3 with exact significance level

a=P(T" <3)+P(T" <3)=10/256 = 0.039

In Table 7.4 we try six different values for M and calculate T or T,
whichever is smaller, for the differences X; — M. The example illus-
trates a number of difficulties which arise. In the first trial choice of M,
the number 4 was subtracted and the resulting differences contained
three sets of tied pairs and one zero even though the original sample
contained neither ties nor zeros. If the zero difference is ignored, N
must be reduced to 7 and then the ¢,/3 = 3 is no longer accurate for
o.=0.039. The midrank method could be used to handle the ties, but
this also disturbs the accuracy of ¢, /3. Since there seems to be no real
solution to these problems, we try to avoid zeros and ties by judicious
choices for our M values for subtraction. Since these data are all
integers, a choice for M which is noninteger valued obviously reduces
the likelihood of ties and makes zero values impossible. Since T~ for
the differences X; — 1.1 yields 7~ = 3.5 using the midrank method, we
will choose M; =1.5. The next three columns represent an attempt to
find an M which makes 7" around 4. These calculations illustrate the
fact that M; and M, are far from being unique. Clearly M, is in the
vicinity of 9, but the differences X; — 9 yield a zero. We conclude there
is no need to go further. An approximate 96.1 percent confidence

Table 7.4 Trial-and-error determination of endpoints

Xr X, -4 X —-11 X, —15 X;—-91 X, -89 X, —8.95
-1 -5 -2.1 -2.5 -10.1 -9.9 -9.95
6 2 4.9 4.5 -3.1 -2.9 —2.95
13 9 11.9 11.5 3.9 4.1 4.05
4 0 2.9 2.5 -5.1 —-4.9 —4.95
2 -2 0.9 0.5 =71 —6.9 —6.95
3 -1 1.9 1.5 —6.1 -5.9 —5.95
5 1 3.9 3.5 -4.1 -3.9 -3.95
9 5 7.9 7.5 -0.1 0.1 0.05
T% or T- 3 3.5 3 5 5
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interval on M is given by 1.5 <M < 9. The interpretation is that
hypothesized values of M within this range will lead to acceptance of
the null hypothesis for an exact significance level of 0.039.

This procedure is undoubtedly tedious, but the limits obtained
are reasonably accurate. The numbers should be tried systematically
to narrow down the range of possibilities. Thoughtful study of the
intermediate results usually reduces the additional number of trials
required.

A different method of construction which leads to a unique in-
terval and is much easier to apply is described in Noether [(1967), pp.
57-58]. The procedure is to convert the interval T >, and
T~ >t,2 to an equivalent statement on M whose end points are
functions of the observations X;. For this purpose we must analyze the
comparisons involved in determining the ranks of the differences
r(|X; — My|) and the signs of the differences X; = M since 7" and T~
are functions of these comparisons. Recall from (5.1) that the rank of
any random variable in a set {V1,Vs,...,Vy} can be written sym-
bolically as

N
r(Vi)=>_S(Vi-Vy)=> S(Vi- V) +1
k= k#i

[y

_J1 if u>0
S(”){o if u<0
To compute a rank, then we make (1;7 > comparisons of pairs of
different numbers and one comparison of a number with itself. To
compute the sets of all ranks, we make <];7> comparisons of pairs and
N identity comparisons, a total of (g) +N =N(N +1)/2 compar-

isons. Substituting the rank function in (7.1), we obtain

2

T =" Z; r(|Xi — Mo|)
1

¥y oW
=3 "Zi+> > Zi S(Xi — Mo| — X, — M) (7.17)

i=1 i=1 kA

Therefore these comparisons affect T as follows:
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1. A comparison of |X; — My| with itself adds 1 to 7" if X; — M, > 0.

2. A comparison of |X; — My| with |X}, — My| for any i # k adds 1 to 7't
if |Xl —M0| > |Xk —M0| and Xi —M() > 0, that iS, Xi —M() >
IXr — My|. If X, — My >0, this occurs when X; > X, and if
X, — My <0, we have X; + X, >2M, or (X;+X;)/2> M, But
when X; — My >0 and X, — M, >0, we have (X; +X;)/2 > M,
also.

Combining these two results, then, (X; + X};)/2 > M) is a neces-
sary condition for adding 1 to Tt for all i, k. Similarly, if
X; +Xr)/2 < My, then this comparison adds 1 to T". The relative
magnitudes of the N(N + 1)/2 averages of pairs (X; +X},)/2 for all
I <k, called the Walsh averages, then determine the range of values for
hypothesized numbers M, which will not lead to rejection of Hy. If these
N(N + 1)/2 averages are arranged as order statistics, the two numbers
which are in the (¢, /3 + 1) position from either end are the endpoints of
the 100(1 — o) percent confidence interval on M. Note that this proce-
dure is exactly analogous to the ordinary sign-test confidence interval
except that here the order statistics are for the averages of all pairs of
observations instead of the original observations.

The data in (7.16) for N = 8 arranged in order of magnitude are
-1,2,3,4,5,6,9, 13, and the 36 Walsh averages are given in Table 7.5.
For exact o = 0.039, we found before that ¢, = 3. Since the fourth
largest numbers from either end are 1.5 and 9.0, the confidence in-
terval is 1.5 <M < 9 with exact confidence coefficient y=1-2(0.039) =
0.922. This result agrees exactly with that obtained by the previous
method, but this will not always be the case since the trial-and-error
procedure does not yield unique endpoints.

The process of determining a confidence interval on M by the
above method is much facilitated by using the graphical method of
construction, which can be described as follows. Each of the N ob-

Table 7.5 Walsh averages for data in (7.16)

-1.0 0.5 1.0 1.5 2.0 2.5 4.0 6.0
2.0 2.5 3.0 3.5 4.0 5.5 7.5
3.0 3.5 4.0 4.5 6.0 8.0
4.0 4.5 5.0 6.5 8.5
5.0 5.5 7.0 9.0
6.0 7.5 9.5
9.0 11.0
13.0
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servations x; is denoted by a dot on a horizontal scale. The closed in-
terval [X(;), X ()] then includes all dots. Form an isosceles triangle ABC
by lines joining x(;) at A and x(y) at B each with a point C anywhere on
the vertical line passing through the midrange value (x() +xu)/2.
Through each point x; on the line segment AB draw lines parallel to AC
and BC, marking each intersection with a dot. There will be
N(N + 1)/2 intersections, the abscissas of which are all the (x; + x1)/2
values where 1<i<k<N. Vertical lines drawn through the
(t4/2 + 1)st intersection point from the left and right will allow us to
read the respective confidence-interval end points on the horizontal
scale. Figure 7.2 illustrates this method for the numerical data above.

PAIRED-SAMPLE PROCEDURES

The Wilcoxon signed-rank test was actually proposed for use with
paired-sample data in making inferences concerning the value of the
median of the population of differences. Given a random sample of N
pairs

X1,Y1), (X2, Y2),..., XN, YN)

their differences are

X1-Y1,Xo-Ys,.... Xy Yy

W

-1

*t1)

Fig. 7.2 Graphical determination of confidence interval.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



216 CHAPTER 5

We assume these are independent observations from a population of
differences which is continuous and symmetric with median M. In
order to test the hypothesis

H(): MD = M()
form the N differences D; =X, —Y; — My and rank their absolute
magnitudes from smallest to largest using integers {1,2,...,N},

keeping track of the original sign of each difference. Then the above
procedures for hypothesis testing and confidence intervals are equally
applicable here with the same notation, except that the parameter Mp
must be interpreted now as the median of the population of differences.

USE OF WILCOXON STATISTICS TO TEST FOR SYMMETRY

The Wilcoxon signed-rank statistics can also be considered tests for
symmetry if the only assumption made is that the random sample is
drawn from a continuous distribution. If the null hypothesis states
that the population is symmetric with median M, the null distribu-
tions of Tt and T~ are exactly the same as before. If the null
hypothesis is accepted, we can conclude that the population is sym-
metric and has median My . On the other hand, if the null hypothesis is
rejected, we cannot tell which portion (or all) of the composite state-
ment is not consistent with the sample outcome. With a two-sided
alternative, for example, we must conclude that either the population
is symmetric with median not equal to My, or the population is
asymmetric with median equal to M, or the population is asymmetric
with median not equal to My. Such a broad conclusion is generally not
satisfactory, and this is why in most cases the assumptions that justify
a test procedure are separated from the statement of the null
hypothesis.

APPLICATIONS

The appropriate rejection regions and P values for T, called the sum
of the positive ranks, are given below. Note that ¢ is the observed value
of T.

Alternative Exact rejection region Exact P-value
M > M, T >t, P(T" > t|Hy)
M < M, T+ <t P(T* < t|Hy)
M # M, T* <ty or TT >ty 2(smaller of the above)

MaRrceL DEkkER, INc.
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Table H gives the distribution of T for N < 15 as left-tail probabilities
for T* < N(N + 1)/4 and right-tail for 7" > N(N + 1)/4. This table can
be used to find exact critical values for a given o or to find exact P values.
For N > 15, the appropriate rejection regions and the P values based on
the normal approximation with a continuity correction are as follows:

Approximate rejection

Alternative region Approximate P value
NN +1) (N+1)(2N+1) t—05—-NN+1)/4
M > M T > 0.5 1-®
> Mo g 0ot 24 JNIN T LN § 1)/24
NN +1) (N+1)2N +1) t+05-NN+1)/4
M<M TH ——F—2-05-2z,
< Mo ! z 24 /NN 12N 1 1)/24
M+#0 Both above with z, /2 2(smaller of the above)

If ties are present, the variance term in these rejection regions should
be replaced by (7.11).

The corresponding confidence interval estimate of the median
has endpoints which are (¢, + 1)* from the smallest and largest of
the Walsh averages, where ¢, is the left-tail critical value in Table H
for the given N. The choice of exact confidence levels is limited to 1—-2P
where P is a tail probability in Table H. Therefore the critical value ¢/,
is the left-tail table entry corresponding to the chosen P. Since the
entries are all of the nonnegative integers, (¢,/2 + 1) is the rank of ¢, 5
among the table entries for that N.

Thus, in practice, the confidence interval endpoints are the
uth smallest and uth largest of the N(IN+1)/2 Walsh averages
Wi, = (X, +Xk)/2 forall1<i, k<N, or

W) <M < Winwi1)/2-u+1)
The appropriate value of u for confidence 1—2P is the rank of that left-

tail P among the entries in Table H for the given N. For N > 15, we find
u from

NN +1 NN+ 1)(2N +1
uzi( 1 )+0.5zu/2\/ ( 2)i )
and round down to the next smaller integer if the result is not an
integer. If zeros or ties occur in the averages, they should all be
counted in determining the endpoints.
These Wilcoxon signed-rank test procedures are applicable to
paired samples in exactly the same manner as long as X is replaced by
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the differences D =X — Y and M is interpreted as the median Mp of
the distribution of X — Y.

As in the case of the sign test, the confidence-interval estimate of
the median or median difference can be based on all N observations
even if there are zeros and/or ties. Thus a hypothesis test concerning a
value for the median or median difference when the data contain zeros
and/or ties will be more powerful if the decision is based on the con-
fidence-interval estimate rather than on a hypothesis test procedure.

Example 7.1 A large company was disturbed about the number of
person-hours lost per month due to plant accidents and instituted an
extensive industrial safety program. The data below show the number
of person-hours lost in a month at each of eight different plants before
and after the safety program was established. Has the safety program
been effective in reducing time lost from accidents? Assume the dis-
tribution of differences is symmetric.

Plant Before After
1 51.2 45.8
2 46.5 41.3
3 24.1 15.8
4 10.2 11.1
5 65.3 58.5
6 92.1 70.3
7 30.3 31.6
8 49.2 35.4

Solution Because of the symmetry assumption, we can use the
Wilcoxon signed-rank test instead of the sign test on these data. We
take the differences D = Before minus After and test Hy: Mp = 0 ver-
sus Hy: Mp > 0 since the program is effective if these differences are
large positive numbers. Then we rank the absolute values and sum the
positive ranks. The table below shows these calculations.

Plant D |D| r(|D))
1 54 5.4 4
2 5.2 5.2 3
3 8.3 8.3 6
4 -0.9 0.9 1
5 6.8 6.8 5
6 21.8 21.8 8
7 -1.3 1.3 2
8 13.8 13.8 7

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



ONE-SAMPLE AND PAIRED-SAMPLE PROCEDURES 219

We have T" = 33 and Table H for N =8 gives the right-tail
probability as 0.020. The program has been effective at the 0.05 level.

The following computer printouts illustrate the solution
to Example 7.1 using the MINITAB, STATXACT and SAS packages.

hEAh Ak kA k ok k kF kA kA F hF kR kR AR A A R Ak kA K &
MINITAB SOLUTION TO EXAMPLE 7.1

B R R R R R R S R R R R R R

Wilcoxen Sigrned Ranx Test: B-A
Tegt of median = 0.000000 versus median > 0.000000
N for Wilcoxon Estimated
N Test Statigtic P Median
EB-A 8 8 33.0 0.021 6.600

A S A S SRS R A At bR S A At

STATXACT SOLUTION TO EXAMPLE 7.1

A S A S A A S A A S SRS S Rt AR Rl

Wilcoxon 3igred Rank Teost

Summary of Exact distributien of WILJOXON SIOHNED RANK statistic:
Min Max Mean Std-dev Observed Standardized

0.0000 26.00 18.00 7.141 33.00 2.100

Asymptotic Inference:

One-sided p-value: Pr { Test Statistic .GE. Ohserved } = 0.0178
Two-gided p-value: 2 * One-sided = 0,0357
Exact Inference:

One-sided p-value: Pr { Test Statistic .GE. Observed } = 0.0195
pr { Test Statistic .EQ. Observed } = 0.0078

Two-sided p-value: Pr { | Test Statistic - Mean |
.GE. | Obperved - Mean | 0.0391
Two-sided p-value: 2*0ne-Sided = 0.03%

AR R R A AR R AR SRR RS LR REEREEEET

5A5 SOLUTION TC EXAMPLE 7.1

IR AR R R R AR R RS R E R R SR ER]
Program:

DATA EXB631;
INPUT BEFCORE AFTER;
DIFF=BEFQRE-AFTER;
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DATALINES;
51.2 45.
46. 41.
24 . 15.
10. 11.
65. 58.
52, 70.
30. 31.
49. 5.

[ VAR e R Ve R N I ]
W h WD W

PROC UNIVARIATE DATA=EX&631;

VAR DIFF;
RUN;
output:
Test -Statigtic-  ----- p Value------
Student's t t 2.754154 Pr > |t 0.0283
Sign M 2 Pr »= |M| 0.2891
Signed Rank S 15 Pr »= |5} 0.0351

The MINITAB solution uses the normal approximation with a
continuity correction. The STATXACT solution gives the asymptotic
results based on the normal approximation without a continuity
correction. Only a portion of the output from SAS PROC UNI-
VARIATE is shown. This output provides a lot of information, in-
cluding important descriptive statistics such as the sample mean,
variance, interquartile range, etc., which are not shown. Note that
the SAS signed-rank statistic is calculated as 7" —n(n+1)/4 =
33 — 18 = 15 (labeled S) and the P value given is two-tailed. The
required one-tailed P value can be found as 0.0391/2 = 0.1955, which
agrees with other calculations. It is interesting that for these data
both the t-test and the signed-rank test clearly lead to a rejection of
the null hypothesis at the 0.05 level of significance but the sign test
does not.

Example 7.2 Assume the data in Example 7.1 come from a symmetric
distribution and find a 90% confidence-interval estimate of the median
difference, computed as After minus Before.

Solution Table H for N =6 shows that P = 0.047 for confidence
1-2(0.047) =0.906, and 0.047 has rank three in Table H so that
u = 3. Thus the 90.6% confidence-interval endpoints for the median
difference are the third smallest and third largest Walsh averages.
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The 6(7)/2 = 21 Walsh averages of differences (D; + D;)/2 are shown
in the table below.

-2.0 -1.0 1.0 3.0 4.0 8.0
-1.5 0.0 2.0 3.5 6.0
-0.5 1.0 2.5 5.5

0.5 1.5 4.5

1.0 3.5

3.0

So the third smallest and third largest Walsh averages are —1.0
and 5.5, respectively and the 90.6% confidence-interval for the median
difference is (—1.0, 5.5). Note that by listing the After minus Before
data in an array across the top row of this table of Walsh averages,
identification of the confidence-interval endpoints is greatly simplified.

The MINITAB and STATXACT solutions to this example are
shown below. The MINITAB solution agrees exactly with our hand
calculations. The STATXACT solution gives an asymptotic interval
that agrees with our exact solution; the interval labeled exact uses the
second smallest and the second largest Walsh averages, which pro-
vides the 93.8% confidence interval.

IR R R R AR E TR R EE SRS E X R RS RSN EEEYE K &4

MINTTAR SQLUTION TO EXAMPLE 7.2
Ak kR R K kR E ok k ok kAR R Ak R Ak RN Ak R AN Ao

Wilcoxon Signed Rank CI: C1

Estimated Achieved
N Median Confidence Confidence Interwval
c1 & 2.00 20.7 { -1.00, 5.50)

[ERIERESE RS FETEES LR R SRS SR LS KS,

STATXACT SOLUTION TO EXAMPLE 7.2

LR RS AR ESEER SR AL EREE LR LRSS EREEEES]

HODGES-LEHMANN BESTIMATES OF MEDIAN DIFFERENCE
Summary of Exact distribution of WILCOXON SIGNED RANK

Min Max Mean std-dev Obaerved Standardized
0.0000 21.00 10.50 4,757 16.50 1.261
Point Estimate of Median Difference : Lambda = 2.000

90.00% Confidence Interval for Lambda
Asymptotic : { -1.000 ,
Exact x| -1.500 ,

LA

.500)
. 000}

o
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5.8 SUMMARY

In this chapter we presented the procedures for hypothesis tests and
confidence interval estimates for the pth quantile of any continuous
distribution for any specified p, 0 < p < 1, based on data from one
sample or paired samples. These procedures are all based on using the
pth sample quantile as a point estimate of the pth population quantile
and use the binomial distribution; they have no parametric counter-
parts. The sample quantiles are all order statistics of the sample.
Other estimates of the population quantiles have been introduced in
the literature; most of these are based on linear functions of order
statistics, say ) a;X(;. The one proposed by Harrell and Davis (1982)
has been shown to be better than ours for a wide variety of distribu-
tions. Dielman, Lowry and Pfaffenberger (1994) present a Monte Carlo
comparison of the performance of various sample quantile estimators
for small sample sizes.

The pth quantile when p = 0.5 is the median of the distribution
and we have inference procedures based on the sign test in Section 5.4
and the Wilcoxon signed-rank test in Section 5.7. Both tests are gen-
erally useful in the same experimental situations regarding a single
sample or paired samples. The assumptions required are minimal —
independence of observations and a population which is continuous at
M for the ordinary sign test and continuous everywhere and sym-
metric for the Wilcoxon signed-rank test. Experimentally, both tests
have the problem of zero differences, and the Wilcoxon test has the
additional problem of ties. Both tests are applicable when quantitative
measurements are impossible or not feasible, as when rating scales or
preferences are used. For the Wilcoxon test, information concerning
relative magnitudes as well as directions of differences is required.
Only the sign test can be used for strictly dichotomous data, like yes-
no observations. Both are very flexible and simple to use for hypoth-
esis testing or constructing confidence intervals. The null distribution
of the sign test is easier to work with since binomial tables are readily
available. The normal approximation is quite accurate for even mod-
erate N in both cases, and neither is particularly hampered by the
presence of a moderate number of zeros or ties.

For hypothesis testing, in the paired-sample case the hypothesis
need not state an actual median difference but only a relation between
medians if both populations are assumed symmetric. For example, we
might test the hypothesis that the X population values are on the
average p percent larger than Y values. Assuming the medians are a
reliable indication of size, we would write
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Hy: Mx = (1+0.01p)My

and take differences D; = X; — (1 + 0.01p)Y; and perform either test on
these derived data as before.

Both tests have a corresponding procedure for finding a con-
fidence interval estimate of the median of the population in the one-
sample case and the median difference in the paired-sample case. We
have given expressions for sample size determination and power cal-
culations.

Only the Wilcoxon signed-rank statistics are appropriate for tests
of symmetry since the ordinary sign-test statistic is not at all related to
the symmetry or asymmetry of the population. We have
P[(X; — M) > 0] = 0.5 always, and the sole criterion of determining K
in the sign test is the number of positive signs, thus ignoring the
magnitudes of the plus and minus differences. There are other ex-
tensions and modifications of the sign-test type of criteria [see, for
example, Walsh (1949a,b)].

If the population is symmetric, both sign tests can be considered
to be tests for location of the population mean and are therefore direct
nonparametric counterparts to Student’s ¢ test. As a result, compari-
sons of their performance are of interest. As explained in Chapter 1,
one way to compare performance of tests is by computing their
asymptotic relative efficiency (ARE) under various distribution as-
sumptions. The asymptotic relative efficiency of the ordinary sign test
relative to the ¢ test is 2/n = 0.637, and the ARE of the Wilcoxon
signed-rank test relative to the ¢ test is 3/m = 0.955, both calculated
under the assumption of normal distributions. How these particular
results were obtained will be discussed in Chapter 13. It is not sur-
prising that both ARE values are less than one because the ¢ test is the
best test for normal distributions. It can be shown that the ARE of the
Wilcoxon signed-rank test is always at least 0.864 for any continuous
symmetric distribution, whereas the corresponding lower bound for
the ordinary sign test is only 1/3. The ARE of the sign test relative to
the Wilcoxon signed-rank test is 2/3 for the normal distribution and
1/3 for the uniform distribution. However, the result is 4/3 for the
double exponential distribution; the fact that this ARE is greater than
one means that the sign test performs better than the signed-rank test
for this particular symmetric but heavy-tailed distribution. Similarly,
the Wilcoxon signed-rank test performs better than the ¢ test for some
nonnormal distributions; for example, the ARE is 1.50 for the double
exponential distribution and 1.09 for the logistic distribution, which
are both heavy-tailed distributions.
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PROBLEMS

5.1. Give a functional definition similar to (5.1) for the rank r(X;) of a random variable
in any set of N independent observations where ties are dealt with by the midrank
method. Hin¢: In place of S(u) in (5.2), consider the function

0 ifu<0
c(u)=141/2 ifu=0
1 if u>0
5.2. Find the correlation coefficient between variate values and ranks in a random
sample of size N from
(@) The uniform distribution
(b) The standard normal distribution
(¢) The exponential distribution

5.3. Verify the cumulative distribution function of differences given in (4.14) and
the result M = —2 + /3. Find and graph the corresponding probability function of dif-
ferences.

5.4. Answer parts (a) through (e) using (i) the sign-test procedure and (ii) the Wilcoxon
signed-rank test procedure.

(@) Test at a significance level not exceeding 0.10 the null hypothesis Hy: M = 2
against the alternative H;: M > 2, where M is the median of the continuous symmetric
population from which is drawn the random sample:

-3,-6,1,9,4,10,12

(b) Give the exact probability of a type I error in (a)
(¢) On the basis of the following random sample of pairs:

X 126 131 153 125 119 102 116 163
Y 120 126 152 129 102 105 100 175

test at a significance level not exceeding 0.10 the null hypothesis Hy: M = 2 against the
alternative Hi: M # 2, where M is the median of the continuous and symmetric popu-
lation of differences D =X —Y.

(d) Give the exact probability of a type I error in (c).
(e) Give the confidence interval corresponding to the test in (c).

5.5. Generate the sampling distributions of 7' and 7'~ under the null hypothesis for a
random sample of six unequal and nonzero observations.

5.6. Show by calculations from tables that the normal distribution provides reasonably
accurate approximations to the critical values of one-sided tests for o = 0.01,0.05, and
0.10 when:

N = 12 for the sign test
N =15 for the signed-rank test

5.7. Arandom sample of 10 observations is drawn from a normal population with mean
p and variance 1. Instead of a normal-theory test, the ordinary sign test is used for
Hy: p =0, Hy: p > 0, with rejection region K € R for K > 8.

(a) Plot the power curve using the exact distribution of K.

(b) Plot the power curve using the normal approximation to the distribution of K.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



ONE-SAMPLE AND PAIRED-SAMPLE PROCEDURES 225

(¢c) Discuss how the power functions might help in the choice of an appropriate
sample size for an experiment.

5.8. Prove that the Wilcoxon signed-rank statistic 7" — 7'~ based on a set of nonzero
observations X7,Xs,...,Xy can be written symbolically in the form

Yo senXi+X))

1<i<j<N

where
_J1 ifx >0
Sgn(x)_{—1 if x < 0
5.9. Let Dy,Dq,...,Dy be a random sample of N nonzero observations from some
continuous population which is symmetric with median zero. Define
‘ Dl o X; if D; >0
Y if D; <0

Assume there are m X values and nY values, where m +n = N and the X and Y value
are independent. Show that the signed-rank test statistic 7" calculated for these D; is
equal to the sum of the ranks of the X observations in the combined ordered sample of
mX’s and nY’s and also that 7" — T~ is the sum of the X ranks minus the sum of the Y
ranks. This sum of the ranks of the X’s is the test criterion for the Wilcoxon statistic in
the two-sample problem to be discussed in Chapter 8. Show how 7't might be used to test
the hypothesis that the X and Y populations are identical.

5.10. Hoskin et al. (1986) investigated the change in fatal motor-vehicle accidents
after the legal minimum drinking age was raised in 10 states. Their data were the
ratios of the number of single-vehicle nighttime fatalities to the number of licensed
drivers in the affected age group before and after the laws were changed to raise the
drinking age, shown in Table 1. The researchers hypothesized that raising the
minimum drinking age resulted in a reduced median fatality ratio. Investigate this
hypothesis.

Table 1 Data for Problem 5.10

State Affected ages Ratio before Ratio after
Florida 18 0.262 0.202
Georgia 18 0.295 0.227
Illinois 19-20 0.216 0.191
Towa 18 0.287 0.209
Maine 18-19 0.277 0.299
Michigan 18-20 0.223 0.151
Montana 18 0.512 0.471
Nebraska 19 0.237 0.151
New Hampshire 18-19 0.348 0.336
Tennessee 18 0.342 0.307

5.11. The conclusion in Problem 5.10 was that the median difference (Before—After)
was positive for the affected age group, but this does not imply that the reduction
was the result of laws that raised the minimum legal drinking age. Other factors,
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counter measures, or advertising campaigns [like MADD (Mothers Against Drunk
Drivers] may have affected the fatality ratios. In order to investigate further, these
researchers compared the Before — After ratios for the affected age group with the
corresponding difference ratios for the 25-29 age group, who were not affected by the
law change, as shown in Table 2. Carry out an appropriate test and write a report of
your conclusions.

Table 2 Data for Problem 5.11

State Affected age group  25—29 age group
Florida 0.060 —0.025
Georgia 0.068 -0.023
Illinois 0.025 0.004
Towa 0.078 —0.008
Maine —0.022 0.061
Michigan 0.072 0.015
Montana 0.041 —0.035
Nebraska 0.086 —0.016
New Hampshire 0.012 —0.061
Tennessee 0.035 —0.051

5.12. Howard, Murphy, and Thomas (1986) reported a study designed to investigate
whether computer anxiety changes between the beginning and end of a course on
introduction to computers. The student subjects were given a test to measure com-
puter anxiety at the beginning of the term and then again at the end of the 5-week
summer course. High scores on this test indicate a high level of anxiety. For the data
in Table 3 on 14 students, determine whether computer anxiety was reduced over the
term.

Table 3 Data for Problem 5.12

Student  Before  After  Student  Before  After

A 20 20 H 34 19

B 21 18 I 28 13

C 23 10 J 20 21

D 26 16 K 29 12

E 32 11 L 22 15

F 27 20 M 30 14

G 38 20 N 25 17

5.13. Twenty-four students took both the midterm and the final exam in a writing

course. Numerical grades were not given on the final, but each student was classified as
either no change, improvement, or reduced level of performance compared with the
midterm. Six showed improvement, 5 showed no change, and 13 had a reduced level of
performance. Find the P value for an appropriate one-sided test.

5.14. Reducing high blood pressure by diet requires reduction of sodium intake,
which usually requires switching from processed foods to their natural counterparts.

270 Madison Avenue, New York, New York 10016
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Listed below are the average sodium contents of five ordinary foods in processed form
and natural form for equivalent quantities. Find a confidence interval estimate of the
median difference (processed minus natural) with confidence coefficient at least 0.87
using two different procedures.

Natural food Processed food

Corn of the cob 2 Canned corn 251
Chicken 63 Fried chicken 1220
Ground Sirloin 60 All-beef frankfurter 461
Beans 3 Canned beans 300
Fresh tuna 40 Canned tuna 409

5.15. For the data in Problem 4.20, use both the sign test and the signed-rank test to
investigate the research hypothesis that median earnings exceed 2.0.

5.16. In an experiment to measure the effect of mild intoxication on coordination, nine
subjects were each given ethyl alcohol in an amount equivalent to 15.7 ml/m2 of body
surface and then asked to write a certain phrase as many times as they could in 1 min.
The number of correctly written words was then counted and scaled such that a zero
score represents the score a person not under the influence of alcohol would make, a
positive score indicates increased writing speed and accuracy, and a negative score in-
dicates decreased writing speed and accuracy. For the data below, find a confidence in-
terval estimate of the median score at level nearest 0.95 using the procedure
corresponding to the

(a) Sign test
(b) Wilcoxon signed-rank test where we assume symmetry

Subject  Score Subject  Score
1 10 6 0
2 -8 7 -7
3 -6 8 5
4 -2 9 -8
5 15

5.17. For the data in Example 4.3, test Hy: M = 0.50 against the alternative
H; : M > 0.50, using the

(a) Sign test

(b) Signed-rank test and assuming symmetry

5.18. For the data in Example 7.1, find a confidence interval estimate of the median
difference Before minus After using the level nearest 0.90.

5.19. In atrial of two types of rain gauge, 69 of type A and 12 of type B were distributed
at random over a small area. In a certain period 14 storms occurred, and the average
amounts of rain recorded for each storm by the two types of gauge are as follows:
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Another user claims to have found that the type B gauge gives consistently higher
average readings than type A. Do these results substantiate such a conclusion? In-
vestigate using two different nonparametric test procedures, by finding the P value from

Storm  Type A Type B Storm  Type A Type B
1 1.38 1.42 8 2.63 2.69
2 9.69 10.37 9 2.44 2.68
3 0.39 0.39 10 0.56 0.53
4 1.42 1.46 11 0.69 0.72
5 0.54 0.55 12 0.71 0.72
6 5.94 6.15 13 0.95 0.90
7 0.59 0.61 14 0.55 0.52

(@) Tables of the exact distribution
(b) Large sample approximations to the exact distributions

(A total of four tests are to be performed.) Discuss briefly the advisability of using

nonparametric versus parametric procedures for such an investigation and the relative
merits of the two nonparametric tests used. Discuss assumptions in each case.
5.20. A manufacturer of suntan lotion is testing a new formula to see whether it
provides more protection against sunburn than the old formula. The manufacturer chose
10 persons at random from among the company’s employees, applied the two types of
lotion to their backs, one type on each side, and exposed their backs to a controlled but
intense amount of sun. Degree of sunburn was measured for each side of each subject,
with the results shown below (higher numbers represent more severe sunburn).

(@) Test the null hypothesis that the difference (old — new) of degree of sunburn
has median zero against the one-sided alternative that it is negative, assuming that the
differences are symmetric. Does the new formula appear to be effective?

(b) Find a confidence interval for the median difference, assuming symmetry and
with confidence coefficient near 0.90.

(¢) Do (a) and (b) without assuming symmetry.

Subject Old formula New formula
1 41 37
2 42 39
3 48 31
4 38 39
5 38 34
6 45 47
7 21 19
8 28 30
9 29 25

10 14 8

5.21. Last year the elapsed time of long-distance telephone calls for a national retailer
was skewed to the right with a median of 3 min 15 sec. The recession has reduced sales,
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but the company’s treasurer claims that the median length of long-distance calls now is
even greater than last year. A random sample of 5625 calls is selected from recent re-
cords and 2890 of them are found to last more than 3 min 15 sec. Is the treasurer’s claim
supported? Give the null and alternative hypotheses and the P value.

5.22. In order to test the effectiveness of a sales training program proposed by a firm of
training specialists, a home furnishings company selects six sales representatives

Representative Sales before Sales after
1 90 97
2 83 80
3 105 110
4 97 93
5 110 123
6 78 84

at random to take the course. The data below are gross sales by these representatives
before and after the course.

(a) State the null and alternative hypotheses and use the sign test to find a P
value relevant to the question of whether the course is effective.

(b) Use the sign-test procedure at level nearest 0.90 to find a two-sided con-
fidence-interval estimate of the median difference in sales (after — before). Give the exact
level.

(¢) Use the signed-rank test to do (o). What assumptions must you make?

(d) Use the signed-rank test procedure to do ().

5.23. In a marketing research test, 15 adult males were asked to shave one side of their
face with a brand A razor blade and the other side with a brand B razor blade and state
their preferred blade. Twelve men preferred brand A. Find the P value for the alter-
native that the probability of preferring brand A is greater than 0.5.

5.24. Let X be a continuous random variable symmetrically distributed about 6. Show
that the random variables |X| and Z are independent, where

g [1 ifX>0
0 ifX<0

5.25. Using the result in Problem 5.24, show that for the Wilcoxon signed-rank test
statistic T  discussed in Section 5.7, the 2N random variables
Z1, r(|D1)), Za, r(|D2)), . ..,Znr(|Dy|) are mutually independent under H,.

5.26. Again consider the Wilcoxon signed-rank test discussed in Section 5.7. Show that
under Hj the distribution of the test statistic 7" is the same as that of W = Zf\il Wi,
where Wy, Ws,...,Wy are independent random variables with P(W; =0) = P(W; =1)
=05,i=1,2,...,N.

5.27. A study 5 years ago reported that the median amount of sleep by American adults
is 7.5 hours out of 24 with a standard deviation of 1.5 hours and that 5% of the popu-
lation sleep 6 or less hours while another 5% sleep 9 or more hours. A current sample of
eight adults reported their average amounts of sleep per 24 hours as 7.2, 8.3, 5.6, 7.4, 7.8,
5.2, 9.1, and 5.8 hours. Use the most appropriate statistical procedures to determine
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whether American adults sleep less today than they did five years ago and justify your
choice. You should at least test hypothesis concerning the quantiles of order 0.05, 0.50,
and 0.95.
5.28. Find a confidence interval estimate of the median amount of sleep per 24 hours
for the data in Problem 5.27 using confidence coefficient nearest 0.90.
5.29. Let X,y denote the rth-order statistic of a random sample of size 5 from any
continuous population and x, denote the pth quantile of this population. Find:

(a) P(X(l) < Ko5 <X(5))

(b) P(X(l) < Kp2s < X(3))

(c) P(X(4) < K0.80 <X(5))
5.30. For order statistics of a random sample of size n from any continuous population
Fx, show that the interval (X, X(,_r41), r <n/2), is a 100(1 — o) percent confidence-

interval estimate for the median of Fx, where

n—-1 08 n—r r—1
17u7172n<r_1>‘/0 (1 —x)" T dx

5.31. If X3, and X, are the smallest and largest values, respectively, in a sample of
size n from any continuous population Fx with median « 59, find the smallest value of n
such that:
(a) P(X(l) < XK0.50 <X(n)) > 0.99
(b) P[Fx(X(n)) — Fx(X(1)) = 0.5] > 0.95
5.32. Derive the sample size formula based on the normal approximation for the sign
test against a two-sided alternative with approximate size o and power 1—f.

5.33. Derive the sample size formula based on the normal approximation for the signed
rank test against a two-sided alternative with approximate size o and power 1—8.
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The General Two-Sample Problem

6.1 INTRODUCTION

For the matched-pairs sign and signed-rank tests of Chapter 5 the
data consisted of two samples, but each element in one sample was
linked with a particular element of the other sample by some unit of
association. This sampling situation can be described as a case of two
dependent samples or alternatively as a single sample of pairs from a
bivariate population. When the inferences to be drawn are related only
to the population of differences of the paired observations, the first
step in the analysis usually is to take the differences of the paired
observations; this leaves only a single set of observations. Therefore,
this type of data may be legitimately classified as a one-sample pro-
blem. In this chapter we shall be concerned with data consisting of two
mutually independent random samples, i.e., random samples drawn
independently from each of two populations. Not only are the elements
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within each sample independent, but also every element in the first
sample is independent of every element in the second sample.

The universe consists of two populations, which we call the X and
Y populations, with cumulative distribution functions denoted by Fx
and Fy, respectively. We have a random sample of size m drawn from
the X population and another random sample of size n drawn in-
dependently from the Y population,

Xl,XQ,...,Xm and Y17Y2,...,Yn

Usually the hypothesis of interest in the two-sample problem is that
the two samples are drawn from identical populations, i.e.,

Hy: Fy(x) = Fx(x) for all x

If we are willing to make parametric model assumptions con-
cerning the forms of the underlying populations and assume that the
differences between the two populations occur only with respect to
some parameters, such as the means or the variances, it is often
possible to derive the so-called best test in a Neyman-Pearson frame-
work. For example, if we assume that the populations are normally
distributed, it is well known that the two-sample Student’s ¢ test for
equality of means and the F test for equality of variances are respec-
tively the best tests. The performances of these two tests are also well
known. However, these and other classical tests may be sensitive to
violations of the fundamental model assumptions inherent in the de-
rivation and construction of these tests. Any conclusions reached using
such tests are only as valid as the underlying assumptions made. If
there is reason to suspect a violation of any of these postulates, or if
sufficient information to judge their validity is not available, or if a
completely general test of equality for unspecified distributions is
desired, some nonparametric procedure is in order.

In practice, other assumptions are often made about the form of
the underlying populations. One common assumption is called the
location model, or the shift model. This model assumes that the X and
Y populations are the same in all other respects except possibly for a
shift in the (unknown) amount of say 6, or that

Fy(x)=PY <x)=PX<x-0)=Fx(x—-0) forallxand0+#0

This means that X + 6 and Y have the same distribution or that X is
distributed as Y — 0. The Y population is then the same as the X
population if 6 = 0, is shifted to the right if 6 > 0, and is shifted to
the left if 6 < 0. Under the shift assumption, the populations have the

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



THE GENERAL TWO-SAMPLE PROBLEM 233

same shape and the same variance, and the amount of the shift 6 must
be equal to the difference between the population means, yy — Ly, the
population medians, My — Mx, and in fact the difference between any
two respective location parameters or quantiles of the same order.

Another assumption about the form of the underlying population
is called the scale model, which assumes that the X and Y populations
are the same except possibly for a positive scale factor 6 which is not
equal to one. The scale model can be written as

Fy(x) =P(Y <x) =P(X < 0) =Fx(6x) forallxand®>0,0+£1

This means that X/0 and Y have the same distribution for any posi-
tive 0 or that X is distributed as 0Y. Also, the variance of X is 62 times
the variance of Y and the mean of X is 0 times the mean of Y.

A more general assumption about the form of the underlying
populations is called a location-scale model. This model can be written
as

P(Y—uyéx):P(X—uX<6)

which states the (X — 1yx)/0 and Y — puy are identically distributed (or
similarly in terms of My, Mx). Thus the location-scale model incorpo-
rates properties of both the location and the scale models. Now the
means of X — iy and Y — py are both zero and the variance of X — 1y is
02 times the variance of Y — py.

Regardless of the model assumed, the general two-sample pro-
blem is perhaps the most frequently discussed problem in nonpara-
metric statistics. The null hypothesis is almost always formulated as
identical populations with the common distribution completely un-
specified except for the assumption that it is a continuous distribution
function. Thus under the null case, the two random samples can be
considered a single random sample of size N = m + n drawn from the
common, continuous, but unspecified population. Then the combined
ordered configuration of the m X and n Y random variables in the

sample is one of the (m’;'; n) possible equally likely arrangements.
For example, suppose we have two independent random samples,
m =3 X’s and n = 2 Y’s. Under the null hypothesis that the X’s and
the Y’s are identically distributed, each of the ( 2) = 10 possible ar-
rangements of the combined sample shown below is equally likely.

1. XXXYY 2. XXYXY 3.YXYXX 4 XXYYX 5. XYXXY
6. XYXYX 7.YXXXY 8.YXXYX 9. XYYXX 10.YYXXX
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In practice, the sample pattern of arrangement of X’s and Y’s provides
information about the type of difference which may exist in the
populations. For instance, if the observed arrangement is that desig-
nated by either 1 or 10 in the above example, the X’s and the Y’s do
not appear to be randomly mixed, suggesting a contradiction to the
null hypothesis. Many statistical tests are based on some function of
this combined arrangement. The type of function which is most
appropriate depends on the type of difference one hopes to detect,
which is indicated by the alternative hypothesis. An abundance of
reasonable alternatives to Hy may be considered, but the type easiest
to analyze using distribution-free techniques states some functional
relationship between the distributions. The most general two-sided
alternative states simply

Hy: Fy(x) # Fx(x) for some x

and a corresponding general one-sided alternative is

Hy: Fy(x) = Fx(x) for all x
Fy(x) > Fx(x) for some x

In this latter case, we generally say that the random variable X is
stochastically larger than the random variable Y. We can write this as
YS>TX . Figures 1.1. and 1.2 are descriptive of the alternative that X is
stochastically larger than Y, which includes as a subclass the more
specific alternative py > py. Some authors define Y <¥ X to mean that
PX >Y)>PX <Y). (For the reverse inequality on Fx and Fy, we
say X is stochastically smaller than Y and write X S>T Y).

If the particular alternative of interest is simply a difference in
location, we use the location alternative or the location model

Hp: Fy(x) =Fx(x —0) for all x and some 0 # 0

1} Fy(x)

Fy (2)

zd

Fig. 1.1 X is stochastically larger than Y.
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it Fy (x)
Fylx)

~

Fig. 1.2 X is stochastically larger than Y.

Under the location model, Y is distributed as X + 0, so that Y is sto-
chastically larger (smaller) than X if and only if 6 > 0(6 < 0). Simi-
larly, if only a difference in scale is of interest, we use the scale
alternative

Hg: Fy(x) = Fx(6x) for all x and some 6 # 1

Under the scale model, Y is distributed as X/0, so that Y is stochas-
tically larger (smaller) than X if and only if 6 < 1 (6 > 1).

Although the three special alternatives Hi,H, and Hg are the
most frequently encountered of all those included in the general class
Hy, other types of relations may be considered. For example, the al-
ternative Hyg: Fy(x) = [Fx(x)]*, for some positive integer % and all x,
called the Lehmann alternative, states that the Y random variables
are distributed as the largest of £ X variables. Under this alternative,
Y is stochastically larger (smaller) than X if and only if 2 > 1 (k < 1).

The available statistical literature on the two-sample problem is
quite extensive. A multitude of tests have been proposed for a wide
variety of functional alternatives, but only a few of the best-known tests
have been selected for inclusion in this book. The Wald-Wolfowitz runs
test, the Kolmogorov-Smirnov two-sample test, the median test, the
control median test, and the Mann-Whitney U test will be covered in this
chapter. Chapters 7 and 8 are concerned with a specific class of tests
particularly useful for the location and scale alternatives, respectively.

6.2 THE WALD-WOLFOWITZ RUNS TEST

Let the two sets of independent random variables X;,Xs,...,X,, and
Y1,Ys,...,Y, be combined into a single ordered sequence from smal-
lest to largest, keeping track of which observations correspond to the X
sample and which to the Y. Assuming that their probability distribu-
tions are continuous, a unique ordering is always possible, since
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theoretically ties do not exist. For example, with m = 4 and n = 5, the
arrangement might be

XYYXXYXYY

which indicates that in the pooled sample the smallest element was an
X, the second smallest a Y, etc., and largest a Y. Under the null
hypothesis of identical distributions

Hy: Fy(x) = Fx(x) for all x

we expect the X and Y random variables to be well mixed in the
ordered configuration, since the m +n =N random variables con-
stitute a single random sample of size N from the common population.
With a run defined as in Chapter 3 as a sequence of identical letters
preceded and followed by a different letter or no letter, the total
number of runs in the ordered pooled sample is indicative of the
degree of mixing. In our arrangement X Y Y X X Y X Y Y, the total
number of runs is equal to 6 which shows a pretty good mixing of X’s
and Y’s. A pattern of arrangement with too few runs would suggest
that this group of N is not a single random sample but instead is
composed of two samples from two distinguishable populations. For
example, if the arrangement is X X X XY Y Y Y Y so that all the
elements in the X sample are smaller than all of the elements in the Y
sample, there would be only two runs. This particular configuration
might indicate not only that the populations are not identical, but also
that the X’s are stochastically smaller than the Y’s. However, the
reverse ordering also contains only two runs, and therefore a test
criterion based solely on the total number of runs cannot distinguish
these two cases.

The runs test is appropriate primarily when the alternative is
completely general and two-sided, as in

Hy: Fy(x) # Fx(x) for some x
We define the random variable R as the total number of runs in the
combined ordered arrangement of m X and n Y random variables.
Since too few runs tend to discredit the null hypothesis when the

alternative is Hy, the Wald-Wolfowitz (1940) runs test for significance
level o generally has the rejection region in the lower tail as

R <e¢,
where ¢, is chosen to be the largest integer satisfying
PR <c,|Hp) <o
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The P value for the runs test is then given by
PR <Ro | Hy)

where Ry is the observed value of the runs test statistic R.

Since the X and Y observations are two types of objects arranged
in a completely random sequence if Hy is true, the null probability
distribution of R is exactly the same as was found in Chapter 3, for the
runs test for randomness. The distribution is given in Theorem 2.2 of
Section 3.2 with n; and ng replaced by m and n, respectively, assuming
the X’s are called type 1 objects and Y’s are the type 2 objects. The
other properties of R discussed in that section, including the moments
and asymptotic null distribution, are also unchanged. The only dif-
ference here is that the appropriate critical region for the alternative
of different populations is too few runs. The null distribution of R is
given in Table D of the Appendix with n; = m and ne =n for m < n.
The normal approximation described in Section 3.2 is used for larger
sample sizes. A numerical example of this test is given below.

Example 2.1 It is easy to show that the distribution of a standardized
chi-square variable with large degrees of freedom can be approximated
by the standard normal distribution. This example provides an in-
vestigation of the agreement between these two distributions for
moderate degrees of freedom. Two mutually independent random
samples, each of size 8, were generated, one from the standard normal
distribution and one from the chi-square distribution with v =18
degrees of freedom. The resulting data are as follows:

Normal -1.91 -1.22 —0.96 —0.72 0.14 0.82 1.45 1.86

Chi square 4.90 7.25 8.04 1410 1830 21.21 23.10 28.12

Solution Before testing the null hypothesis of equal distributions,
the chi-square sample data must be standardized by subtracting the
mean v = 18 and dividing by the standard deviation v/2v = v/36 = 6.
The transformed chi-square data are, respectively,

-2.18 -1.79 -166 -0.65 0.05 0.54 0.85 1.69

We pool the normal data and these transformed data into a single
array, ordering them from smallest to largest, underlining the trans-
formed chi-square data, as

—2.18, —-1.91, —-1.79, 1.66,—-1.22, -0.96,-0.72, —0.65, 0.05,
0.14, 0.54, 0.82, 0.85, 1.45, 1.69, 1.86
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Let X denote the standardized chi-square sample data and let Y denote
the normal sample data. For the solution using the Wald-Wolfowitz
runs test, we simply count the number of runs in the ordered combined
configuration X,Y, X, XY, Y, Y. X X, Y XY X Y. XY as R=12.
Table D shows that the P value, the left-tail probability with R = 12
for m = 8,n = 8, exceeds 0.5, and therefore we do not reject the null
hypothesis of equal distributions. Using (2.11) of Section 3.2 with a
continuity correction, we get Z = 1.81 with P = 0.9649 and z = 1.55 or
P = 0.9394 without a continuity correction.

The STATXACT solution to Example 2.1 using the runs test is
shown below. Note that the exact P value is 0.9683. This can be ver-
ified from Table D since P(R < 12)=1-P(R > 13) =0.968. Note
that their asymptotic P value is not the same as ours using (2.11) of
Section 3.2.

de d ok gtk ke ok v ke ke ke ke e e e e e ek Rk ok ek ko g o vk o e e ke ok ok b e ke

STATXACT SOLUTION TO EXAMPLE 2.1

e e ok o gk e v ok ke ok ok ke e ok ke e g ol g o ok e e T ok ok ke B e ke ok ke ke ke

WALD WOLFOWITZ RUNS TEST

Summary of Exact distribution of WALD WOLFOWITZ RUNS TEST
statistic

Min Max Observed
2.000 16.00 12.00

Asymptotic p-value :

Pr { Test Statistic .LE. 12.00 t = 0.8021
Exact p-value:

Pr { Test Statistic .LE. 12,00 } = 0.9683

Pr { Test Statistic .EQ. 12.00 } = 0.0685

THE PROBLEM OF TIES

Ideally, no ties should occur because of the assumption of continuous
populations. Ties do not present a problem in counting the number of
runs unless the tie is across samples; i.e., two or more observations
from different samples have exactly the same magnitude. For a
conservative test, we can break all ties in all possible ways and com-
pute the total number of runs for each resolution of all ties. The actual
R used as the value of the test statistic is the largest computed value,
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since that is the one least likely to lead to rejection of Hy. For each

group of ties across samples, where there are s x’s and ¢ y’s of equal

s+t

magnitude for some s > 1,f > 1, there are ( ) ways to break the

ties. Thus if there are & groups of ties, the total number of values of
R to be computed is the product Hle (Si : ti).
13

DISCUSSION

The Wald-Wolfowitz runs test is extremely general and is consistent
against all types of differences in populations [Wald and Wolfowitz
(1940)]. The very generality of the test weakens its performance
against specific alternatives. Asymptotic power can be evaluated using
the normal distribution with appropriate moments under the alter-
native, which are given in Wolfowitz (1949). Since power, whether
exact or asymptotic, can be calculated only for completely specified
alternatives, numerical power comparisons should not be the only
criteria for this test. Its primary usefulness is in preliminary analyses
of data when no particular form of alternative is yet formulated. Then,
if the hypothesis is rejected, further studies can be made with
other tests in an attempt to classify the type of difference between
populations.

6.3 THE KOLMOGOROV-SMIRNOV TWO-SAMPLE TEST

The Kolmogorov-Smirnov statistic is another one-sample test that can
be adapted to the two-sample problem. Recall from Chapter 4 that as a
goodness-of-fit criterion, this test compared the empirical distribution
function of a random sample with a hypothesized cumulative dis-
tribution. In the two-sample case, the comparison is made between the
empirical distribution functions of the two samples.

The order statistics corresponding to two random samples of size
m and n from continuous populations Fx and Fy, are

X(l),X(g), ce ,X(m) and Y(l), Y(z), ce 7Yv(n)

Their respective empirical distribution functions, denoted by S,,(x)
and S, (x), are defined as before:

0 if x <X(1>
Sm(x): k/m 1fX(k><x<X(k+1> fork:1,2,...,m—1
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and
0 if x < Y(1>
Sn(x): k/n if Y(k)<x<Y<k+1) fork:l,Z,...,n—l

In a combined ordered arrangement of the m + n sample observations,
S,.(x) and S, (x) are the respective proportions of X and Y observations
which do not exceed the specified value x.

If the null hypothesis

Hy: Fy(x) = Fx(x) for all x

is true, the population distributions are identical and we have two
samples from the same population. The empirical distribution
functions for the X and Y samples are reasonable estimates of their
respective population cdf. Therefore, allowing for sampling varia-
tion, there should be reasonable agreement between the two
empirical distributions if indeed H, is true; otherwise the data
suggest that Hy is not true and therefore should be rejected. This is
the intuitive logic behind most two-sample tests, and the problem is
to define what is a reasonable agreement between the two empirical
cdf’s. In other words, how close do the two empirical cdf’s have to be
so that they could be viewed as not significantly different, taking
account of the sampling variability. Note that this approach neces-
sarily requires a definition of closeness. The two-sided Kolmogorouv-
Smirnov two-sample test criterion, denoted by D,,,, is based on
the maximum absolute difference between the two empirical
distributions

D,,, = Il’lan|Sm (x) = Sp(x)]
Since here only the magnitudes, and not the directions, of the devia-

tions are considered, D,,, is appropriate for a general two-sided
alternative

Hy: Fy(x) # Fx(x) for some x

and the rejection region is in the upper tail, defined by
Dip =y

where

P(Dpyn = ¢y |Ho) < o
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Because of the Gilvenko-Cantelli theorem (Theorem 3.2 of Section 2.3),
the test is consistent for this alternative. The P value is

where Dy is the observed value of the two-sample K-S test statistic. As
with the one-sample Kolmogorov-Smirnov statistic, D, , is completely
distribution free for any continuous common population distribution
since order is preserved under a monotone transformation. That is,
if we let z=F(x) for the common continuous cdf F, we have
Sn(2) =Sn(x) and S,(z) = S, (x), where the random variable Z, cor-
responding to z, has the uniform distribution on the unit interval.

In order to implement the test, the exact cumulative null dis-
tribution of mnD,,, is given in Table I in the Appendix for
2<m < n <12 or m +n < 16, whichever occurs first. Selected quan-
tiles of mnD,, ,, are also given for m = n between 9 and 20, along with
the large sample approximation.

The derivation of the exact null probability distribution of D,, , is
usually attributed to the Russian School, particularly Gnedenko
(1954) and Korolyuk (1961), but the papers by Massey (1951b, 1952)
are also important. Several methods of calculation are possible, gen-
erally involving recursive formulas. Drion (1952) derived a closed ex-
pression for exact probabilities in the case m = n by applying random-
walk techniques. Several approaches are summarized in Hodges
(1958). One of these methods, which is particularly useful for small
sample sizes, will be presented here as an aid to understanding.

To compute P(D,,,, > d|Hy), where d is the observed value of
max;, [Sy,(x) —Sp(x)|, we first arrange the combined sample of m +n
observations in increasing order of magnitude. The arrangement can
be depicted graphically on a Cartesian coordinate system by a path
which starts at the origin and moves one step to the right for an x
observation and one step up for a y observation, ending at (m,n).
For example, the sample arrangement xyyxxyy is represented in
Figure 3.1. The observed values of mS,,(x) and nS,(x) are, respec-
tively, the coordinates of all points (z,v) on the path where u and v are
integers. The number d 1is the largest of the differences
|u/m —v/n| = |nu — mv|/mn. If a line is drawn connecting the points
(0,0) and (m,n) on this graph, the equation of the line is nx —my =0
and the vertical distance from any point («,v) on the path to this line is
|v — nu/m|. Therefore, nd for the observed sample is the distance from
the diagonal line. In Figure 3.1 the farthest point is labeled @, and the
value of d is 2/4.
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v
4r- {m.n)
3_

2_
Q
I »
6.0y 2 3

Fig. 3.1 Path of xyyxxyy.

The total number of arrangements of m X and n Y random
M+ ) and under Hy each of the corresponding paths is

equally likely. The probability of an observed value of D,,, not less
than d then is the number of paths which have points at a distance

from the diagonal not less than nd, divided by m; "

In order to count this number, we draw another figure of the
same dimension as before and mark off two lines at vertical distance
nd from the diagonal, as in Figure 3.2. Denote by A(m,n) the number of
paths from (0,0) to (m,n) which lie entirely within (not on) these
boundary lines. Then the desired probability is

variables is

A(m,n)
m+n
m
A(m,n) can easily be counted in the manner indicated in Figure 3.2.

The number A(u,v) at any intersection (u,v) clearly statisfies the
recursion relation

Aluv)=Au—-1,v)+A(u,v—1)
with boundary conditions
A(Op)=Au,0)=1

Thus A(u,v) is the sum of the numbers at the intersections where
the previous point on the path could have been while still within the
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Alm.r)

LY

0 1 2 3

Fig. 3.2 Evaluation of A(u,v) for xyyxxyy.

boundaries. This procedure is shown in Figure 3.2 for the arrange-
ment xyyxxyy, where nd = 2. Since here A(3,4) =12, we have

P(Ds4>05)=1— 12 2 65714

7 35
4
For the asymptotic null distribution, that is, m and n approach

infinity in such a way that m/n remains constant, Smirnov (1939)
proved the result

m,n—o0 m

lim P( mn Dy, < d) =L(d)
+n ’
where

Ld)=1-2) (-1) le %
i=1
Note that the asymptotic distribution of \/mn/(m + n)D,,, is exactly
the same as the asymptotic distribution of VNDy in Theorem 3.3 of
Section 4.3. This is not surprising, since we know from the Glivenko-
Cantelli theorem that as n — o0, S, (x) converges to Fy(x), which can

be relabeled Fx(x) as in the theorem. Then the only difference here is
in the normalizing factor y/mn/(m + n), which replaces v/N.
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ONE-SIDED ALTERNATIVES

A one-sided two-sample maximum-unidirectional-deviation test can
also be defined, based on the statistic

D}, = max[Sy(®) — Sa(x)]

For an alternative that the X random variables are stochastically
smaller than the Y’s,

Hy: Fy(x) < Fx(x) for all x
Fy(x) < Fx(x) for some x

the rejection region should be
D ;L,n = Co

The one-sided test based on D}, , is also distribution free and con-
sistent against the alternative H;. Since either sample may be labeled
the X sample, it is not necessary to define another one-sided statistic
for the alternative that X is stochastically larger than Y. The entries in
Table I in the Appendix can also be used for a one-sided two-sample
Kolmogorov-Smirnov statistic since the probabilities in the tails of this
distribution are closely approximated using one-half of the corres-
ponding tail probabilities on the two-sided, two-sample Kolmogorov-
Smirnov statistic.

The graphic method described for D,,, can be applied here to
calculate P(D}, , > d). The point @", corresponding to @, would be the
point farthest below the diagonal line, and A(m,n) is the number of
paths lying entirely above the lower boundary line (see Problem 6.1).
Tables of the null distribution of D;’n are available in Goodman (1954)
for m = n.

As with the two-sided statistic, the asymptotic distribution of
vmn/(m +n)D} is equivalent to the asymptotic distribution of

m,n

VND;, which was given in Theorem 3.5 of Section 4.3 as

lim P(,/ ™t _pr <d) —1-e 2
m,n—o0 m-+n ?

Ties within and across samples can be handled by considering only the
r distinct ordered observations in the combined sample as values of x
in computing S,,(x) and S, (x) for r < m and r < n. Then we find the
empirical cdf for each different x and their differences at these
observations and calculate the statistic in the usual way.

TIES
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DISCUSSION

The Kolmogorov-Smirnov tests are very easy to apply, using the exact
distribution for any m and n within the range of the available tables
and using the asymptotic distribution for larger sample sizes. They are
useful mainly for the general alternatives Hy and H;, since the test
statistic is sensitive to all types of differences between the cumulative
distribution functions. Their primary application then should be for
preliminary studies of data, as was the runs test. Gideon and Mueller
(1978) give a simple method for calculating D,,, and Pirie (1979)
extends this method to samples with ties. The Kolmogorov-Smirnov
tests are more powerful than the runs tests when compared against
the Lehmann (1953) type of nonparametric alternatives for large
sample sizes. The large-sample performance of the Kolmogorov-
Smirnov tests against specific location or scale alternatives varies
considerably according to the population sampled. Capon (1965) has
made a study of these properties. Goodman (1954) has shown that
when applied to data from discrete distributions, these tests are con-
servative.

APPLICATIONS

Application of the Kolmogorov-Smirnov two-sample general test is
illustrated below with the data from Example 2.1.

Example 3.1 To carry out the Kolmogorov-Smirnov two-sample test
against the two-sided alternative, we calculate the two empirical dis-
tribution functions and their differences, as shown in Table 3.1. Note
that the first column shows the combined (pooled) ordered sample.
This is labeled ¢ to avoid notational confusion. The maximum of the
last column is D, , = 2/8 so that mnD,,, = 16. Table I for m =n = 8§,
shows that P(64Dgg > 32|H,) = 0.283, so the required P value,
P(64Dgg > 16 | Hy), must be greater than 0.283. Thus, we do not reject
the null hypothesis of identical distributions.

For the one-sided alternative, D, , = 2/8 and so the P value is at
least (0.283)/2=0.142. Thus there is not sufficient evidence to reject
H, against the one-sided alternative that the X’s are stochastically
smaller than the Y’s.

The STATXACT solution to Example 3.1 using the Kolmogorov-
Smirnov test is shown below. Note that for the two-sided alternative,
the exact and the asymptotic P values are shown to be 0.9801 and
0.9639, respectively, both strongly suggesting that there is no
significant evidence against the null hypothesis in these data. The
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Table 3.1 Calculation of D, , for Example 3.1

CHAPTER 6

¢ #X <t S () #Y <t S, (2) S (t)—Sn(t) 1S (£)—Sn (2)]
-2.18 1 1/8 0 0 1/8 1/8
~1.91 1 1/8 1 1/8 0 0
~1.79 2 2/8 1 1/8 1/8 1/8
~1.66 3 3/8 1 1/8 2/8 2/8
~1.22 3 3/8 2 2/8 1/8 1/8
~0.96 3 3/8 3 3/8 0 0
~0.72 3 3/8 4 4/8 ~1/8 1/8
—0.65 4 4/8 4 4/8 0 0
0.05 5 5/8 4 4/8 1/8 1/8
0.14 5 5/8 5 5/8 0 0
0.54 6 6/8 5 5/8 1/8 1/8
0.82 6 6/8 6 6/8 0 0
0.85 7 7/8 6 6/8 1/8 1/8
1.45 7 7/8 7 7/8 0 0
1.69 8 8/8 7 7/8 1/8 1/8
1.86 8 8/8 8 8/8 0 0

exact two-sided P value is a Monte Carlo estimate; the algorithm is
described in Hilton, Mehta and Patel (1994). The asymptotic two-sided
P value is calculated using the Smirnov approximation, keeping only
the first few terms. The exact one-sided P value is calculated from
the permutation distribution of D}, ,. The reader is referred to the

STATXACT user manual for details.

Ak kA A A d bk ohkhk kb dkdrrdhdhdhh ko hdhbhhh

STATXACT SOLUTION TO EXAMPLE 3.1:

K-S TEST

LA SRR E AR LRSS AR EREEREEREREEE R R RS

KOLMOGOROV-SMIRNOV TWO-SAMFLE TEST
POP 2 (F2)

POP_1 (F1) 1
Number of Observations:
POP_ 1 = 8
POP_2 = 8
|F1 - F2I

Observed Statistic 0.2500
Asymptotic p-value 0.9639

Exact p-value
Exact Point Prob.

¢.9801
0.3200

{POP_1

Fl - F2

0.1250
0.8825
0.8889
0.2667

iz larger}

(POP_Z2 is larger)

F2 - Fl

0.2500
0.6065
0.6222
0.2828
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6.4 THE MEDIAN TEST

In order to test the null hypothesis of identical populations with two
independent samples, the Kolmogorov-Smirnov two-sample test com-
pares the proportions of observations from each sample which do not
exceed some number x for all real numbers x. The test criterion was
the maximum difference (absolute or unidirectional) between the two
empirical distributions, which are defined for all x. Suppose that
instead of using all possible differences, we choose some arbitrary but
specific number & and compare only the proportions of observations
from each sample which are strictly less than 5. As before, the two
independent samples are denoted by

Xl,XQ,...,Xm and Y17Y27...,Yn

Each of the m +n =N observations is to be classified according to
whether it is less than 6 or not. Let U and V denote the respective
numbers of X and Y observations less than 8. Since the random vari-
ables in each sample have been dichotomized, U and V both follow the
binomial probability distribution with parameters

DPx :P(X<8) and pY:P(Y<6>

and numbers of trials m and n, respectively. For two independent
samples, the joint distribution of U and V then is

fuv(up) = (ZZ) <n>p§p§/(1 —px)" (1 —py)*"

v (4.1)

u=0,1,.... mandv=0,1,...,n

The random variables U/m and V/n are unbiased point estimates of
the parameters px and py, respectively. The difference U/m — V/n
then is appropriate for testing the null hypothesis

Hy:px —py =0

The exact null probability distribution of U/m — V /n can easily be
found from (4.1), and for m and n large its distribution can be
approximated by the normal. The test statistic in either case depends
on the common value p = px = py, but the test can be performed by
replacing p by its unbiased estimate (z + v)/(m + n). Otherwise there
is no difficulty in constructing a test (although approximate) based on
the criterion of difference of proportions of observations less than 6.
This is essentially a modified sign test for two independent samples,
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with the hypothesis that o is the pth quantile point in both popula-
tions, where p is unspecified but estimated from the data.

This test will not be pursued here since it is approximate and is
not always appropriate to the general two-sample problem, where we
are primarily interested in the hypothesis of identical populations. If
the two populations are the same, the pth quantile points are equal for
every value of p. However, two populations may be quite disparate
even though some particular quantile points are equal. The value of 3,
which is supposedly chosen without knowledge of the observations,
then affects the sensitivity of the test criterion. If 8 is chosen too small
or too large, both U and V will have too small a range to be reliable. We
cannot hope to have reasonable power for the general test without a
judicious choice of 3. A test where the experimenter chooses a parti-
cular value of p (rather than 3), preferably a central value, would be
more appropriate for our general hypothesis, especially if the type of
difference one hopes to detect is primarily in location. In other words,
we would rather control the position of 6, regardless of its actual value,
but p and 6 are hopelessly interrelated in the common population.

When the populations are assumed identical but unspecified, we
cannot choose p and then determine the corresponding 4. Yet 6 must be
known at least positionally to classify each sample observation as less
than 6 or not. Therefore, suppose we decide to control the position of 6
relative to the magnitudes of the sample observations. If the quantity
U +V is fixed by the experimenter prior to sampling, p is to some
extent controlled since (x + v)/(m + n) is an estimate of the common p.
If p denotes the probability that any observation is less than 8, the
probability distribution of T'=U + V is

fr(t) = (’”j”)pm—p)m—f t=0,1,....,m+n (4.2)

The conditional distribution of U given T =t is (4.1) divided by (4.2).
In the null case where px = py = p, the result is simply

)0
S

which is the hypergeometric probability distribution. This result
could also have been argued directly as follows. Each of the m +n

fur(ult) = v =max(0,t —n),1,...,min(m,z)

(4.3)
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observations is dichotomized according to whether it is less than 6 or
not. Among all the observations, if px = py = p, every one of the
(’"j ") sets of ¢ numbers is equally likely to comprise the less-than-5
group.

The number of sets that have exactly u from the X sample is
(m)(,”,). Since U/m is an estimate of px, if the hypothesis
px = py =p is true, u/m should be close to t/(m + n). A test criterion
can then be found using the conditional distribution of U in (4.3) for
any chosen ¢.

So far nothing has been said about the value of 3, since once ¢ is
chosen, 6 really need not be specified to perform the test. Any number
greater than the ¢th and not greater than the (¢ + 1)st order statistic in
the combined ordered sample will yield the same value of u. In prac-
tice, the experimenter would probably rather choose the fraction
t/(m +n) in order to control the value of p. Suppose we decide that if
the populations differ at all, it is only in location. Then a reasonable
choice of ¢/(m + n) is 0.5. But N = m + n may be odd or even, while ¢
must be an integer. To eliminate inconsistencies in application, & can
be defined as the [(IV 4+ 1)/2]nd order statistic if N is odd, and any
number between the (IV/2)nd and [(V + 2)/2]nd order statistics for N
even. Then a unique value of u is obtained for any set of N observa-
tions, and o is actually defined to be the median of the combined
samples. The probability distribution of U is given in (4.3), where
t =N/2 for N even and ¢t = (N — 1)/2 for N odd. The test based on U,
the number of observations from the X sample which are less than the
combined sample median, is called the median test. It is attributed
mainly to Brown and Mood (1948, 1951), Mood (1950), and Westenberg
(1948) and is often referred to as Mood’s median test or the joint
median test.

The fact that 6 cannot be determined before the samples are ta-
ken may be disturbing, since it implies that 6 should be treated as a
random variable. In deriving (4.3) we treated 6 as a constant, but the
same result is obtained for & defined as the sample median value.
Denote the combined sample median by the random variable Z and the
cdf’s of the X and Y populations by Fx and Fy, respectively, and as-
sume that N is odd. The median Z can be either an X or a Y random
variable, and these possibilities are mutually exclusive. The joint
density of U and Z for ¢ observations less than the sample median
where ¢ = (N — 1)/2 is the limit, as Az approaches zero, of the sum of
the probabilities that (1) the X’s are divided into three classifications,
u less than z, one between z and z + Az and the remainder greater than
z + Az, and the Y’s are divided such that ¢ — u are less than z, and (2)
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exactly u X'’s are less than z, and the Y’s are divided such that ¢t — u
are less than z, one is between z and z + Az, and the remainder are
greater than z + Az. The result then is

m
forwa=(, " PG
x [1—Fx(z)™ ™ (t fu) [Fy(2)] “[1-Fy(2)]" "™

H(Mmera-eer(_ ")

t_u’17n_t+u—1
x [Fy (@) “fr()[1 - Fy(z)]" "

The marginal density of U is obtained by integrating the above
expression over all z, and if Fx(z) = Fy(z) for all z, the result is

= [n(" () e () (o))

« [CF@IL-Fr e de

o0

u t—u

B (Z) <t i1u) t!(lzlm++nn;!t)!

which agrees with the expression in (4.3).

Because of this result, we might say then that before sampling,
i.e., before the value of 5 is determined, the median test statistic is
appropriate for the general hypothesis of identical populations, and
after the samples are obtained, the hypothesis tested is that 6 is the
pth quantile value in both populations, where p is a number close to
0.5. The null distributions of the test statistic are the same for both
hypotheses, however.

Even though the foregoing discussion may imply that the median
test has some statistical and philosophical limitations in conception, it
is well known and accepted within the context of the general two-
sample problem. The procedure for two independent samples of mea-
surements is to arrange the combined samples in increasing order of
magnitude and determine the sample median d, the observation with
rank (N +1)/2 if N is odd and any number between the observations

_ <m>< " )[(m—u)+(n—t+u)]B(t+1,m+n—t)
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with rank N/2 and (N + 2)/2 if N is even. A total of ¢ observations are
then less than 8, where ¢ = (N — 1)/2 or N/2 according as N is odd or
even. Let U denote the number of X observations less than d. If the two
samples are drawn from identical continuous populations, the prob-
ability distribution of U for fixed ¢ is

()G )
(")

v =max(0,t —n),...,min(m,t), ¢=[N/2] (4.4)

fulu) =

where [x] denotes the largest integer not exceeding the value x. If the
null hypothesis is true, then P(X < §) = P(Y < 9) for all §, and in
particular the two populations have a common median, which is
estimated by &.

Since U/m is an estimate of P(X < 3), which is approximately
one-half under H, a test based on the value of U will be most sensitive
to differences in location. If U is much larger than m/2, most of the X
values are less than most of the Y values. This lends credence to the
relation P(X < 8) > P(Y < 9), that the X’s are stochastically smaller
than the Y’s, so that the median of the X population is smaller than
the median of the Y population, or that 6 > 0. If U is too small relative
to m/2, the opposite conclusion is implied. The appropriate rejection
regions and P values for nominal significance level o then are as
follows:

Alternative Rejection region P value
Y X, 0> 0 or My > My Uxc P(U = Uy)
YSI X, 0 < 0 or My < My U<ec, P(U < Up)
0 #0 or Mx # My U<corUz=c¢ 2 (smaller of
the above)

where ¢, and c|, are, respectively, the largest and smallest integers
such that P(U < ¢, |Hp) <o and P(U = ¢, |Hp) < o, ¢ and ¢’ are two
integers ¢ < ¢’ such that

P(U<c|Hy)+PU=c|H,) <a

and Up is the observed value of the median test statistic U.
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The critical values ¢ and ¢’ can easily be found from (4.4) or from
tables of the hypergeometric distribution [Lieberman and Owen
(1961)] or by using tables of the binomial coefficients. If N is even, we
choose ¢, = m — c4. Since the distribution in (4.4) is not symmetric for
m # n if N is odd, the choice of an optimum rejection region for a two-
sided test is not clear for this case. It could be chosen such that o is
divided equally or that the range of u is symmetric, or neither.

If m and n are so large that calculation or use of tables to find
critical values is not feasible, a normal approximation to the hy-
pergeometric distribution can be used. Using formulas for the mean
and the variance of the hypergeometric distribution (given in
Chapter 1) and the distribution in (4.4), the mean and variance of U
are easily found to be

mt mnt(N —t
EU|) =2 var(U]y ﬁ (4.5)
If m and n approach infinity in such a way that m /n remains constant,
this hypergeometric distribution approaches the binomial distri-
bution for ¢ trials with parameter m/N, which in turn approaches
the normal distribution. For N large, the variance of U in (4.5) is
approximately

mnt(N — ¢
var(U |t) = %
and thus the asymptotic distribution of

B U—-mt/N
7= [mnt(N — t)/N3]"/? 46)

is approximately standard normal. A continuity correction of 0.5 may
be used to improve the approximation. For example, when the alter-
native is 6 < 0 (or My < M), the approximate P value with a con-
tinuity correction is given by

(D<Uo +05 —mt/N> @
mnt(N —t)/N3

It is interesting to note that a test based on the statistic Z in (4.6)
is equivalent to the usual normal-theory test for the difference be-
tween two independent proportions found in most statistics books.
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This can be shown by algebraic manipulation of (4.6) with ¢t = u + v as
follows

B Nu — mt B nu—m(t —u)
* T /mnt(N — )N /maNG/N)(1_¢/N)
u/m—v/n
~ Vl(w+v)/NJ[T = (& +v)/NIN/mn
u/m—v/n

T VA -p)(/m + 1/n)

If a success is defined as an observation being less than 3, u/m and v/
n are the observed sample proportions of successes, and p = (v +v)/N
is the best sample estimate of the common proportion. This then is the
same approximate test statistic that was described at the beginning of
this section for large samples, except that here u +v = ¢, a constant
which is fixed by the choice of 6 as the sample median.

The presence of ties either within or across samples presents no
problem for the median test except in two particular cases. If N is odd
and more than one observation is equal to the sample median, or if N
is even and the (N/2)nd- and [(N + 2)/2]nd-order statistics are equal,
t cannot be defined as before unless the ties are broken. The con-
servative approach is recommended, where the ties are broken in all
possible ways and the value of u chosen for decision is the one which is
least likely to lead to rejection of Hj.

APPLICATIONS

Example 4.1 The production manager of a small company that manu-
factures a certain electronic component believes that playing some
contemporary music in the production area will help reduce the number
of nonconforming items produced. A group of workers with similar
background (training, experience, etc.) are selected and five of them are
assigned, at random, to work in the area while music is played. Then
from the remaining group, four workers are randomly assigned to work
in the usual way without music. The numbers of nonconforming items
produced by the workers over a particular period of time are given below.
Test to see if the median number of nonconforming items produced while
music is played is less than that when no music is played.

Sample 1: Without music Sample 2: With music

3, 4,9, 10 1,2,5,7,8

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



254 CHAPTER 6

Solution Let samples 1 and 2 denote the X and Y sample,
respectively. Assume the shift model and suppose that the null
hypothesis to be tested is My =My against the alternative
My < Mx. Then, the P value for the median test is in the left tail.
Since N =9 is odd, t = (9 — 1)/2 = 4. The combined sample median
is equal to 5 and thus U = 2. Using (4.4), the exact P value for the
median test is

ey 0 () 0)6) () ()
9

=105/126 = 0.8333

There is not enough evidence in favor of the alternative H; and we do
not reject Hy. The reader can verify using (4.7) that the normal
approximation to the P value is ®(0.975) = 0.8352, leading to the same
conclusion.

The MINITAB solution to Example 4.1 for the median test is
shown below. For each group the MINITAB output gives the median
and the interquartile range. Note that MINITAB does not calculate
the P value for the exact median test but provides the chi-square
approximation with df = 1. The chi-square test statistic is the
square of the Z statistic in (4.6), based on the normal approximation
without a continuity correction. Calculations yield Z? = 0.09 and
from Table B of the Appendix, the critical value at o = 0.05 is found
to be 3.84. Thus, the approximate test also fails to reject the null
hypothesis. Using the chi-square approximation for these small
sample sizes might not be advisable however. Using MINITAB, the
right-tail probability corresponding to the observed value of 0.09
under the chi-square distribution with df = 1 is 0.7642 and this is
in fact the P value shown in the printout. MINITAB also provides a
95% confidence interval for each group median (based on the sign
test and interpolation) and for the difference in the medians. The
two individual confidence intervals overlap, and the interval for the
difference of medians includes zero, suggesting that the corre-
sponding population medians are the same. The MINITAB output
does not show the result of a median test but it does show a con-
fidence interval for the difference between the medians based on
a median test; this will be discussed next. For these data, the
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confidence interval is (—4.26, 8.26) which includes zero and this
suggests, as before, that the population medians are not different.

MINITAB SOLUTION TO EXAMPLE 4.1

PR R R R X RN R R R R L R R
Mocd Median Test: C2 versus Cl
Mood median test for 2
Chi-Square = §.09 DF = 1 P = 0.764

Individual 95.0% CIs

Cc1 N<= N> Median Q3-01 —-—-- Fommmm Fommm Fromrm————— +
iz 2 6.50 .50 O LR }
2 3 2 5.00 I b e )
------ e L TR
2.5 5.0 7.5 10.0

Overall median = 5.00
* NOTE * Levels with < & observations have confidence < 95.0%

A O5.0% CI for median{l} - median{2): {-4.26,9.26}

The STATXACT solution is shown next. STATXACT at present
does not provide the exact P value for the two-sample case directly.
However, a little programming can be used to find the exact P value as
shown below. Also, note that STATXACT bases the test on the chi-
square statistic and not on the count U.

FEEE A A A R A

STATXACT SOLUTICN TC EXAMPLE 4.1

IEREEEEELEE LRSS SRR L SR RAEEEEER RS EES]

MEDIAN TEST

Statistics based on the observed one-way layout:

Number of groups =2
Number of observations = %

The overall median = 5,000
Observed Statistic = 0.09000

Asymptotic p-value: {based on Chi-Square distribution with 1 df )
Pr { CH(X) .GE. 0.0%000 } = 0.7642

Finally, the SAS output is shown. SAS determines S, the number
of observations that are above the combined sample median, for the
sample with the smaller sample size. In our case the X sample has the
smaller sample size and S = 2. According to SAS documentation, a
one-sided P value is calculated as P; = P(Test Statistic > S|Hj) if
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S > Mean, whereas if S < Mean, the one-sided P value is calculated as
Py = P(Test Statistic < S|Hy). The mean of the median test statistic
under Hy is m¢/N which equals 4(4)/9 = 1.78 for our example. Thus,
SAS calculates the exact P value in the upper tail as
P(S > 2|Hy) =81/126 = 0.6429. This equals 1—P(U <1|Hj;) and
thus does not agree with our hand calculations. However, on the basis
of S we reach the same conclusion of not rejecting Hy, made earlier on
the basis of U. For the normal approximation to the P value, PROC
NPAR1IWAY calculates the Z statistic by the formula
Z=(S—-mt/N)/\/mnt(N —t)/N2(N —1) and incorporates a con-
tinuity correction unless one specifies otherwise. As with the exact
P value, the SAS P value under the normal approximation also does
not agree with our hand calculation based on U.

LES SRR R R R R EERE R AR EEEREEEEEEFEEEEE TN TR Y

SAS PROGRAM AND SOLUTION TO EXAMPLE 4.1

(222 SRR R RS R R RS A AR EREEEEEEERTEEEE EE R

Program:

data example;
input sampie number @@;
datalines;
13 14 19 1 10 21 22 25 27 2 8
proc nparlway median data=example;
class sample;
var number:
exact}
run;

Ootout:
The NFARIWAY Procedure

Median Scores (Number of Points Bbove Median) for Variable number
Classified by Variable sample

Sum of Expected Std pev Mean
sample N Scores Under HO Under HO Score
1 4 2.0 1.7777178 0.785674 Q.50
2 s 2.0 2.222222 .785674 0,40

Median Two-Sample Test
Statistic (8) 2.0000
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Hormal Approximation

2 0.2828
One-Sided Pr > 2 0.3886
Two-Sided Pr > 7| o.7773
Exact Test

One-Sided Pr »>= B 0.6429

Two-Sided Pr »= |5 - Mean| 1.0000

Median One-Way Rnalysis

Chi-Square 0.08B00
bF 1
Pr » Chi-3quare 0.7773

CONFIDENCE-INTERVAL PROCEDURE

Assuming the shift model, the median-test procedure can be adapted
to yield a confidence-interval estimate for the shift parameter in the
following manner. Suppose that the two populations are identical in
every way except for their medians. Denote these unknown para-
meters by Mx and My, respectively, and the difference My — Mx by 6.
In the shift model Fy(x) = Fx(x — 0), the parameter 0 represents the
difference Fy'(p) — Fx'(p) between any two quantiles (of order p) of
the two populations. In the present case, however, we assume that
0 = My — Mx, the difference between the two medians (p = 0.5). From
the original samples, if 6 were known we could form the derived
random variables

Xl,Xz,...,Xm and Yl—O,Yg—e,...,Yn—O

and these would constitute samples from identical populations or,
equivalently, a single sample of size N =m +n from the common
population. Then according to the median-test criterion with sig-
nificance level o, the null hypothesis of identical distributions would
be accepted for these derived samples if U, the number of X observa-
tions less than the median of the combined sample of derived obser-
vations, lies in the interval ¢ + 1 < U < ¢’ — 1. Recall that the rejection
region against the two-sided alternative 6 2 0is U < c or U > ¢'. The
integers ¢ and ¢’ are chosen such that

c <Z>(tnu)+ ‘ <’Ztl)<fnu> <o (4.8)
SNCORENGOIN
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where t = N/2 or (N — 1)/2 according as N is even or odd. Since Hj is
accepted for all U values in the interval ¢ +1 < U < ¢’ — 1, and this
acceptance region has probability 1 — o under Hy, a 100(1 — )% con-
fidence-interval estimate for 0 consists of all values of 6 for which
the derived sample observations yield values of U which lie in the
acceptance region. This process of obtaining a confidence interval for a
parameter from the acceptance region (of a test of hypothesis) is
called inverting the acceptance region (of the test), and the
confidence interval thus obtained is referred to as a test-based con-
fidence interval.

To explicitly find the confidence interval, that is, the range of 0
corresponding to the acceptance region c+1<U<c -1, we
first order the two derived samples separately from smallest to largest
as

X(l),X(z), N ,X(m) and Y(l) — 9, Y(z) — 6, B ,Y(n) -0

The ¢t smallest observations of the N = m + n total number are made
up of exactly i X and ¢ — i Y variables if each observation of the set

X(l), - ,X@,Y(l) — 6, - ,Y(t,” -0

is less than each observation of the set
Xivtyy - Xm)s Yieivn) =0, ¥y — 0

The value of i is at least ¢ + 1 if and only if for i = ¢ + 1, the largest X in
the first set is less than the smallest Y in the second set, that is,
Xe+1) < Y(—¢) — 0. Arguing similarly, X(¢) > Y;_o41) — 0 can be seen to
be a necessary and sufficient condition for having at most ¢/ — 1 X
observations among the ¢ smallest of the total N (in this case the
largest Y in the first set must be smaller than the smallest X in the
second set). Therefore, the acceptance region for the median test cor-
responding to the null hypothesis of no difference between the two
distributions (with respect to location) at significance level o can be
equivalently written as

X(c+1) < Y(t—c) -0 and X(c/) > Y(t—c’+1) -0
or as
Y(t—c) 7X<C+1) >0 and Y(t—c’+1) 7X(c/) <0

The desired confidence interval (Y(;_¢ 1) — X(¢), Y(s—c) — X(c41)) follows
from the last two inequalities. Now, using (4.8),
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= P(Y(t,cl+1> —X(C/> <0b< Y(t,c) —X(C+1)|9 = 0)

Since the last equality is also true for all values of 6, we can make the
statement

PYy i)y =Xy <0<Yi )= X)) =1-a

where ¢ and ¢’ are found from (4.8). Thus the endpoints of the con-
fidence interval estimate for 6 corresponding to Mood’s median test are
found simply from some order statistics of the respective random
samples.

Example 4.2 We calculate the 95% confidence interval for the median
difference for the data in Example 4.1. In order to find the constants c
and ¢’, we need to calculate the null distribution of U, using (4.3) for
m = 4,n = 5,¢ = 4. The results are shown in Table 4.1. If we take ¢ = 0
and ¢’ = 4, then (4.8) equals 0.04762 so that the confidence interval for
0= MY 7MX is (Y(l) 7X(4),Y(4) 7X(1)) with exact level 0.95238. Nu-
merically, the intervals is (—9,4). Also, the 95.238% confidence interval
for 0 = Mx — My is (—4,9). Note that the MINITAB output given be-
fore states “A 95.0% CI for median(1) — median(2): (—4.26,8.26).” This
is based on the median test but ¢ and ¢’ are calculated using the
normal approximation. The results are quite close.

It may be noted that the median test is a member of a more
general class of nonparametric two-sample tests, called precedence
tests. Chakraborti and van der Laan (1996) provided an overview of
the literature on these tests. A precedence test is based on a statistic
W, which denotes the number of Y observations that precede the rth-
order statistic from the X sample X, (alternatively, one can use the
number of X’s that precede, say, Y(,)). It can be seen, for example, that
W, <w if and only if X,) < Y|, so that a precedence test based on W,
can be interpreted in terms of two order statistics, one from each
sample. The test is implemented by first choosing r, and then
determining w such that the size of the test is a. It can be shown that

Table 4.1 Null distribution of Uform=4n=5t=4
0 1 2 3 4

u

P(U=u) 0.039683 0.31746 0.47619 0.15873 0.007937
5/126  40/126 60/126 20/126 1/126
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the null distribution of W, is distribution free (see, for example,
Problem 2.28), so that the precedence test is a distribution-free test.
The median test a special case of a precedence test since as seen in the
arguments for the confidence interval procedure (see also, for example,
Pratt, 1964), we have U < u — 1 if and only if X(,) < Y;_,1). Several
precedence tests have been proposed in the literature and we will refer
to some of some of them in this chapter.

POWER OF THE MEDIAN TEST

The power of the median test can be obtained as a special case of the
power of a precedence test and we sketch the arguments for the more
general case. The power of a precedence test can be obtained from the
distribution of the precedence statistic W, under the alternative
hypothesis. It can be shown that for i =0,1,...,n

P(W,=i)= (?)

B(rom—-r+1)

1 . A
X /0 [Fy (F)}l(u))] ' [1-Fy (F)El(u))] T (1—w)" " du
(4.9)

Thus, for a one-sided precedence test with rejection region W, < w,,
the power of the test is

wy—1

Pw(Fx,Fy,m,n,0) = > P(W, =i) (4.10)
=0

where w, is obtained from the size of the test; in other words, w, is the
largest integer such that

wy,—1

Z P(W, =s|Hp) < a
s=0

To obtain the power of the median test, we just need to substitute
suitable values in (4.10).

As an alternative development of power, note that under the
assumption of the location model Fy(x) = Fx(x — 0) the null hypoth-
esis is that 0 equals zero. From the confidence interval procedure de-
veloped above, we know that for the median test a necessary and
sufficient condition for accepting this hypothesis is that the number
zero be included in the random interval
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[(Yie—es1) = X)), YVit—e) = X(e41)]

Thus, the power function of the median test in the location case is the
probability that this interval does not cover zero when 0 # 0, that is,

PW(e) = P(Y(tfcurl) —X(cr) >0or Y(t,c) —X(C+1) < 0 when© 75 O)

These two events, call them A and B, are mutually exclusive as we now
show. For any c¢'>¢, it is always true that X >X.,;) and
Y(t,c/+1> = Y(tf[c’fl]) < Y(t,c). Thus if A occurs, that is, Y(tfcl+1> > X(c/>,
we must also have Y, . =Y cy1) > X() = X(41) which makes
Y(;_¢) > X(c+1), a contradiction in B. As a result, the power function can
be expressed as the sum of two probabilities involving order statistics:

PW(e) = P(Y(t76/+1) > X(Cl)) +P(Y(t,c) < X(c+1))

Since the random variables X and Y are independent, the joint
distribution of, say, X,y and Y is the product of their marginal dis-
tributions, which can be easily found using the methods of Chapter 2
for completely specified populations Fx and Fy or, equivalently, Fx and
0 since Fy(x) = Fx(x — 0). In order to calculate the power function
then, we need only evaluate two double integrals of the following type:

P(Yyy < Xy) = / . / Fra O () dy

The power function for a one-sided test is simply one integral of this
type. For large sample sizes, since the marginal distribution of any
order statistic approaches the normal distribution and the order sta-
tistics X(,) and Y(, are independent here, the distribution of their
difference Y;) — X(,) approaches the normal distribution with mean
and variance

E(Yy)-EXy) and  var(Y) + var(X;,)

Given the specified distribution function and the results in Chapter 2,
we can approximate these quantities by

_ r _ S
s () R

W
var(Y(,) = % {fy [Fxl <n T 1)} }2
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and an approximation to the power function can be found using nor-
mal probability tables.

It is clear that computing the exact or even the asymptotic power
of the median test is computationally involved. An easier alternative
approach might be to use computer simulations, as was outlined for
the sign and the signed rank test in Chapter 5. We leave the details to
the reader.

The asymptotic efficiency of the median test relative to Student’s
t test for normal populations is 2/mt = 0.637 (see Chapter 13). As a test
for location, this is relatively poor performance. The Mann-Whitney
test, discussed in Section 6.6, has greater efficiency for normal
populations.

6.5 THE CONTROL MEDIAN TEST

The median test, based on the number of X observations that precede
the median of the combined samples, is a special case of a precedence
test. A simple yet interesting alternative test is a second precedence
test, based on the number of X (or Y) observations that precede the
median of the Y (or X) sample. This is known as the control median test
and is generally attributed to Mathisen (1943). The properties and
various refinements of the test have been studied by Gart (1963),
Gastwirth (1968), and Hettmansperger (1973), among others.

Without any loss of generality, suppose the Y sample is the con-
trol sample. The control median test is based on V, the number of X
observations that precede the median of the Y observations. For sim-
plicity let n = 2r + 1, so that the (r + 1)th-order statistic Y.,y is the
median of the Y sample. Now Y., ) defines two nonoverlapping blocks
[—00,Y ;1)) and (Y(,11),00) in the sample, and the control median test
is based on V, the number of X observations in the first block. It may be
noted that Vis equal to m.S,,(Y ;1)) = P(41), called the placement of
Y(r+1), the median of the Y sample, among the X observations.

As with the median test, the control median test can be used to
test the null hypothesis Hy: Fy(x) = Fx(x) for all x against the general
one-sided alternative that for example, the Y’s are stochastically lar-
ger than the X’s. In this case, the number of X’s preceding Y,
should be large and thus large values of V provide evidence against the
null hypothesis in favor of the alternative. If we assume the shift
model Fy(x) = Fx(x — 0) then the problem reduces to testing the null
hypothesis Hy: 6 = 0 against the one-sided alternative hypothesis
Hi: 0 > 0 and the appropriate rejection region consists of large values
of V.
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In a similar manner it can be seen that for the one-sided alter-
native that the Y’s are stochastically smaller than the X’s or under the
shift model H;: 0 < 0, the rejection region should consist of small va-
lues of V.

Since the control median test is a precedence test, Problem
2.28(c) (with n = 2r + 1 and i = r + 1) gives the null distribution of the
test statistic V as:

. m—j J
PV =j|Hy] = 5.1
V = Hol =~ LA (5.1
m
forj=0,1,...,m. This can be easily evaluated to find the exact P value

corresponding to an observed value Vg or to calculate a critical value
for a given level of significance o. Further, from Problem 2.28 (d), the
null mean and the variance of V are

_m(r+1) m
EVI=%rD "2
and
var(V) = mm+n+1)(r+1)(n—r)

(n+1)2%(n+2)
- m(m+2r+2) mm+n+1)
- 4(2r+3) 4(n+2)

In general, V/m is an estimator of Fix(My) = q, say, and in fact is
a consistent estimator. Now, g is equal to 0.5 under Hy, is less than 0.5
if and only if My < My, and is greater than 0.5 if and only if My > Mx.
Hence, like the median test, a test based on V is especially sensitive to
differences in the medians.

Gastwirth (1968) showed that when m, n tend to infinity such
that m/n tends to ¢, and some regularity conditions are satisfied,
vm(V/m — q) is asymptotically normally distributed with mean zero
and variance

fZ(My)

q(1—q)+ d>4f$(My)

Under Hy we have ¢ =0.5,fx =fy, and Mx = My, so that the

asymptotic null mean and variance of V are m/2 and m(m +n)/4n,
respectively. Thus, under H, the asymptotic distribution of
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 V-m/2  \/n(2V -m)
- /m(m+n)/an  J/m(m+n)

is approximately standard normal.

Suppose we are interested in testing only the equality of the two
medians (or some other quantiles) and not the entire distributions. In
the context of location-scale models, the null hypothesis may concern
only the equality of location parameters, without assuming that the
scale parameters are equal. By analogy with a similar problem in the
context of normal distributions, this is a nonparametric Behrens-
Fisher problem. Note that under the current null hypothesis we still
have g = 0.5 but the ratio fx (M) /fy (M), where M is the common value
of the medians under the null hypothesis, does not necessarily equal
one. This implies that in order to use the control median test for this
problem we need to estimate this ratio of the two densities at M. Once
a suitable estimate is found, the asymptotic normality of V can be used
to construct an approximate test of significance. Several authors have
studied this problem, including Pothoff (1963), Hettmansperger
(1973), Hettmansperger and Malin (1975), Schlittgen (1979), Smit
(1980), and Fligner and Rust (1982).

CURTAILED SAMPLING

The control median test, or more generally any precedence test, is
particularly useful in life-testing experiments, where observations are
naturally time ordered and collecting data is expensive. In such
experiments, the precedence tests allow a decision to be made about
the null hypothesis as soon as a preselected ordered observation
becomes available. Thus the experiment can be terminated (or the
sampling procedure can be curtailed) before all of the data have been
collected, and precedence tests have the potential of saving time and
resources. Note that the decision made on the basis of the “curtailed
sample” is always the same as it would have been if all observations
had been available.

As an illustration consider testing Hy: g = 0.5 again the one-
sided alternative Hi: q¢ < 0.5. Using the normal approximation, the
control median test would reject Hy in favor of H; if V < d, where

m(m + n)} 1/2

m
:_+Z°‘/2{ 4n

=3

(5.2)

or equivalently if the median of the Y sample of size 2r + 1 satisfies
Y <Xq

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



THE GENERAL TWO-SAMPLE PROBLEM 265

where d is the solution from (5.2) after rounding down.

This restatement of the rejection region in terms of the X- and
Y-order statistics clearly shows that a decision can be reached based on
the control median test as soon as the median of the Y sample or the
dth order statistic of the X sample is observed, whichever comes first.
The index d is fixed by the size of the test and can be obtained exactly
from the null distribution of V or from the normal approximation
shown in (5.2). The null hypothesis is rejected if the median of the Y
sample is observed before the dth-order statistic of the X sample;
otherwise the null hypothesis is accepted.

Gastwirth (1968) showed that in large samples the control
median test always provides an earlier decision than the median test
for both the one- and two-sided alternatives. For related discussions
and other applications, see Pratt and Gibbons (1981) and Young
(1973).

POWER OF THE CONTROL MEDIAN TEST

Since the median test and the control median test are both precedence
tests, the power function of the control median test can be obtained in
a manner similar to that for the median test. If the alternative is one-
sided, say q < 0.5, the control median test rejects the null hypothesis
g = 0.5 at significance level o if V < d,,. Hence the power of this control
median test is P(V <d,|q <0.5). However, the event V <d, is
equivalent to Y.y <Xy, where d* = [d,/m], and therefore the
power of the test is simply

Pw(0) = P[Y(r41) < X(a:)

q < 0.5]

where q¢ = Fx(My) and d, satisfies P(V < dy|Hj) < o. Note that the
power of the control median test depends on this composite function
q = Fx(My), in addition to o, m and n, and q is not necessarily equal to
the difference of medians, not even under the shift model. The quan-
tity ¢ can be thought of as a parameter that captures possible differ-
ences between the Y and the X distributions.

DISCUSSION

The control median test provides an alternative to the median test.
The ARE relative to the median test is one regardless of the
continuous parent distributions, and in this sense the test is as
efficient as the median test in large samples. In fact, the efficacy of the
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control median test is a symmetric function of the two sample sizes,
which implies that “the designation of the numbering of the samples is
immaterial as far as asymptotic efficiency is concerned” (Gart, 1963).

Because the ARE between the control median test and the
median test is equal to one, neither one is preferable based on this
criterion. However, if some other measure of efficiency is used, inter-
esting distinctions can be made between the two tests. For these and
other related results see, for example, Killeen, Hettmansperger, and
Sievers (1972) and the references therein. As noted earlier, the control
median test and the median tests are special cases of precedence tests.
An overview of precedence tests for various problems can be found in
Chakraborti and van der Laan (1996, 1997).

The control median test is based on V, the number of X values
that precede the median of the Y’s. Writing ¢ = Fx(My), the appro-
priate rejection regions for a nominal significance level o are shown in
the following table along with expressions for P values where d, and
d!, are, respectively, the largest and smallest integers such that
P(V <d,|Hp) <o,P(V=d,|Hy) <o and d and d' (d <d') are two
positive integers such that

P(V<d|Hy) +P(V>d |Hy) <u

The exact critical values or P values can be easily found directly using
(5.1) or from the tables of the hypergeometric distribution (see Pro-
blem 6.10). In view of the simple form of the null distribution, it might
be easier to calculate a P value corresponding to an observed value of
V. Note that unlike the median test, there is no difficulty here in
assigning probability in the tails with two-tailed tests since the dis-
tribution of V is symmetric under Hy, that is, P(V =j|Hy) = P(V =
m —j| Hy) for all j.

Alternative Rejection region P value
m
Y2 X, ¢>05 P(V > VolHo) = >, PV = j|Ho]
=V,
0> 0 or My > My V<d, v
Y¥X,q<05 P(V < Vo|Hy) = 3 VoP[V = j|Hy)
J=0
e<OOI'My<MX Védo(

0 ?é 0 or MY 76 MX
q#05 V<dorVx>d 2 (smaller of above)
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In practice, the asymptotic distribution is useful for finding the
critical values or approximating the P value. For example, if the al-
ternative is ¢ < 0.5, an approximation to the P value of the test with a
continuity correction is

Vn(2v —m+1)
m(m +n)

@ (5.3)

APPLICATIONS

Example 5.1 We illustrate the control median test using the data
in Example 4.1.

Solution Again, let samples 1 and 2 denote the X and the Y sample,
respectively and assume that the null hypothesis to be tested is
Myx = My (¢ = 0.5) against the alternative My < Mx (¢ < 0.5) under
the shift model. Thus, the P value for the control median test is also in
the left tail. The median of the Y sample is 5 and thus V = 2. Using
(5.1) with m =4,n =5, and r = 2, the exact P value for the control

(1)) () (1) (G) )
(4)

= 81/126 = 0.6429

P(V <2|Hp) =

Hence there is not enough evidence against the null hypothesis in
favor of the alternative. Also, from (5.3) the normal approximation to
the P value is found to be ®(0.37) = 0.6443 and the approximate test
leads to the same decision as the exact test.

For the median test, the combined sample median is equal to the
Y sample median and U = 2. Now using (4.4) the exact P value for the
median test is

v oy ) (1) (1)) + (3)(2)
(4)

=105/126 = 0.8333
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and once again not enough evidence is available in favor of the
alternative H;. Using (4.7), the normal approximation to the P value is
obtained as ©(0.975) = 0.8352, leading to the same conclusion.

6.6 THE MANN-WHITNEY U TEST

Like the Wald-Wolfowitz runs test in Section 6.2, the Mann-Whitney U
test (Mann and Whitney, 1947) is based on the idea that the particular
pattern exhibited when the X and Y random variables are arranged
together in increasing order of magnitude provides information about
the relationship between their populations. However, instead of mea-
suring the tendency to cluster by the total number of runs, the Mann-
Whitney criterion is based on the magnitudes of, say , the Y’s in
relation to the X’s, that is, the position of the Y’s in the combined
ordered sequence. A sample pattern of arrangement where most of the
Y'’s are greater than most of the X’s, or vice versa, or both, would be
evidence against a random mixing and thus tend to discredit the null
hypothesis of identical distributions.

The Mann-Whitney U test statistic is defined as the number of
times a Y precedes an X in the combined ordered arrangement of the
two independent random samples

Xl,Xg,...,Xm and Yl,Yg,...,Yn

into a single sequence of m +n = N variables increasing in magni-
tude. We assume that the two samples are drawn from continuous
distributions, so that the possibility X; = Y; for some i and j need not
be considered. If the mn indicator random variables are defined as

1 if Y, <X;
D;; = fori=1,2,....m,j=1,2,....n (6.1)
0 if Y, >X;

a symbolic representation of the Mann-Whitney U statistic is

n

U=> > Dy (6.2)

i=1 j=1

The logical rejection region for the one-sided alternative that the
Y'’s are stochastically larger than the X’s,

Hy: Fy(x) < Fx(x) strict inequality for somex

would clearly be small values of U. The fact that this is a consistent
test criterion can be shown by investigating the convergence of U/mn
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to a certain parameter where H; can be written as a statement con-
cerning the value of that parameter.
For this purpose, we define

p=P¥<x) - [ " / " )l dyda

= [ h Fy(x)dFx(x) (6.3)

and the hypothesis testing problem can be redefined in terms of the
parameter p. If Hy: Fy(x) = Fx(x) for all x is true, then

b= /_ " Fy(x)dFx(x) = 05 (6.4)

If, for example, the alternative hypothesis is H;: Fy(x) < Fx(x) that is
Y S>T X, then Hy: p < 0.5 for all x and p < 0.5 for some x. Thus the null
hypothesis of identical distributions can be parameterized to Hy: p = 0.5
and the alternative hypothesis to H1: p < 0.5.

The mn random variables defined in (6.1) are Bernoulli variables,
with moments

E(Dy)=ED})=p  var(Dy) =p(1-p) (6.5)

For the joint moments we note that these random variables are not
independent whenever the X subscripts or the Y subscripts are com-

mon, so that
cov(D;, D) =0  fori#handj#k
C.OV(DijaDik) =pP1 _p2 COV(DLj,DhJ‘) = p2 —I)2 (66)
J#k i#h

where the additional parameters introduced are
P1 ZP(YJ <X ﬂYk <Xi)
=P(Y;jand Y}, < X;)

-/ " Fy () dFy (x) 6.7)

and
p2=PX;>Y;nX; >Y))
= P(Xl and Xj, > YJ)
- [ n-FxoParys) 63

oo
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Since U is defined in (6.2) as a linear combination of these mn random
variables, the mean and variance of U are

=2 ZE ) = mnp (6.9)
var(U) = i ivar(Dij) + i cov(D;j,Dy)
=1 j=1 i—11<jtk<n

+§n: ZZ cov(Dj;, Dp;)

J=l1<ith<m

+ ZZ >N cov(Dy, D) (6.10)
1<i#

ml<j#k <n

Now substituting (6.5) and (6.6) in (6.10), this variance is
var(U) = mnp(1 — p) + mn(n — 1)(p1 — p?) + nm(m — 1)(ps — p?)
=mn[p —p*(N = 1)+ (n — L)p1 + (m — 1)py] (6.11)

Since E(U/mn) =p and var(U/mn) — 0 as m,n — oco,U/mn is a
consistent estimator of p. Based on the method described in Chapter 1,
the Mann-Whitney test can be shown to be consistent in the following
cases:

Alternative Rejection region
p<05 Fy(x) < Fx(x) U-mn/2 <k
p>05 Fy(x) > Fx(x) U—mn/2> ks (6.12)
p#05 Fy(x);éFx(x) Ufmn/2>k3

In order to determine the size o critical regions of the Mann-
Whitney test, we must now find the null probability distribution of U.
Under Hy, each of the (m + n) arrangements of the random variables
into a combined sequence occurs with equal probability, so that

rm.n u
fvw)=PU=u) = Tma(®) (6.13)
m+n
("a")
where r,, ,(u) is the number of distinguishable arrangements of the
m X and n Y random variables such that in each sequence the number
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of times a Y precedes an X is exactly u. The values of u for which fy;(u)
is nonzero range between zero and mn, for the two most extreme
orderings in which every x precedes every y and every y precedes every
x, respectively. We first note that the probability distribution of U is
symmetric about the mean mn/2 under the null hypothesis. This
property may be argued as follows. For every particular arrangement
z of the m x and n y letters, define the conjugate arrangement 2z’ as the
sequence z written backward. In other words, if z denotes a set of
numbers written from smallest to largest, z’ denotes the same num-
bers written from largest to smallest. Every y that precedes an x in z
then follows that x in 2/, so that if u is the value of the Mann-Whitney
statistic for z, mn — u is the value for z’. Therefore under H,, we have
Tman(U) =rma(mn —u) or, equivalently,

P(U—%:u) :P(U:%-&-u)

mn mn
=P[U=mn - (5 +u)| =P(U -5 = -u)
Because of this symmetry property, only lower tail critical values
need be found for either a one- or two-sided test. We define the random
variable U’ as the number of times an X precedes a Y or, in the notation
of (6.1),

U'=>> (1-Dy)
i=1 j=1

and redefine the rejection regions for size o tests corresponding to
(6.12) as follows:

Alternative Rejection region
p<05 Fy(x) < Fx(x) U<cy
p>05 Fy(x) > Fx(x) U' <cq
p#05 Fy(x) # Fx(x) U<cyporU <cyp

To determine the number ¢, for any m and n, we can enumerate the
cases starting with z = 0 and work up until at least oc(m,;; n) cases
are counted. For example, for m =4, n = 5, the arrangements with
the smallest values of u, that is, where most of the X’s are smaller than
most of the Y’s, are shown in Table 6.1. The rejection regions for this
one-sided test for nominal significance levels of 0.01 and 0.05 would
then be U < 0 and U < 2, respectively.
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Table 6.1 Generation of the left-tail P values of U form=4, n=5

Ordering u
XXXXYYYYY 0
XXXYXYYYY 1 P(U <0)=1/126 = 0.008
XXYXXYYYY 2 P(U<1)=2/126 =0.016
XXXYYXYYY 2 P(U <2)=4/126 = 0.032
XYXXXYYYY 3 P(U <3)=17/126 = 0.056
XXYXYXYYY 3
XXXYYYXYY 3

Even though it is relatively easy to guess which orderings will
lead to the smallest values of u, (m,;lF n) increases rapidly as m, n
increase. Some more systematic method of generating critical values is
needed to eliminate the possibility of overlooking some arrangements
with © small and to increase the feasible range of sample sizes and
significance levels for constructing tables. A particularly simple and
useful recurrence relation can be derived for the Mann-Whitney sta-
tistic. Consider a sequence of m + n letters being built up by adding a
letter to the right of a sequence of m +n — 1 letters. If the m +n — 1
letters consist of m x and n — 1 y letters, the extra letter must be a y.
But if a y is added to the right, the number of times a y precedes an x is
unchanged. If the additional letter is an x, which would be the case for
m —1x and n y letters in the original sequence, all of the y’s will
precede this new x and there are n of them, so that u is increased by n.
These two possibilities are mutually exclusive. Using the notation of
(6.13) again, this recurrence relation can be expressed as

rmﬁ("’) = rm,nfl(u) +Trm-1n (u - n)

and
fu(w) = pma(u) = Fmn1(®) 7: :'_n;llwn(u —n)
(")
. n mn-1(0) m  rm_1.(u—n)
“m4+n/m+n—-1\ m+n/m+n-1
( n-—1 ) < m-—1 )
or
(M + n)pmn(@) = nPpmn-1(w) + Mpm-1,(w —n) (6.14)

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



THE GENERAL TWO-SAMPLE PROBLEM 273

This recursive relation holds for all u = 0,1,2,..., mn and all integer-
valued m and n if the following initial and boundary conditions are
defined for alli =1,2,...,mand j=1,2,... n.

rij(u) =0 forallu <0

rio(0)=1 ro;(0) =1

rio(u) = for all u £ 0

roi(u) =0 for allu #0

=)

If the sample with fewer observations is always labeled the X
sample, tables are needed only for m < n and left-tail critical points.
Such tables are widely available, for example in Auble (1953) or Mann
and Whitney (1947).

When m and n are too large for the existing tables, the asymp-
totic probability distribution can be used. Since U is the sum of
identically distributed (though dependent) random variables, a gen-
eralization of the central-limit theorem allows us to conclude that the
null distribution of the standardized U approaches the standard nor-
mal as m,n — oo in such a way that m/n remains constant (Mann and
Whitney, 1947). To make use of this approximation, the mean and
variance of U under the null hypothesis must be determined. When
Fy(x) = Fx(x), the integrals in (6.7) and (6.8) are evaluated as
p1 = p2 = 1/3. Substituting these results in (6.9) and (6.11) along with
the value p = 1/2 from (6.4) gives

mn(® +1)

E(U|Hy) :% var(U | Ho) :mn(12 (6.15)

The large-sample test statistic then is
U-—-mn/2
vmn(N +1)/12
whose distribution is approximately standard normal. This approx-
imation has been found reasonably accurate for equal sample sizes as

small as 6. Since U can assume only integer values, a continuity cor-
rection of 0.5 may be used.

THE PROBLEM OF TIES

The definition of U in (6.2) was adopted for presentation here because
most tables of critical values are designed for use in the way described
above. Since D;; is not defined for X; =Y, this expression does not
allow for the possibility of ties across samples. If ties occur within one
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or both of the samples, a unique value of U is obtained. However, if one
or more X is tied with one or more Y, our definition requires that the
ties be broken in some way. The conservative approach may be adop-
ted, which means that all ties are broken in all possible ways and the
largest resulting value of U (or U’) is used in reaching the decision.
When there are many ties (as might be the case when each random
variable can assume only a few ordered values such as very strong,
strong, weak, very weak), an alternative approach may be preferable.

A common definition of the Mann-Whitney statistic which does
allow for ties (see Problem 5.1) is

i=1 j=1
where
1 if X; > YJ
D;=1<0.5 if X; =Y; (6.16)
0 if X; < YJ

However, it is often more convenient to work with

1 iin>Yj
D;={ 0 if X; = Y;
-1 iin<Yj

If the two parameters p™ and p~ are defined as

pr=PX>Y) and p =PX<Y)

Ur may be considered as an estimate of its mean
E(Ur) =mn(p* —p")

A standardized Uy is asymptotically normally distributed. Since under
the null hypothesis p* =p~, we have E(Ur|Hy) =0 whether ties
occur or not. The presence of ties does affect the variance, however.
The variance of Uy conditional upon the observed ties can be calcu-
lated in a manner similar to the steps leading to (6.11) by introducing
some additional parameters. Then a correction for ties can be incor-
porated in the standardized variable used for the test statistic. The
result is
-

mn(N + 1)

var(UT|H0) = 12

(6.17)

S —t)
N(N2 — 1)]

270 Madison Avenue, New York, New York 10016
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where ¢ denotes the multiplicity of a tie and the sum is extended over
all sets of ¢ ties. The details will be left to the reader as an exercise [or
see Noether, 1967, pp. 32-35].

CONFIDENCE-INTERVAL PROCEDURE

If the populations from which the X and Y samples are drawn are
identical in every respect except location, say Fy(x) = Fx(x — 0) for all
x and some 60, we say that the Y population is the same as the X
population but shifted by an amount 6, which may be either positive or
negative, the sign indicating the direction of the shift. We wish to use
the Mann-Whitney test procedure to find a confidence interval for 6,
the amount of shift. Under the assumption that Fy(x) = Fx(x — 0) for
all x and some 8, the sample observations X7,Xs,...,X,, and Y; — 6,
Y, —90,...,Y, — 0 come from identical populations. By a confidence
interval for 6 with confidence coefficient 1 — o we mean the range of
values of 0 for which the null hypothesis of identical populations will
be accepted at significance level o.

To apply the Mann-Whitney procedure to this problem, the ran-
dom variable U now denotes the number of times a Y — 6 precedes an
X, that is, the number of pairs (X; Y;—-0),i=1,2,...,m and
J=1,2,...,n, for which X; > Y; — 0, or equivalently, Y; - X; < 0. If a
table of critical values for a two-sided U test at level o gives a rejection
region of U < k, say, we reject Hy when no more than % differences
Y; — X; are less than the value 6, and accept Hy when more than %
differences are less than 6. The total number of differences Y; — X; is
mn. If these differences are ordered from smallest to largest according
to actual (not absolute) magnitude, denoted by D),D(3),...,Dmn)
there are exactly % differences less than 0 if 0 is the (k£ + 1)st-ordered
difference, D, 1). Any number exceeding this (k + 1)st difference will
produce more than % differences less than 6. Therefore, the lower limit
of the confidence interval for 0 is D, ). Similarly, since the probability
distribution of U is symmetric, an upper confidence limit is given by
that difference which is (k + 1)st from the largest, that is, D ,,,_z). The
confidence interval with coefficient 1 — o then is

D11y <0 <Dmn-r)

The procedure is illustrated by the following numerical example.
Suppose that m = 3,n = 5,0 = 0.10. By simple enumeration, we find
P(U<1)=2/56=0.036and P(U < 2) =4/56 = 0.071, and so the criti-
cal value when o/2 = 0.05 is 1, with the exact probability of a type I
error 0.072. The confidence interval will then be D) <6 < D(yy).
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Table 6.2 Confidence-interval calculations

yj—1 yj—6 ¥ =1
1 —4 -5
3 -2 -3
8 3 2
9 4 3

11 6 5

Suppose that the sample data are X:1,6,7;Y: 2,4,9,10, 12. In order to
find D) and D14, systematically, we first order the x and y data se-
parately, then subtract from each y, starting with the smallest y, the
successive values of x as shown in Table 6.2, and order the differences.
The interval here is —4 < 8 <9 with an exact confidence coefficient
of 0.928.

The straightforward graphical approach could be used to sim-
plify the procedure of constructing intervals here. Each of the m +n
sample observations is plotted on a graph, the X observations on the
abscissa and Y on the ordinate. Then the mn pairings of observations
can be easily indicated by dots at all possible intersections. The line
y —x = 0 with slope 1 for any number 0 divides the pairings into two
groups: those on the left and above have y —x < 0, and those on the
right and below have y — x > 0. Thus if the rejection region for a size o
test is U < k&, two lines with slope 1 such that % dots lie on each side of
the included band will determine the appropriate values of 6. If the
two lines are drawn through the (& + 1)st dots from the upper left and
lower right, respectively, the values on the vertical axis where these
lines have x intercept zero determine the confidence-interval end-
points. In practice, it is often convenient to add or subtract an arbi-
trary constant from each observation before the pairs are plotted, the
number chosen so that all observations are positive and the smallest is
close to zero. This does not change the resulting interval for 6, since
the parameter 0 is invariant under a change in location in both the X
and Y populations. This method is illustrated in Fig. 6.1 for the above
example where £ = 1 for o = 0.072.

SAMPLE SIZE DETERMINATION

If we are in the process of designing an experiment and specify the size
of the test as o and the power of the test as 1 — B, we can determine
the sample size required to detect a difference between the populations
measured by p=P(Y >X). Noether (1987) showed that an
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Fig. 6.1 Graphical determination of endpoints.

approximate sample size for a one-sided test based on the Mann-
Whitney statistic is

(24 +zB)2

T 12¢(1-c)(p - 1/2)° (6.18)

where ¢ = m /N and z,,z are the upper o and B quantiles, respectively,
of the standard normal distribution. The corresponding formula for a
two-sided test is found by replacing o by o/2 in (6.18). Verification of
this is left to the reader.

These formulas are based on a normal approximation to the
power of the Mann-Whitney test “near” the null hypothesis and can be
calculated easily. Note that if we take ¢ = 0.5, that is when m = n, the
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formula reduces to the sample size formula (7.15) in Section 5.7 for the
Wilcoxon signed-rank test.

As an example, suppose we want to use a one-sided Mann-
Whitney test at o = 0.05 to detect a difference p = P(Y > X) = 0.10
with power 0.90. Suppose we have to take fewer X observations than
Y, say m =0.8n This makes ¢=4/9. With zp05 =1.645 and
2010 = 1.28, we use (6.18) to find

2
y_ (1645 +128)% o

12(3) (3)(0.4)
Thus we need a total of 19 observations, which translates to m = 8,
n=11.

Vollandt and Horn (1997) compared Noether’s sample size for-
mula to an alternative and found that Noether’s approximation is
sufficiently reliable with small and large deviations from the null
hypothesis.

DISCUSSION

The Mann-Whitney U test is a frequently used nonparametric test
that is equivalent to another well-known test, the Wilcoxon rank-sum
test, which will be presented independently in Section 8.2. Because the
Wilcoxon rank-sum test is easier to use in practice, we postpone giving
numerical examples until then. The discussion here applies equally to
both tests.

Only independence and continuous distributions need be as-
sumed to test the null hypothesis of identical populations. The test is
simple to use for any size samples, and tables of the exact null dis-
tribution are widely available. The large-sample approximation is
quite adequate for most practical purposes, and corrections for ties can
be incorporated in the test statistic. The test has been found to per-
form particularly well as a test for equal means (or medians), since it is
especially sensitive to differences in location. In order to reduce the
generality of the null hypothesis in this way, however, we must feel
that we can legitimately assume that the populations are identical
except possibly for their locations. A particular advantage of the test
procedure in this case is that it can be adapted to confidence-interval
estimation of the difference in location.

When the populations are assumed to differ only in location, the
Mann-Whitney test is directly comparable with Student’s ¢ test for
means. The asymptotic relative efficiency of U relative to ¢ is never
less than 0.864, and if the populations are normal, the ARE is quite
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high at 3/n = 0.9550 (see Chapter 13). The Mann-Whitney test per-
forms better than the ¢ test for some nonnormal distributions. For
example, the ARE is 1.50 for the double exponential distribution and
1.09 for the logistic distribution, which are both heavy-tailed dis-
tributions.

Many statisticians consider the Mann-Whitney (or equivalently
the Wilcoxon rank-sum) test the best nonparametric test for location.
Therefore power functions for smaller sample sizes and/or other dis-
tributions are of interest. To calculate exact power, we sum the prob-
abilities under the alternative for those arrangements of m X andn Y
random variables which are in the rejection region. For any
combined arrangement Z where the X random variables occur in the

positions rq,r3,...,r,; and the Y’s in positions si,sg,...,S,, this prob-
ability is
00 un U3 us m n
PZz) = m!n!/ / / / HfX(url-) ny(usj)dm - -duy
—00 J —00 —00 J —00 j—1 j=1
(6.19)

which is generally extremely tedious to evaluate. The asymptotic
normality of U holds even in the nonnull case, and the mean and
variance of U in (6.9) and (6.11) depend only on the parameters p,p1,
and ps if the distributions are continuous. Thus, approximations to
power can be found if the integrals in (6.3), (6.7), and (6.8) are eval-
uated. Unfortunately, even under the more specific alternative,
Fy(x) = Fx(x — 0) for some 0, these integrals depend on both 6 and F,
so that calculating even the approximation to power requires that the
basic parent population be specified.

6.7 SUMMARY

In this chapter we have covered four different inference procedures
for the null hypothesis that two mutually independent random
samples come from identical distributions against the general alter-
native that they differ in some way. TheWald-Wolfowitz runs test and
Kolmogorov-Smirnov two-sample tests are both noted for their gen-
erality. Since they are sensitive to any type of difference between the
two distributions, they are not very powerful against any specific
type of difference that could be stated in the alternative. Their effi-
ciency is very low for location alternatives. They are really useful
only in preliminary studies. The median test is primarily sensitive to
differences in location and it does have a corresponding confidence
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interval procedure for estimating the difference in the medians. But
it is not very powerful compared to other nonparametric tests for
location. Conover, Wehmanen, and Ramsey (1978) examined the
power of eight nonparametric tests, including the median test, com-
pared to the locally most powerful (LMP) linear rank test when the
distribution is exponential for small sample sizes. Even though the
median test is asymptotically equivalent to the LMP test, it per-
formed rather poorly. Freidlin and Gastwirth (2000) suggest that the
median test “be retired’ from routine use” because their simulated
power comparisons showed that other tests for location are more
powerful for most distributions. Even the Kolmogorov-Smirnov two-
sample test was mroe powerful for most of the cases they studied.
Gibbons (1964) showed the poor performance of the median test with
exact power calculations for small sample sizes. Further, the hand
calculations for an exact median test based on the hypergeometric
distribution are quite tedious even for small sample sizes. The
median test continues to be of theoretical interest, however, because
it is valid under such weak conditions and has interesting theoretical
properties.

The Mann-Whitney test is far preferable as a test of location for
general use, as are the other rank tests for location to be covered later
in Chapter 8. The Mann-Whitney test also has a corresponding pro-
cedure for confidence interval estimation of the difference in popula-
tion medians. And we can estimate the sample size needed to carry out
a test at level o to detect a stated difference in locations with power

1-p.

PROBLEMS

6.1. Use the graphical method of Hodges to find P(D;, , > d), where d is the observed
value of D}, = max,[S,,(x) — S,(x)] in the arrangement xyyxyx.

6.2. For the median-test statistic derive the complete null distribution of U for
m =6,n =17, and set up one- and two-sided critical regions when o = 0.01,0.05, and
0.10.

6.3. Find the large-sample approximation to the power function of a two-sided median
test for m = 6,n = 7,0 = 0.10, when Fy is the standard normal distribution.

6.4. Use the recursion relation for the Mann-Whitney test statistic given in (6.14) to
generate the complete null probability distribution of U for all m +n < 4.

6.5. Verify the expressions given in (6.15) for the moments of U under H,.

6.6. Answer parts (a) to (c) using (i) the median-test procedure and (ii) the Mann-
Whitney test procedure (use tables) for the following two independent random samples
drawn from continuous populations which have the same form but possibly a difference
of 0 in their locations:
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X 79 13 138 129 59 76 75 53

Y 96 141 133 107 102 129 110 104

(a) Using the significance level 0.10, test
Hy:0=0 versus Hi: 040

(b) Give the exact level of the test in (a).
(¢) Give a confidence interval on 0, with an exact confidence coefficient corre-
sponding to the exact level noted in (b).

6.7. Represent a sample of m X and n Y random variable by a path of m + n steps, the
ith step being one unit up or to the right according as the ith from the smallest ob-
servation in the combined sample is an X or a Y, respectively. What is the algebraic
relation between the area under the path and the Mann-Whitney statistic?

6.8. Can you think of other functions of the difference S,,(x) — S, (x) (besides the
maximum) which could also be used for distribution-free tests of the equality of two
population distributions?

6.9. The 2000 census statistics for Alabama give the percentage changes in population
between 1990 and 2000 for each of the 67 counties. These counties were divided into two
mutually independent groups, rural and nonrural, according to population size of less
than 25,000 in 2000 or not. Random samples of nine rural and seven nonrural counties
gave the following data on percentage population change:

Rural 1.1,-21.7,-16.3, —11.3,-10.4,-7.0,—2.0,1.9,6.2
Nonrural ~9.4,99,14.2, 18.4, 20.1, 23.1, 70.4

Use all of the methods of this chapter to test the null hypothesis of equal distributions.
(Hint: Notice that m # n here.)

6.10. (a) Show that the distribution of the precedence statistic P;y under the null
hypothesis (Fx = Fy), given in Problem 2.28(c), can be expressed as

m\(n—1

Jj+i—-1
_j.:lg;;}%_% Jj=01....m

These relationships are useful in calculating the null distribution of precedence statis-
tics using tables of a hypergeometric distribution.

(b) Hence show that the null distribution of the control median test statistic V,
with n = 2r + 1, can be expressed as

ri1 (7)(F)
m+2r+1(7r}_igr>

j=01,....m

(¢) Prepare a table of the cumulative probabilities of the null distribution of V for
some suitable values of m and n (odd).
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6.11. For the control median test statistic V, use Problem 2.28, or otherwise, to show
that when Fx = Fy,

m 2r+m+2
EV)=— and var(V) = In@r+3)
[Hint: Use the fact that E(X) = EyE(X|Y) and var(X) = vary E(X|Y)+ Ey var(X|Y)]
6.12.  Show that when m,n — oo such that m/(m +n) — A, 0 <A < 1, then the null

distribution of the precedence statistic P(; given in Problem 6.10 tends to the negative
binomial distribution with parameters i and A, or

(J ji‘l 1)%’(1%)1 j=01,....m (Sen, 1964)

6.13. In some applications the quantity &, = Fx(x,), where x, is the pth quantile of
Fy, is of interest. Let lim,_..,(m/n) = A, where A is a fixed quantity, and let {r,} be a
sequence of positive integers such that lim,_..(r,/n) = p. Finally let V,,, ,, be the number
of X observations that do not exceed Y.

(@) Show that m~1V,,, is a consistent estimator of Epe

(b) Show that the random variable m'/2[m=1V,,, — £,] is asymptotically nor-
mally distributed with mean zero and variance

f)%('{p)
flg'(Kp)

51 =8)+%(1-p)

where fx and fy are the density functions corresponding to Fx and Fy, respectively.
(Gastwirth, 1968; Chakraborti and Mukerjee; 1990)

6.14. A sample of three girls and five boys are given instructions on how to complete a
certain task. Then they are asked to perform the task over and over until they complete
it correctly. The number of repetitions necessary for correct completion are 1, 2, and 5 for
the girls and 4, 8, 9, 10, and 12 for the boys. Find the P value for the alternative that on
the average the girls learn the task faster than the boys, and find a confidence interval
estimate for the difference 6 = My — Mx with a confidence coefficient at least equal to
0.85, using the median test.

6.15. A researcher is interested in learning if a new drug is better than a placebo in
treating a certain disease. Because of the nature of the disease, only a limited number of
patients can be found. Out of these, 5 are randomly assigned to the placebo and 5 to the
new drug. Suppose that the concentration of a certain chemical in blood is measured and
smaller measurements are better. The data are as follows:

Drug: 3.2,2.1,2.3,1.2,1.5  Placebo: 3.4,3.5,4.1,1.7,2.1

(@) Use the median test and the control median test to test the hypothesis. For
each test give the null hypothesis, the alternative hypothesis, the value of the test
statistic, the exact and the approximate P value and a conclusion. What assumptions are
we making?

(b) Use the median test to calculate a confidence interval for the difference
between the medians. What is the highest possible level of confidence? What assump-
tions are we making for this procedure?
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Linear Rank Statistics and the General
Two-Sample Problem

7.1 INTRODUCTION

The general two-sample problem was described in Chapter 6 and some
tests were presented which were all based on various criteria related
to the combined ordered arrangement of the two sets of sample
observations. Many statistical procedures applicable to the two-
sample problem are based on the rank-order statistics for the com-
bined samples, since various functions of these rank-order statistics
can provide information about the possible differences between
populations. For example, if the X population has a larger mean than
the Y population, the sample values will reflect this difference if most
of the ranks of the X values exceed the ranks of the Y values.

Many commonly used two-sample rank tests can be classified as
linear combinations of certain indicator variables for the combined
ordered samples. Such functions are often called linear rank statistics.
This unifying concept will be defined in the next section, and then
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some of the general theory of these linear rank statistics will be pre-
sented. Particular linear rank tests will then be treated in Chapters 8
and 9 for the location and scale problems respectively.

7.2 DEFINITION OF LINEAR RANK STATISTICS

Assume we have two independent random samples, X1,X5,...,X,, and
Y1,Ys,...,Y, drawn from populations with continuous cumulative
distribution functions Fx and Fy, respectively. Under the null
hypothesis

Hy:Fx(x) = Fy(x) = F(x) for all x, F unspecified

we then have a single set of m +n = N random observations from the
common but unknown population, to which the integer ranks
1,2,...,N can be assigned.

In accordance with the definition for the rank of an observation
in a single sample given in (5.1) of Section 5.5, a functional definition
of the rank of an observation in the combined sample with no ties can
be given as

rxy(xi) =Y S —xx) + > S(xi — )
k;l k:l (2 1)
rxy(vi) =Y S —x1) + > Sy — )
=1 =1
where
s(u) = 0 if u<0
|1 ifu>0

However, it is easier to denote the combined ordered sample by a
vector of indicator random variables as follows. Let

Z = (Z1,2s,...,2Zy)

where Z; =1 if the ith random variable in the combined ordered
sample is an X and Z; =0 ifitisay, for 1,2,... N, with N =m +n.
The rank of the observation for which Z; is an indicator is i, and
therefore the vector Z indicates the rank-order statistics of the com-
bined samples and in addition identifies the sample to which each
observation belongs.

For example, given the observations (X7,X2,X3,X4) = (2,9,3,4)
and (Y1,Y,,Ys) =(1,6,10), the combined ordered sample is (1,2,3,
4,6,9,10) or (Y1,X7,X3,X4,Y2,X5,Y3), and the corresponding Z vector
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is (0,1,1,1,0,1,0). Since Zgs = 1, for example, an X observation (in par-
ticular X5) has rank 6 in the combined ordered array.

Many of the statistics based on rank-order statistics which are
useful in the two-sample problem can be easily expressed in terms of
this notation. An important class of statistics of this type is called a
linear rank statistic, defined as a linear function of the indicator
variables Z, as

TN(Z) = g:aiZl- (22)

where the a; are given constants called weights or scores. It should be
noted that the statistic T is linear in the indicator variables and no
similar restriction is implied for the constants.

7.3 DISTRIBUTION PROPERTIES OF LINEAR RANK STATISTICS
We shall now prove some general properties of T in order to facilitate
the study of particular linear-rank-statistic tests later.

Theorem 3.1 Under the null hypothesis Hy: Fx(x) = Fy(x) = F(x) for
all x, we have foralli=1,2,..., N,

m mn —mn
E(Zl) N Var(Zl) W COV(ZL',ZJ') = m (31)
Proof Since
m/N if Z; = 1
fz.z) =14 n/N if z,=0 fori=1,2,...,N
0 otherwise

is the Bernoulli distribution, the mean and variance are
E(Z)=m/N  var(Z;) = mn/N?

For the joint moments, we have for i # j,

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



286 CHAPTER 7
so that
- m(m-—-1) m\2  —mn
cov(Zi-Zj) = NN = 1) (N) TNV - 1)
Theorem 3.2 Under the null hypothesis Hy: Fx(x) = Fy(x) = F(x) for
all x,
N g,
E(Ty)=m) N
-1
mn N N 2
Var(TN) = m N;ai — ;ai (32)
Proof
N N g
E(Ty) =) aE(Z) = mZN
i=1 i=1
N
var(Ty) = Z “var(Z;) + ZZa a;cov(Z;, Zj)
i=1 i#]
_maY Y e} mnyya
B N2 N2(N — 1)
N (NZa —Za —;Z%GJ)

frge (8]

TNZN -1

Theorem 3.3 IfBy = Zf\il b;Z;and Ty =
statistics, under the null hypothesis Hy: Fx(x)
all x,

Zf\; 10:Z; are two linear rank
=Fy(x) = F(x) for

mn
COV(BN7TN) = N2 N _

Proof

Za b; var(
Zal j

Zi) + Z Zaibj cov(Z;, Z;)
i#
Zzaz :

i

COV BN,TN
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mn N N
:m (N;aibi — ;aibi — ZZaib])

A

mn N N N
= NiZ(N — 1) (Nzaibi — 4 a; Zbl>

i=1 i=1 =1
Using these theorems, the exact moments under the null hy-
pothesis can be found for any linear rank statistics. The exact null
probability distribution of T depends on the probability distribution
of the vector Z, which indicates the ranks of the X and Y random
variables. This distribution was given in Eq. (6.19) of Section 6.6 for
any distributions Fx and Fy. In the null case, Fx = Fy = F, say, and

the equation reduces to

P(Z):m!n!/_:/_u:--~/_l:ﬁf(uri)ﬁf(usj)duy--duzv

where ry,rg, ..., r, and sy, Sg, ..., s, are the ranks of the X and Y
random variables, respectively, in the arrangement Z. Since the dis-
tributions are identical, the product in the integrand is the same for all
subscripts, or

P(Z):m!n!/jo/l:,--~/l:ﬂf(ui)du1-~-duN

m!n!
N

The final result follows from the fact that except for the terms m!n!,
P(Z) is the integral over the entire region of the density function of the
N order statistics for a random sample from the population F. Since
(™) = (N} is the total number of distinguishable Z vectors, i.e., dis-
tinguishable arrangements of m ones and n zeros, the result in (3.3)
implies that all vectors Z are equally likely under H.

Since each Z occurs with probability 1/(Y), the exact probability
distribution under the null hypothesis of any linear rank statistic can
always be found by direct enumeration. The values of T (Z) are cal-
culated for each Z, and the probability of a particular value % is the
number of Z vectors which lead to that number £ divided by (Z) In
other words, we have

Py~ K =tk / () (3.4)

m

(3.3)
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where t(k) is the number of arrangements of m X and n Y random
variables such that Tw(Z) = k. Naturally, the tediousness of enu-
meration increases rapidly as m and n increase. For some statistics,
recursive methods are possible. STATXACT calculates the exact P
value for a linear rank test based on a complete enumeration of the
values of the test statistic. Here the data are permuted (rearranged) in
all possible ways under the null hypothesis that is being tested. The
value of the test statistic is calculated for each permutation of the data;
these values constitute the permutation distribution and allow calcu-
lation of the exact P value for any test based on ranks of any set of data.

When the null distribution of a linear rank statistic is known to
be symmetric, only one-half of the distribution needs to be generated.
The statistic is symmetric about its mean p if for every k& # 0,

P[TN(Z) —n=k] =P[IN(Z) —p = k]

Suppose that for every vector Z of m ones and n zeros, a conjugate vector
Z' of m ones and n zeros exists such that whenever Ty (Z) = p + &, we
have Tx(Z') = p — k. Then the frequency of the number p+ % is the
same as that of p — &, and the distribution is symmetric. The condition
for symmetry of a linear rank statistic then is that

TN(Z)+Tn(Z') = 2p

The following theorem establishes a simple relation between the
scores which will ensure the symmetry of T (Z).

Theorem 3.4 The null distribution of Tyn(Z) is symmetric about its
mean u=m Zfil a;/N whenever the weights satisfy the relation

a;it+an_ji1=c¢ ¢ =constant for; =1,2,... N

Proof For any vector Z = (Z1,Zs,...,Zy) of m ones and n zeros,
define the conjugate vector Z' = (Z},Z,,...,Zy), where
Z; = ZN—i+1- Then

Tn(Z) + Tn(Z)) = ZaZ+ZaZNH1
; i1
:Z +ZaNJ+1Z
N
Z a; +an_i+1)Z CZZ,- =cm

i= i=1
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Since E[Tn(Z)]=E[Tny(Z')], we must have cm =2p, or
c=2u/m = ZZﬁilai/N.

The next theorem establishes the symmetry of any linear rank
statistic when m = n.

Theorem 3.5 The null distribution of Tn(Z) is symmetric about its
mean for any set of weights if m =n =N /2.

Proof Since m =n, we can define our conjugate Z' with ith
component Z; =1 —Z,. Then

N N N
TN(Z)+TNZ) =D aiZi+ Y ai(l—Z) = a; =2y
i=1 i=1 i=1

A rather special but useful case of symmetry is given as follows.

Theorem 3.6 The null distribution of Tn(Z) is symmetric about its
mean W if N is even and the weights are a; =1 for i < N/2 and
ai=N—-i+1fori>N/2.

Proof The appropriate conjugate Z' has components Z; = Z;, y /s
fori <N/2 and Z; = Z;_y/; for i > N/2. Then

N/2 N
TN(Z)+TN(Z) =D iZi+ Y (N-i+1)Z
i=1 i=N/2+1
N/2 N
+ ZiZN/2+i + Z (N—=i+1)Z; nje
i=1 i=N/2+1
N/2 N

_Zzz + ) N-i+1)z

i=N/2+1
N
p>
/2

N NJ2
£ 0 B
J=N/2+1
N/2 N
N N
:;<§+1)Zi+ > <§+1>Zi

i=N/2+1

N

In determining the frequency ¢(k) for any value %k which is
assumed by a linear-rank-test statistic, the number of calculations
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required may be reduced considerably by the following properties of
Tn(Z), which are easily verified.

Theorem 3.7

Property 1: Let
N N

T = ZaiZi and T/ = ZaiZN,iH
i=1 i=1

Then

T=T ifai:aN,iH fO?‘iZl,Z,...,N
Property 2: Let

N
T=> aZ and T => a(l-Z)
i=1 '
Then
N
T+T =) a
i=1
Property 3: Let
N
T = Zaizi and T/ = Zai(l - ZN,iJrl)
i=1 '
Then

N
T+T’:Za,- if a; =an_j41fori=1,2,....N
i—1

For large samples, that is, m — oo and n — oo in such a way that
m/nremains constant, an approximation exists which is applicable tothe
distribution of almost all linear rank statistics. Since T is a linear
combination of the Z;, which are identically distributed (though
dependent) random variables, a generalization of the central-limit the-
orem allows us to conclude that the probability distribution of a standar-
dized linear rank statistic T — E(T)/o(Tn) approaches the standard
normal probability distribution subject to certain regularity conditions.

The foregoing properties of a linear rank statistic hold only in the
hypothesized case of identical populations. Chernoff and Savage
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(1958) have proved that the asymptotic normality property is valid
also in the nonnull case, subject to certain regularity conditions re-
lating mainly to the smoothness and size of the weights. The expres-
sions for the mean and variance will be given here, since they are also
useful in investigating consistency and efficiency properties of most
two-sample linear rank statistics.

A key feature in the Chernoff-Savage theory is that a linear rank
statistic can be represented in the form of a Stieltjes integral. Thus, if
the weights for a linear rank statistic are functions of the ranks, an
equivalent representation of Ty = >N | a,Z; is

Ty = m / I [H (x)] Sy (x)
where the notation is defined as follows:

1. S,.(x) and S, (x) are the empirical distribution functions of the X

and Y samples, respectively.

m/N—>XN, 0<Aiy <1

3. Hpy(x) =MSn(x) + (1 —2n)Sn(x), so that Hy(x) is the proportion
of observations from either sample which do not exceed the value
x, or the empirical distribution function of the combined sample.

4. JN(l/N) = a,;.

N

This Stieltjes integral form is given here because it appears frequently
in the journal literature and is useful for proving theoretical proper-
ties. Since the following theorems are given here without proof any-
way, the student not familiar with Stieltjes integrals can consider
the following equivalent representation:

Ny=m Y JyHy@®)p()

over all x such

that p(x)>0
where
1/m if x is the observed value of an X random
px) = variable
0 otherwise

For example, in the simplest case where a; = i/N,Jy[Hy(x)] = Hn(x)
and

Ty = m/ﬁOC Hpy (x)dS: (x) :]ﬂv/f: [MmS (x) +nS, (x)] Sy (x)
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o0
= J% / (number of observations in the combined sample < x)

oo

x (1/m if x is the value of an X random variable and

0 otherwise)
1
=—)Y iZ;
N

Now when the X and Y samples are drawn from the continuous
populations Fx and Fy, respectively, we define the combined popula-
tion cdf as

H(x) = XNF)((JC) + (1 — 7\.N)Fy(x)

The Chernoff and Savage theorem stated below is subject to certain
regularity conditions not explicitly stated here, but given in Chernoff
and Savage (1958).

Theorem 3.8 Subject to certain regularity conditions, the most im-
portant of which are that J(H) = limy_,« Jy(H),

|JO(H)| = |d'J(H) /dH"| < K|H(1 - H)| 7"/
for r=0,1,2 and some 6 > 0 and K any constant
which does not depend on m,n,N,Fx, or Fy,

then for Ay fixed,

lim p(TN/m—_“N < t) = d(¢)
N—o0 ON

where

= [ THE) ) d

N512v=2%{7w || Fren-FroEeE)

—00<x<y <00

% fie () (y) ddy + (1 ) / / Fy(@)[1 - Fx(y)]

—00 <<y <00
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xoJ'[H (x)]J'[H (y)] fx (x)fy (v) dxdy}
provided oy # 0.

Corollary 3.8 If X and Y are identically distributed with common
distribution F(x) = Fx(x) = Fy(x), we have

1
uN:/O J(u)du

Niyoy =2(1 - hy) // x(1 —y)J (x)J'(y) dx dy

e
—2(1- me[u / / / 1J’<x>J’<y> dex dy du dv
_o(1- xN){lvg /va’(x)J’(y) dy dx du d
—2(1-) { / /1 W)~ T@) (<) dredudo
=200 / < / | [J(v)J(x) - J22<x>] :du dv
iy / / ) =0 + )

~(1- %) UOI 02 (v) dv + /1(1 — WP w)du

0
—/OlJ(u)du/OlJ(v)dv}
_ (1_>W){/01J2(u)du— UOIJ(u)dur}

These expressions are equivalent to those given in Theorem 3.2 for
a; = JN(l/N)
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7.4 USEFULNESS IN INFERENCE

The general alternative to the null hypothesis in the two-sample
problem is simply that the populations are not identical, i.e.,

Fx(x) # Fy(x) for some x

or the analogous one-sided general alternative, which states a direc-
tional inequality such as

Fx(x) < Fy(x) for all x

The two-sample tests considered in Chapter 6, namely the Kolmogorov-
Smirnov, Wald-Wolfowitz runs, Mann-Whitney, and median tests, are
all appropriate for these alternatives. In most parametric two-sample
situations, the alternatives are much more specific, as in the ¢ and F
tests for comparison of means and variances, respectively. Although all
of the two-sample rank tests are for the same null hypothesis,
particular test statistics may be especially sensitive to a particular
form of alternative, thus increasing their power against that type of
alternative.

Since any set of scores aj,asq,...,ay may be employed for the
coefficients in a linear rank statistic, this form of test statistic lends
itself particularly well to more specific types of alternatives the user
might have in mind. The appropriateness of choice depends on the
type of difference between populations one hopes to detect. The sim-
plest type of situation to deal with is where the statistician has enough
information about the populations to feel that if a difference exists, it
is only in location or only in scale. These will be called, respectively,
the two-sample location problem and the two-sample scale problem.
In the following two chapters we shall discuss briefly some of the
better-known and more widely accepted linear rank statistics useful in
these problems. No attempt will be made to provide recommendations
regarding which to use. The very generality of linear rank tests makes
it difficult to make direct comparisons of power functions, since cal-
culation of power requires more specification of the alternative prob-
ability distributions and moments. A particular test might have high
power against normal alternatives but perform poorly for the gamma
distribution. Furthermore, calculation of the exact power of rank tests
is usually quite difficult. We must be able to determine the probability
distribution of the statistic T (Z) or the arrangement Z as in Eq. (6.19)
of Section 6.6 under the specified alternative and sum these prob-
abilities over those arrangements Z in the rejection region specified by
the test. STATXACT can be useful in calculating the exact power of
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linear rank tests. Isolated and specific comparisons of power between
nonparametric tests have received much attention in the literature,
and the reader is referred to Savage’s Bibliography (1962) for some
early references. However, calculation of asymptotic relative efficiency
of linear rank tests versus the ¢ and F tests for normal alternatives is
not particularly difficult. Therefore, information regarding the ARE’s
of the tests presented here for the location and scale problems will be
provided.

PROBLEMS

7.1. One of the simplest linear rank statistics is defined as

N

Wy => iz

i—1
This is the Wilcoxon rank-sum statistic to be discussed on the next chapter. Use
Theorem 3.2 to evaluate the mean and variance of Wy.

7.2. Express the two-sample median-test statistic U defined in Section 6.4 in the form
of a linear rank statistic and use Theorem 3.2 to find its mean and variance. Hint: For
the appropriate argument %, use the functions S(%) defined as for (2.1).

7.3. Prove the three properties stated in Theorem 3.7.
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Linear Rank Tests for the Location
Problem

8.1 INTRODUCTION

Suppose that two independent samples of sizes m and n are drawn
from two continuous populations so that we have N = m + n obser-
vations in total. We wish to test the null hypothesis of identical dis-
tributions. The location alternative is that the populations are of the
same form but with a different measure of central tendency. This can
be expressed symbolically as follows:

Hy: Fy(x) = Fx(x) for all x
Hp: Fy(x) = Fx(x — 0) for all x and some 6 # 0

The cumulative distribution of the Y population under Hj, is
functionally the same as that of the X population but shifted to the
left if 6 < 0 and shifted to the right if 6 > 0, as shown in Figure 1.1.

296
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Fy (x) i Fy ()
Fylx) Fylx)

Fig. 1.1 Fy(x) = Fx(x — 0). (a) Fx normal, 6 < 0; (b) Fx exponential, 6 > 0.

Therefore the Y’s are stochastically larger than the X’s when 6 > 0
and the Y’s are stochastically smaller than the X’s when 6 < 0. Thus,
when 6 < 0, for example, the median of the X population is larger than
the median of the Y population.

If it is reasonable to assume that Fx is the cumulative normal
distribution, then the mean and median coincide and a one-sided
normal-theory test with equal but unknown variances of the hypothesis

Ly —pux =0 versus Ly —px <O

is equivalent to the general location alternative with 6 = py — py < 0.
The best parametric test against this alternative is the ¢ statistic with
m + n — 2 degrees of freedom:

. XY (11)

\/(m—l)s}%—&—(n—l)s% Im+n
m+n—2 mn

The ¢ test statistic has been shown to be robust under the as-
sumptions of normality and equal variances. However, there are many
good and simple nonparametric tests for the location problem which do
not require specification of the underlying population, such as assu-
ming normality. Many of these are based on ranks since the ranks of
the X’s relative to the ranks of the Y’s provide information about the
relative size of the population medians. In the form of a linear rank
statistic, any set of scores which are nondecreasing or nonincreasing
in magnitude would allow the statistic to reflect a combined ordered
sample in which most of the X’s are larger than the Y’s, or vice
versa. The Wilcoxon rank-sum test is one of the best known and
easiest to use, since it employs scores which are positive integers.
The other tests which will be covered in this chapter are the
Terry-Hoeffding-normal-scores test, inverse-normal-scores test, and
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percentile modified rank tests. There are many others discussed in the
literature.

8.2 THE WILCOXON RANK-SUM TEST

The ranks of the X’s in the combined ordered arrangement of the two
samples would generally be larger than the ranks of the Y’s if the
median of the X population exceeds the median of the Y population.
Therefore, Wilcoxon (1945) proposed a test where we accept the one-
sided location alternative Hz:0 < 0 (X gt Y) if the sum of the ranks of

the X’s is too large or Hz:0 > 0 (X gt Y) if the sum of the ranks of the
X'’s is too small and the two-sided location alternative Hy:0 # 0 if the
sum of the ranks of the X’s is either too large or too small. This
function of the ranks expressed as a linear rank statistic has the
simple weights a; =i, i =1,2,...,N. In other words, the Wilcoxon
rank-sum test statistic is

N

Wy => iz

i=1

where the Z; are the indicator random variables as defined for (7.2.2)
[Eq. (2.2) of Section 7.2].

If there are no ties, the exact mean and variance of Wy under the
null hypothesis of equal distributions are easily found from Theorem
7.3.2 to be

m(N + 1)
2

mn(N + 1)

E(Wy) = 12

var(Wy) =

Verification of these facts is left for the reader. If m < n, the value
of Wy has a minimum of }}"; i =m(m + 1)/2 and a maximum of
SN N¥oms1 i = (2N — m + 1)/2. Further, from Theorem 7.3.4, since

ait+an_ii1=N+1 fori=1,2,...,.N

the statistic is symmetric about its mean. The exact null probability
distribution can be obtained systematically by enumeration using
these properties. For example, suppose m =3, n =4. There are
(g) = 35 possible distinguishable configurations of 1’s and 0’s in the
vector Z, but these need not be enumerated individually. Wy will
range between 6 and 18, symmetric about 12, the values occurring in
conjunction with the ranks in Table 2.1, from which the complete
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Table 2.1 Distribution of Wy

Value of Wy Ranks of X’s Frequency
18 5,6,7 1
17 4,6,7 1
16 3,6,7:4,5,7 2
15 2,6,7;3,5,7,4,5,6 3
14 1,6,7;2,5,7;3,4,7;3,5,6 4
13 1,5,7,2,4,7;2,5,6;3,4,6 4
12 1,4,7:2,3,7,1,5,6,2,4,6;3,4,5 5

probability distribution is easily found. For example, Table 2.1 shows
that P(Wy > 17) = 2/35 = 0.0571.

Several recursive schemes are also available for generation of the
distribution. The simplest to understand is analogous to the recursion
relations given in (5.7.8) for the Wilcoxon signed-rank statistic and
(6.6.14) for the Mann-Whitney statistic. If r,, , (k) denotes the number
of arrangements of m X and n Y random variables such that the sum of
X ranks is equal to %, it is evident that

Tmn(R) =Tm_in(k —N)+rma_1(k)
and

m+n)
m

Fory (k) = P (k) = [Ptk = N) + 7o (0)] /
or

(m + n)pm,n (k) =MPm-1n (k - N) + npm,nfl(k) (22)

Tail probabilities for the null distribution of the Wilcoxon rank-sum
test statistic are given in Table J of the Appendix for m <n <10. More
extensive tables are available in Wilcoxon, Katti, and Wilcox (1972).

For larger sample sizes, generation of the exact probability dis-
tribution is rather time-consuming. However, the normal approxima-
tion to the distribution or rejection regions can be used because of the
asymptotic normality of the general linear rank statistic (Theorem
7.3.8). The normal approximation for Wy has been shown to be accu-
rate enough for most practical purposes for combined sample sizes N
as small as 12.

The midrank method is easily applied to handle the problem of
ties. The presence of a moderate number of tied observations seems to
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have little effect on the probability distribution. Corrections for ties
have been thoroughly investigated (see, for example, Noether, 1967,
pp. 32-35).

If the ties are handled by the midrank method the variance of Wy
in the normal approximation can be corrected to take the ties into
account. As we found in (5.7.10), the presence of ties reduces the sum
of squares of the ranks by Y #(t2 — 1)/12, where ¢ is the number of X
and/or Y observations that are tied at any given rank and the sum is
over all sets of tied ranks. Substituting this result in (7.3.2) then gives

s {N[N<N+1><2N+1>_Zt<t2 Y] - [N(NH)r}

N2(N — 6 12 2
- mn(N+1) mn) t{t?—1)
T 12 12N(N-1) (2:3)

The Wilcoxon rank-sum test is actually equivalent to the Mann-
Whitney U test discussed in Chapter 6, since a linear relationship
exists between the two test statistics. With U defined as the number of
times a Y precedes an X, as in (6.6.2), we have

U= zm:zn:DU => (Dix+Dig+ - +Dip)

3

i=1 j=1 i=1

where
D — 1 if ij <X
Y70 ifY; >X;

Then 377, Dj; is the number of values of j for which Y; < X;, or the
rank of X; reduced by n;, the number of X’s which are less than or
equal to X;. Thus we can write

U= zm:[r(X;) —ni| = zm:r(Xi) —(ni+ng -+ +nm)
-1 g

i

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



LINEAR RANK TESTS FOR THE LOCATION PROBLEM 301

The statistic U (or Wy) can be easily related to the placements
introduced in Chapter 2. To see this note that >_" ; D;;, which counts
the total number of Y’s that are less than X;, can be rewritten as
S 1 nGL(X;), where G, is the empirical cdf of the Y sample. Now,

U= Z ZnGn(Xi) = ZZnGn(X(i)) = Z [rank(X(;)) — ]
=1

i=1 j=1 i=1 j=1 i

(2.5)

where rank(X(;)) is the rank of the ith-ordered X observation in the
combined sample. The last equality in (2.5) also shows that the Mann-
Whitney U statistic is a linear function of the Wilcoxon rank-sum test
statistic. Thus, all the properties of the two tests are the same,
including consistency and the minimum ARE of 0.864 relative to the
t test. A confidence-interval procedure based on the Wilcoxon rank-
sum test leads to the same results as the one based on the Mann-
Whitney test.

The Wilcoxon rank-sum statistic is also equivalent to an ordinary
analysis of variance of ranks (see Problem 10.5), a procedure which is
easily extended to the case of more than two samples. This situation
will be discussed in Chapter 10.

APPLICATIONS

The appropriate rejection regions and P values for the Wilcoxon rank-
sum test statistic Wy in terms of 6 = uy — py are as follows, where wo
is the observed value of Wy.

Alternative Rejection region P value
0<0(YZx) Wy > w, P(Wy > wo)
0>0(YSx) Wy <w!, P(Wy <wo)

0#£0 Wn = wy3 or WNSw;/2 2(smaller of above)

The exact cumulative null distribution of Wy is given in Table J
for m <n <10, as left-tail probabilities for Wy <m(N + 1)/2 and right-
tail for Wy > m(N + 1)/2. For larger sample sizes, the appropriate
rejection regions and P values based on the normal approximation
with a continuity correction of 0.5 are as follows:
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Alternative Rejection region P value
—05-m((N+1)/2
0<0 Wy >m(N+1)/2+05 N+1)/i2 1-of%0
< n=m(N+1)/2405+z,/mn(N+1)/ ( Jmn N+ 1)/12)
6>0 Wy < m(N+1)/2—05—z,/ma(NF 112 ofLot05b—mWN+1)/2
” v <mN+1)/ 2uymn(N+1)/ ( Jmn(N + 1)/12

0#£0 Both above with z, replaced by z;/» 2(smaller of above)

If ties are present, the correction for ties derived in (2.3) should
be incorporated in the variance term of the rejection regions and
P values.

Recall from Section 6.6 that the confidence-interval estimate of
0 = Uy — px based on the Mann-Whitney test has endpoints which are
the (k4 1)st from the smallest and largest of the mn differences
Y —%i for alli =1,2,...,m; j=1,2,...,n. The value of % is the left-
tail rejection region cutoff point of o/2 in the null distribution of the
Mann-Whitney statistic. Let this o/2 cutoff point be c,/3. The corres-
ponding cutoff in terms of the Wilcoxon rank-sum statistic from the
relationship in (2.3) is ¢,/2 = w}, , — m(m + 1)/2. Thus the value of &
can be found by subtracting m(m + 1)/2 from the left-tail critical value
of Wy in Table J of the Appendix for the given m and n with P = o/2.
For example, if m =4, n =5, P=0.032, wj 3, =12, and coo32 =
12 — 10 = 2, so that £ + 1 = 3 and the confidence level is 0.936. Notice
that £ + 1is always equal to the rank of w/, , among the entries for the
given m and n in Table J because m(m + 1)/2 is the minimum value of
the Wilcoxon rank-sum test statistic Wy.

In practice then, the corresponding confidence interval end
points to estimate 6 = puy — py are the uth smallest and uth largest of
the mn differences Y; — X for all i,j. The appropriate value for u is the
rank of that left-tail P among the entries in Table J for the given m and
n, for confidence level 1 — 2P. For m and n outside the range of Table J,
we find u from

u=""105_— Zq/2 7mn(]1\72+ b

2 (2.6)

and round down to the next smaller integer if the result is not an
integer. Zeros and ties are counted as many times as they occur.

Example 2.1 A time and motion study was made in the permanent
mold department at Central Foundry to determine whether there was
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a pattern to the variation in the time required to pour the molten
metal into the die and form a casting of a 6 x4in. Y branch. The
metallurgical engineer suspected that pouring times before lunch were
shorter than pouring times after lunch on a given day. Twelve in-
dependent observations were taken throughout the day, six before
lunch and six after lunch. Find the P value for the alternative that
mean pouring time before lunch is less than after lunch for the data
below on pouring times in seconds.

Before lunch After lunch

12.6 11.2 16.4 15.4
114 94 14.1 14.0
13.2 12.0 13.4 11.3

Solution With equal sample sizesm = n = 6, either period can be called
the X sample. If X denotes pouring time before lunch, the desired alter-
nativeis H1: 0 = py — py > 0 and the appropriate P value is in the left tail
for Wy. The pooled array with X values underlined is 9.4, 11.2, 11.3, 11.4,
12.0, 12.6, 13.2, 13.4, 14.0, 14.1, 154, 164, and Wy =1+2+4 +
5+ 647 =25. The P-value is P(Wy<25) =0.013 from Table J for
m = 6, n = 6. Thus, the null hypothesis Hy:0 = 0 is rejected in favor
of the alternative H;:0 > 0 at any significance level o > 0.013.

The MINITAB, STATXACT, and SAS solutions to Example 2.1
are shown below. Note that both SAS and MINITAB compute the one-
tailed P value as 0.0153 based on the normal approximation with a
continuity correction. It is interesting to note that the MINITAB
printout includes a confidence interval estimate of py — py that is
based on the exact distribution of T'x and this agrees with what we
would find (see Problem 8.16), while the test result is based on the
normal approximation with a continuity correction. The STATXACT
solution gives the exact P value, which agrees with ours, and the
asymptotic P value based on the normal approximation without a
continuity correction. The SAS solution gives the exact P value, which
agrees with ours, and an asymptotic P value based on the normal
approximation with a continuity correction (and it tells us so!).
SAS also shows a ¢ approximation based on what is called a
rank transformation. The idea behind a rank transformation is to first
replace the original X and Y data values by their ranks in the com-
bined sample and then calculate the usual ¢ statistic from (1.1) using
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these ranks. The approximate P value is calculated from a ¢ table with
N — 2 degrees of freedom. The rank transformation idea has been
applied to various other classical parametric tests thereby creating
new nonparametric tests. The reader is referred to Conover and Iman
(1981) for a good introduction to rank transformation and its appli-
cations. The SAS output also shows a two-sided result called the

Kruskal-Wallis test, which we will cover in Chapter 10.

Fede g e Al ook e e e ok e ok R R e b b ke h e e Sk ek e ok ok ok ke ke ke e ke ke ke ok ok e ok

MINITAE SOLUTION TO EXAMPLE 2.1

kb d b dhdkkkk ko dhhh bk bk kb dbd bbb bkt rt

Mann-Whitney Test and CI: Before, After

Before N = 3 Median = 11.740
after N = g Median = 14,050
Point estimate for ETAL-ETAZ iz -2.400

95 .5 Percent CI for ETA1-ETAZ is (-4.600,-0.198})
W = 25.0
Test of ETAl = ETAZ vs ETA]l < ETAZ is significant at 0.0133

R F T R E T R E R R E LRI EEE RS R R LR FEEE LR ER L R R

STATXACT SOLUTION TO EXAMPLE 2,1

AR ER AR AR SRR EER R R Rl R Rl Rl Rl LS

WILCOXON-MANN-WHITNEY TEST
[ Sum of sceres from populaticn < 1>}

Summary of Exact distribution of WILCOXON-MAMM-WRITHEY statistic:

Min Max Meain Std-dev Chserved Standardized
21.00 57.00 39.00 6.245 25.00 -2.242
Mann-Whitney Statistic = 4,000

Asymptotic Inference:
One-sided p-wvalue: Pr { Test Statistic LE. Observed } =
Two-sided p-value: 2 * One-sided =

Exact Inference:
One-sided p-value: Pr { Test Statistic .LE. Observed } =
Pr { Test Statistic .EQ. Observed }
Two-sided p-value: Pr { | Test Statistic - Mean |
-GE., | Observed - Mean |
Two-sided p-value: Z*One-Sided

It

Ler il ]

[ )

L0125
L0250

L0130
L0054

L0260
L0280
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LRSS ER R AR RN AL SR L EEEEEREE SRR

3SAS PROGRAM FOR EXAMPLE 2.1

g de e ok 3k o e gk ok ke ke b W ok ok v ok ok o o de e e i e e

DATA TIME;

INPUT GROUP Time @#8;

DATALINES;

112.6111.2111.41 9.4 1 13.2 1 12

2 16.4 2 15.4 2 14.1 2 14 2 13.4 2 11.3
PEQC NPARLIWAY DATA=TIME WILCOXON:

CLASS GROUE;

VAR TIME;
EXACT WILLCOXON;
RUN;
B RCE R R R R R R R I RE R R R R R T
5AS5 SOLUTION TO EXAMPLE 2.1
22 B2 2R RS R R EEEEE LR TEEEEERE TR EEE
The WPARIWAY Procedure
Wilcoxon Scores [(Rank Sums) for Variable Time
Classified by Variable GROUP
Sum of Expected 5td Dev Mean
GROUF 2l Scores Under HO Under HO Score
1 é 25.0 39.0 £.244998 4.166667
2 6 53.0 39.0 £.244998 B.833333

Wilcoxon Two-Sample Test
Statistic (5) 25,0000

Wormal Approximation

z -2.1617
Cne-Sided Pr < 2 0.0153
Two=~Sided Pr > |Zf 0.0206

t Approximation
Onz-Sided Pr < Z
Two-Sided Pr > |Z]

0268
L0535

Lo i }

Exact Test
One-3ided Pr <= 5 06.0130
Two-3ided Pr »>= |3 -~ Mean| 0.0260

Z includes a continuity correction of 0.5,

Kruskal-Wallis Test

Chi-Sguare 5.02%6
DF 1
Pr > Chi-Square 0.0250
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Example 2.2 In order to compare the relative effectiveness of a calorie-
controlled diet and a carbohydrate-controlled diet, eight obese women
were divided randomly into two independent groups. Three were
placed on a strictly supervised calorie-controlled diet and their
total weight losses in 2 weeks were 1, 6, and 71b; the others, on
a carbohydrate-controlled diet, lost 2, 4, 9, 10, and 121lb. Find a
confidence-interval estimate for the difference in location between
Calorie Diet and Carbohydrate Diet, with confidence coefficient near
0.90.

Solution The X sample must be the calorie diet so that m = 3<n = 5.
The example requests a confidence interval for py — py. We will pro-
ceed by finding a confidence interval on py — py and then take the
negative of each endpoint. Table J of the Appendix shows that for
m =3,n=>5, the closest we can get to confidence 0.90 is with
P = 0.036 or exact confidence level 0.928; this entry has rank 2 so that
u = 2. The 3(5)=15 differences Y — X are shown below. The second
smallest difference is —4 and the second largest difference is 9, or
—4 <y — nx <9; the corresponding negative interval is —9<py — puy
<4. Notice that by listing the Y values in an array and then sub-
tracting successively larger X values, the smallest and largest differ-
ences are easy to find.

Y Y-1 Y-6 Y-17
2 1 -4 -5
4 3 -2 -3
9 8 3 2

10 9 4 3

12 11 6 5

The MINITAB and STATXACT solutions to this example are
shown below. Note that the MINITAB output shows a confidence level
0.926, which is almost equal to the exact level, 0.928. The MINITAB
confidence limits also do not match exactly with ours but are very
close. The STATXACT solution matches exactly with ours, although
the output does not seem to indicate what the exact confidence level is.
It is interesting to note that for this example, with such small sample
sizes, the exact and the asymptotic methods produced identical re-
sults. Note also that STATXACT calls this procedure the Hodges-
Lehmann estimate of the shift parameter.
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LR R ELESELETERERERERRER R RLRdERE Rl L FEEEE]
MINITEB SCLUTION TO EXAMEPLE 2.2
IEEEEESERE SRS EEE R R R REE R L REREREEEEEESEIERFEESEEY
MIBE > Mann—Whitney 30.0 C1 C2;
SUBC> Blternative 0,

Mann-Whitney Test and CI: 1, C2

cl N = 3 Median = 6.000
c2 N = 5 Madian = 9.000
Point estimate for ETAl-ETR2 is -3.000

92.6 Pereent CI for ETA1-ETAZ-is (-6.998,3.997)

W= 10.0

Test of ETAL = ETA2Z vs ETAl not = ETAZ is significant at 0.3711

Cannot reject at alpha = 0.05
iit*****ki*t*t**k**i***i****i*i*i***iiii*w**

STATXACT SOLUTION TO EXAMPLE 2.2

*i*t***k*&i*it*****i*tt*t****i*t***i*****kl+
HODGES-LEHMANN ESTIMATES OF SHIFT BARAMETER
POP 1 : 1 POP 2 : 2

Summary of WILCOXON MANN-WHITNEY statistic for POP 1

Min Max Mean Std-dew Chserved Standardized
6.000 21.00 13.50 3.354 10.00 -1.043
Mann-Whitney Statistic = 4,000

Point Estimate of Shift : Theta = POP_1 - POP_2 = -3.000

90,00% Confidence Interval for Theta :
ABsymptotic : -%,000 , 4,000}
Exact L -9.000 , 4.000)

8.3 OTHER LOCATION TESTS

Generally, almost any set of monotone-increasing weights a;, which
are adopted for a linear rank statistic, will provide a consistent test for
shift in location. Only a few of the better-known ones will be covered
here.

TERRY-HOEFFDING (NORMAL SCORES) TEST

The Terry (1952) and Hoeffding (1951) or the Fisher-Yates normal
scores test uses the weights a; = E(§(;)), where £(;) is the ith-order
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statistic from a standard normal population; the linear rank test sta-
tistic is

N
i=1

These expected values of standard normal order statistics are tabu-
lated for N <100 and some larger sample sizes in Harter (1961), so
that the exact null distribution can be found by enumeration. Tables of
the distribution of the test statistic are given in Terry (1952) and Klotz
(1964). The Terry test statistic is symmetric about the origin, and its
variance is

SLEE)?
2 1

c“=mn NN - 1) (3.2)
The normal distribution provides a good approximation to the null
distribution for larger sample sizes. An approximation based on the
¢ distribution is even closer. This statistic is t = r(N — 2)1/ 2/(1— r2)l2,
where r=c;1/[c%(N — 1)]1/ ? and the distribution is approximately
Student’s ¢ with N — 2 degrees of freedom.

The Terry test is asymptotically optimum against the alternative
that the populations are both normal distributions with the same
variance but different means. Under the classical assumptions for a
test of location then, its ARE is 1 relative to Student’s ¢ test. For
certain other families of continuous distributions, the Terry test is
more efficient than Student’s ¢ test (ARE > 1) (Chernoff and Savage,
1958).

The weights employed for the Terry test E(&;)) are often called
expected normal scores, since the order statistics of a sample from the
standard normal population are commonly referred to as normal
scores. The idea of using expected normal scores instead of integer
ranks as rank-order statistics is appealing generally, since for many
populations the expected normal scores may be more “representative”
of the raw data or variate values. This could be investigated by com-
paring the correlation coefficients between (1) variate values and
expected normal scores and (2) variate values and integer ranks for
particular families of distributions. The limiting value of the correla-
tion between variate values from a normal population and the
expected normal scores is equal to 1, for example (see Section 5.5).
Since inferences based on rank-order statistics are really conclusions
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about transformed variate values, that transformation which most
closely approximates the actual data should be most efficient when
these inferences are extended to the actual data.

Since the Terry test statistic is the sum of the expected normal
scores of the variables in the X sample, it may be interpreted as
identical to the Wilcoxon rank-sum test of the previous section when
the normal-scores transformation is used instead of the integer-rank
transformation. Other linear rank statistics for location can be formed
in the same way by using different sets of rank-order statistics for the
combined samples. An obvious possibility suggested by the Terry test
is to use the scores ® ![i/(N + 1)], where ®(x) is the cumulative
standard normal distribution, since we showed in Chapter 2 that
®1[i/(N +1)] is a first approximation to E(E;). If xp is the pth
quantile point of the standard normal distribution, ®(x,) =p and
kp = ®'(p). Therefore here the ith-order statistic in the combined
ordered sample is replaced by the [i/(IV + 1)]st quantile point of the
standard normal. This is usually called the inverse-normal-scores
transformation and forms the basis of the following test.

VAN DER WAERDEN TEST

When the inverse normal scores are used in forming a linear rank
statistic, we obtain the van der Waerden (1952, 1953) Xy test, where

N .
_ -1t .
Xy = ;q) (N - 1)2, (3.3)

In other words, the constant a; in a general linear rank statistic is
given by the value on the abscissa of the graph of a standard normal
density function such that the area to the left of a; is equal to
i/(N + 1). These weights a; are easily found from tables of the cumu-
lative normal distribution. Tables of critical values are given in van
der Waerden and Nievergelt (1956) for N <50. The Xy statistic is
symmetric about zero and has variance

— i 2
o2 =mn Zﬁ;\gzvl_(z\sl)} (3.4)

For larger sample sizes, the null distribution of the standardized Xy is
well approximated by the standard normal distribution.

The Xy test is perhaps easier to use than the Terry test because
the weights are easily found for any N. Otherwise, there is little basis
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for a choice between them. In fact, the van der Waerden test is
asymptotically equivalent to the Terry test. Since var(§;) — 0 as N —
00, §(;) converges in probability to E(§), the weights for the Terry test
statistic. However, by the probability-integral transformation, ®(;)
is the ith-order statistic of a sample of size N from the uniform
distribution. Therefore from (2.8.2) and (2.8.3), E[®({;))] =i/ (N + 1)
and

i(N—i+1)
(N +1)*(N +2)

Var[(b(@(i))] =

as N — oo. This implies that ®(f;) converges in probability to
i/(N +1) and &(;, converges to ®1[i/(N + 1)]. We may conclude that
the expected normal scores and the corresponding inverse normal
scores are identical for all N as N — oco. Thus, the large sample
properties, including the ARE, are the same for the Terry and the van
der Waerden tests.

It should be noted that the expected normal scores and inverse
normal scores may be useful in any procedures based on rank-order
statistics. For example, in the one-sample and paired-sample Wilcoxon
signed-rank test discussed in Section 5.7, the rank of the absolute
value of the difference |D;| can be replaced by the corresponding ex-
pected value of the absolute value of the normal score E(|S;)|) (which is
not equal to the absolute value of the expected normal score). The sum
of those “ranks” which correspond to positive differences D; is then
employed as a test statistic. This statistic provides the asymptotically
optimum test of location when the population of differences is normal
and thus has an ARE of 1 relative to Student’s ¢ test in this case.
Expected normal scores are also useful in rank-correlation methods,
which will be covered in Chapter 11.

Example 2.3 We illustrate the Terry and van der Waerden tests using
data from Example 2.1 on pouring times with m =6 and n =6. The
first six expected normal scores for the Terry test with N=12 are
—1.6292, -1.1157,-0.7928, —0.5368, —0.3122, and —0.1026; the other
six are the same values but with positive signs by symmetry. For ex-
ample, the seventh expected normal score is 0.1026, the eighth is
0.3122, and so on. We calculate ¢; = —3.5939 from (3.1) with variance
02 = 2.6857 from (3.2). The z statistic for the normal approximation is
z = —2.1930 with a one-sided P value P(Z < —2.1930) = 0.0142. For
the van der Waerden test, the first six inverse normal scores with
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N =12are —1.4261,-1.0201, —0.7363, —0.5024, —0.2934, and —0.0966;
the remaining six are the same values but with positive signs by
symmetry. The test statistic is Xy = —3.242 from (3.3), with variance
o2 = 2.1624, from (3.4). The z statistic for the normal approximation is
z = —2.2047 with a one-tailed P value P(Z< —2.2047) = 0.0137.

Note that we do not use a continuity correction in calculating
either of these two z statistics, because the weights a; for both of these
test statistics are continuous variables and not integers.

The SAS solution for the data in Example 2.1 using the van der
Waerden test is shown below. Note that it agrees exactly with ours.
STATXACT has an option called the normal scores test, but it uses the
inverse normal scores as weights, as opposed to the expected normal
scores. In other words, it calculates the van der Waerden statistic. This
solution is also shown below. Note also that both SAS and STATXACT
also provide exact P-values corresponding to the test statistic —3.242
and this one-tailed P-value is identical to the one found earlier in
Example 1.1 for the Wilcoxon rank-sum statistic.

LA R E RS R R LR LR R R E R SR R R R R A I A

SAS SOLUTION TO EXAMPLE 2.1

LR R AR R ER SR EEEEREES S TR FREEEE IS

Program:

DATA TIME;

INPUT GROUP TIME @8;

DATARLINES;

112.6 111,21 11.419.4113.21 12
216.4 2 15.4 2 14.1 2 14 2 13.4 2 11.3

PROC NPARIWRY DATA=TIME VW;

CLASS GROUP;
VAR TIME;
EXACT VW;
RUN;
QOutput

The WPARIWAY Procedure

Van der Waerden Scores (Normal) for Variable Time
Classified by Variable GROUP
Sum of Expected 5td Dev Mean

GROUP N Scores Under RO Undexr HO Score
i 6 -3.241937 0.0 1.470476 -0.540323
2 & 3.241937 0.0 1.470476 0.540323
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Van der Waerden Two-Sample Test

Statistic (5} -3.2419
Nermal Approximation

z -2.2047
One-5ided Pr < 2 0.0137
Two-Sided Pr > |Z} 0.0275

Exact Test

One-3ided Pr <= § 0.0130
Two-Sided Pr >= |S - Mean]| 0.0260
Van der Waerden One-Way Analysis
Chi-Square 4. HE06

BF 1
Pr » Chi-Sguare 3.0275

(RS E RS TR ISR EE RS ERER NS ERER LR RS LR

STATXACT SOLUTION TC EXAMPLE 2.1

LEEE RIS REIEE SRR SRR ER N ERER RS R R EE

NORMAL SCORES TEST
[ Sum of scores from population < 1 >
Summary of Exact distribution of NORMAL SCCORES statistic:

Min Max Mean Std-dev Observed Standardized
-4.075 4,075 -~7.772e-018¢ 1.470 -3.242 -2.205

Asymptotic Inference:

{ne-sided p-value: PFr [ Test Statistic .LE. Observed } 0.0137
Two-sided p-value: 2 * One-sided = 0.0275
Exact Inference:
One-sided p-value: Pr |{ Test Statistic .LE. Observed } = 0.0130
Pr | Test Statistic .EQ, Observed } = 0.0011
Two-sided p-value: Pr { | Test Statistic - Mean |
.GE. | Observed - Mean | = 0.0260
Two-sided p-value: 2*One-Sided = 0.0260

PERCENTILE MODIFIED RANK TESTS

Another interesting linear rank statistic for the two-sample location
problem is a member of the class of so-called percentile modified linear
rank tests (Gastwirth, 1965). The idea is as follows. We select two
numbers s and r, both between 0 and 1, and then score only the data
in the upper sth and lower rth percentiles of the combined sample.
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In other words, a linear rank statistic is formed in the usual way
except that a score of zero is assigned to a group of observations in the
middle of the combined array. Symbolically, we let S = [Ns] + 1 and
R = [Nr] + 1, where [x] denotes the largest integer not exceeding the
number x. Define B, and T, as

N odd:
R
Br Z —1 + 1
i=1
and
N
T, = Z i— (N -8)Z;
i=N-S+1
N even (33)

and

To= > [i—-(N-8)-1/2)z
i=N-S+1

The combination Ts — B, provides a test for location, and 7y + B, is a
test for scale, which will be discussed in the next chapter. It is easily
seen that if N is even and S = R = N/2, so that no observations are
assigned a score of zero, Ty — B, is equivalent to the Wilcoxon test.
When N is odd and all the sample data are used, the tests differ slightly
because of the different way of handing the middle observation z(y 1) /2.

The mean and variance of the T + B, statistics can be calculat-
ing using Theorem 7.3.2 alone if S + R<N, remembering that a; =0
for R+ 1<i<N —S. Alternatively, Theorems 7.3.2 and 7.3.3 can be
used on the pieces Ts and B, along with the fact that

var(Ts + B,) = var(Ts) + var(B,) £ 2cov(Ts, B;)

The results for N even and S = R are

mnS(4S? — 1)

E(T;-B,)=0 var(Ts — B,) = 6NN —1)
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By Theorem 7.3.4, the null distribution of T; — B, is symmetric about
the origin for any m and n when S = R. Tables of the null distribution
for m = n<6 are given in Gibbons and Gastwirth (1966). It is also
shown there empirically that for significance levels not too small, say
at least 0.025, the normal distribution may be used to define critical
regions with sufficient accuracy for most practical purposes when
m=n2=6.

One of the main advantages of this test is that a judicious choice
of s and r may lead to a test which attains higher power than the
Wilcoxon rank-sum test without having to introduce complicated
scoring systems. For example, any knowledge of asymmetry in the
populations might be incorporated into the test statistic. The asymp-
totic relative efficiency of this test against normal alternatives reaches
its maximum value of 0.968 when s = r = 0.42; when s = r = 0.5, the
ARE is 0.955, as for the Wilcoxon rank-sum statistic.

8.4 SUMMARY

In this chapter we covered several additional tests for the two-sample
problem; all of them are linear rank tests. The two-sample tests cov-
ered in Chapter 6 are appropriate for general alternatives that do not
specify any particular kind of difference between the population dis-
tributions. The tests covered in this chapter are especially appropriate
for the location alternative.

The Wilcoxon rank-sum test of Section 8.2 is by far the best
known two-sample nonparametric test for location, and it is equivalent
to the Mann-Whitney U test covered in Section 6.6. The discussion of
power given there applies equally here. The expressions given there
for sample size determination also apply here. Other tests for location
covered in this chapter are the Terry-Hoeffding expected normal
scores test and the van der Waerden inverse normal scores test. These
two tests are asymptotically equivalent and their asymptotic relative
efficiency is one relative to the normal theory test for normal
distributions. Thus their ARE is somewhat higher than that of the
Wilcoxon test for normal distributions, but they can have lower power
for other distributions. These other tests are not as convenient to use
as the Wilcoxon test and are not very well known. Further, they do not
have a convenient procedure for finding a corresponding confidence
interval estimate for the difference in the medians. Finally, we cover
the percentile modified rank tests for location, which are simply gen-
eralizations of the Wilcoxon rank-sum test.
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PROBLEMS

8.1. Given independent samples of m X and n Y variables, define the following random
variables fori =1,2,...,m:

K; = rank of X; among X;,X,...,X,,
R; =rank of X; among X;,Xp,...,X,,,Y1,Ys,...,Y,

Use K; and R; to prove the linear relationship between the Mann-Whitney and
Wilcoxon rank-sum statistics given in (2.4).

8.2. A single random sample D1, Dy, ..., Dy of size N is drawn from a population which
is continuous and symmetric. Assume there are m positive values, n negative values,
and no zero values. Define the m +n = N random variables

X; =D; if D; >0
Y, = ‘Dtl if D; <0

Then the X1,Xs,...,X,, and Y1,Ys,...,Y, constitute two independent random samples
of sizes m and n.

(a) Show that the two-sample Wilcoxon rank-sum statistic Wy of (2.1) for these
two samples equals the Wilcoxon signed-rank statistic 7" defined in (5.7.1).

(b) If these two samples are from identical populations, the median of the
symmetric D population must be zero. Therefore the null distribution of Wy is identical
to the null distribution of 7" conditional upon the observed number of plus and minus
signs. Explain fully how tables of the null distribution of Wy could be used to find the
null distribution of 7. Since for N large, m and n will both converge to the constant
value N/2 in the null case, these two test statistics have equivalent properties asymp-
totically.

8.3. Generate by enumeration the exact null probability distribution of Ts — B, as
defined in (3.3) for m =n =3, all S=R < 3, and compare the rejection regions for
2<0.10 with those for the Wilcoxon rank-sum test Wy when m =n = 3.

8.4. Verify the results given in (3.4) for the mean and variance of Ts — B, when S = R
and N is even and derive a similar result for S = R when N is odd.

8.5. Show that the median test of Section 6.4 is a linear rank test.

8.6. Giambra and Quilter (1989) performed a study to investigate gender and age
difference in ability to sustain attention when given Mackworth’s Clock-Test. This clock
is metal with a plain white face and a black pointer that moves around the face in 100
discrete steps of 36 degrees each. During the test period the pointer made 23 double
jumps, defined as moving twice the normal distance or 7.2 degrees in the same time
period, at random and irregular intervals. Subjects were told that double jumps would
occur and asked to signal their recognition of occurrence by pressing a button. Scores
were the number of correct recognitions of the double jumps. The scores below are for 10
men in age groups 18-29 and 10 men in age group 50-59. Determine whether median
number of correct scores is larger for young men than for older men.

Age 18 —29: 11,13,15,15,17,19,20,21,21,22
Age 50 —59: 8,9,10,11,12,13,5,17,19,23

8.7. Elam (1988) conducted a double-blind study of 18 adult males to investigate the
effects of physical resistance exercises and amino acid dietary supplements on body
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Table 1
Treatment group Control group

Subject Mass Fat Girth Subject Mass Fat Girth
1 -2.00 1.14 —17.00 1 1.00 —0.56 11.00
2 0.00 —2.64 2.00 2 0.50 0.87 5.00
3 -1.00 -1.96 23.00 3 -0.75 -0.75 1.00
4 —4.00 0.86 13.00 4 —2.00 —0.60 35.00
5 -0.75 -2.35 2.00 5 —3.00 0.00 —5.00
6 -1.75 -2.51 5.00 6 -2.50 —2.54 2.00
7 -2.75 0.55 8.00 7 0.00 -3.10 3.00
8 0.00 3.40 3.00 8 0.25 3.48 —7.00
9 -1.75 0.00 7.00

10 1.00 —-4.94 10.00

mass, body fat, and composite girth. Ten of the subjects received the diet supplement and
eight received a placebo. All subjects participated in 15 resistance exercise workouts of
one hour each spread over a 5-week period. Workloads were tailored to abilities of the
individual subjects but escalated in intensity over the period. The data in Table 1 are
the changes (after minus before) in body mass, body fat, and composite body girth for the
amino acid (Treatment) group and placebo (Control) group of subjects. Were amino acid
supplements effective in reducing the body mass (kg), fat (%), and girth (cm)?

8.8. Howard, Murphy, and Thomas (1986) (see Problem 5.12) also investigated whether
pretest anxiety scores differed for students enrolled in two different sections of the in-
troduction to computer courses. Seven students were enrolled in each section, and the
data are shown below. Is there a difference in median scores?

Section 1: 20,32, 22, 21,27, 26,38
Section 2: 34,20, 30, 28, 25, 23, 29

8.9. A travel agency wanted to compare the noncorporate prices charged by two major
motel chains for a standard-quality single room at major airport locations around the
country. A random sample of five Best Eastern motels and an independent sample of six
Travelers’ Inn motels, all located at major airports, gave the approximate current total
costs of a standard single room as shown below. Find a 95% confidence interval estimate
of the difference between median costs at Best Eastern and Travelers’ Inn motels.

Best Eastern: $68,75,92,79,95
Travelers’ Inn: $69,76,81,72,75,80

8.10. Smokers are commonly thought of as nervous people whose emotionality is at least
partly caused by smoking because of the stimulating effect tobacco has on the nervous
system. Nesbitt (1972) conducted a study with 300 college students and concluded that
smokers are less emotional than nonsmokers, that smokers are better able to tolerate
the physiological effects of anxiety, and that, over time, smokers become less emotional
than nonsmokers. Subjects of both sexes were drawn from three different colleges and
classified as smokers if they smoked any number of cigarettes on a regular basis. In one
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aspect of the experiment all subjects were given the Activity Preference Questionnaire
(APQ), a test designed to measure the emotionality of the subjects. The APQ is scored
using an ordinal scale of 0-33, with lower scores indicating less emotionality, that is,
greater sociopathy. The mean overall scores were 18.0 for smokers and 20.3 for non-
smokers. Suppose this experiment is repeated using a group of only 8 randomly chosen
smokers and 10 randomly chosen nonsmokers, and the score results are shown below. Do
these data support the same conclusion concerning emotionality as Dr. Nesbitt’s data?

Smokers: 16,18,21, 14,25, 24, 27, 12
Nonsmokers: 17,15, 28,31, 30,26, 27,20,21,19

8.11. A group of 20 mice are allocated to individual cages randomly. The cages are
assigned in equal numbers, randomly, to two treatments, a control A and a certain drug
B. All animals are infected, in a random sequence, with tuberculosis. The number of days
until the mice die after infection are given as follows (one mouse got lost):

Control A: 5,6,7,7,8,8,9,12
Drug B: 7,8,8,8,9,9,12,13,14,17

Since a preliminary experiment has established that the drug is not toxic, we can
assume that the drug group cannot be worse (die sooner) than the control group under
any reasonable conditions. Test the null hypothesis that the drug is without effect at a
significance level of 0.05 and briefly justify your choice of test.

8.12. The following data represent two independent random samples drawn from
continuous populations which are thought to have the same form but possibly different
locations.

X: 79,13,138,129,59,76,75,53
Y. 96,141,133,107,102,129,110,104

Using a significance level not exceeding 0.10, test

(a) The null hypothesis that the two populations are identical and find the
P value (Do not use an approximate test)

(b) The null hypothesis that the locations are the same and find the appropriate
one-tailed P value

8.13. A problem of considerable import to the small-scale farmer who purchases young
pigs to fatten and sell for slaughter is whether there is any difference in weight gain for
male and female pigs when the two genders are subjected to identical feeding treat-
ments. If there is a difference, the farmer can optimize production by buying only one
gender of pigs for fattening. As a public service, an agricultural experiment station
decides to run a controlled experiment to determine whether gender is an important
factor in weight gain. They placed 8 young male pigs in one pen 8 young females in
another pen and gave each pen identical feeding treatments for a fixed period of time.
The initial weights were all between 35 and 501b, and the amounts of weight gain in
pounds for the two genders are recorded below. Unfortunately, one of the female pigs
died so there are only 7 observations in that group. Analyze the data below using both a
test and a confidence-interval approach with confidence coefficient near 0.90.

Female pigs: 9.31,9.57,10.21,8.86,8.52,10.53,9.21
Male pigs:  9.14,9.98,8.46,8.93,10.14,10.17,11.04,9.43
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8.14. How would you find the confidence-interval end points for the parameter of in-
terest when the interval has confidence level nearest 0.90 and corresponds to:

(a) The sign text with n = 11

(b) The Wilcoxon signed-rank test with n = 11

(¢) The Wilcoxon rank-sum test with m =5,n =6

In each case define the function Z of the observations, give the numerical values of

L and U for the order statistics Z(L) and Z(U), and give the exact confidence level.
8.15. A self-concept test was given to a random sample consisting of six normal sub-
jects and three subjects under psychiatric care. Higher scores indicate more self-esteem.
The data are as follows:

Normal: 62,68,78,92,53,81
Psychiatric: 54,70,79

(a) Find a P value relevant to the alternative that psychiatric patients have
lower self-esteem than normal patients.

(b) Find a confidence interval for the difference of the locations (level nearest
0.90).

8.16. Verify the confidence interval estimate of py — py with exact confidence coeffi-
cient at least 0.95 given in the MINITAB solution to Example 2.1.
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Linear Rank Tests for the Scale Problem

9.1 INTRODUCTION

Consider again the situation of Chapter 8, where the null hypothesis is
that two independent samples are drawn from identical populations;
however, now suppose that we are interested in detecting differences in
variability or dispersion instead of location. Some of the tests presented
in Chapters 6 and 8, namely, the median, Mann-Whitney, Wilcoxon
rank-sum, Terry, van der Waerden, and T's — B, tests, were noted to be
particularly sensitive to differences in location when the populations
are identical otherwise, a situation described by the relation Fy(x) = Fx
(x—0). These tests cannot be expected to perform especially well against
other alternatives. The general two-sample tests of Chapter 6, like the
Wald-Wolfowitz runs test or Kolmogorov-Smirnov tests, are affected by
any type of difference in the populations and therefore cannot be relied
upon as efficient for detecting differences in variability. Some other
nonparametric tests are needed for the dispersion problem.

319
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The classical test for which we are seeking an analog is the test
for equality of variances, Hy: cx = oy, against one- or two-sided al-
ternatives. If it is reasonable to assume that the two populations are
both normal distributions, the parametric test statistic is

m (X; —X)? n (Yi—Y)?
Fnoann =YL Sy [ X

which has Snedecor’s F distribution with m—1 and n—1 degrees of
freedom. The F' test is not particularly robust with respect to the
normality assumption. If there is reason to question the assumptions
inherent in the construction of the test, a nonparametric test of dis-
persion is appropriate.

The F test does not require any assumption regarding the loca-
tions of the two normal populations. The magnitudes of the two sample
variances are directly comparable since they are each computed as
measures of deviations around the respective sample means. The
traditional concept of dispersion is a measure of spread around some
population central value. The model for the relationship between the
two normal populations assumed for the F test might be written

Fy_ ., (x) =Fx_, (z—§x> =Fx_,,(0x)  for all x and some 6> 0
(1.1)

where 0 = ox /oy and F(x_,,)/s, (x) = ®(x), and the null hypothesis to
be tested is Hy: 6 = 1. We could say then that we assume that the
distributions of X — puy and Y — py differ only by the scale factor 6 for
any py and py, which need not be specified. The relationship between
the respective moments is

EX —ux)=6E(Y —py) and  var(X) = 6% var(Y)

Since medians are the customary location parameters in distribution-
free procedures, if nonparametric dispersion is defined as spread
around the respective medians, the nonparametric model corres-
ponding to (1.1) is

Fy_y,(x) = Fx_p, (6x) for all x and some 6> 0 (1.2)

Suppose that the test criterion we wish to formulate for this
model is to be based on the configuration of the X and Y random
variables in the combined ordered sample, as in a linear rank test. The
characteristics of respective locations and dispersions are inextricably
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mixed in the combined sample ordering, and possible location differ-
ences may mask dispersion differences. If the population medians
are known, the model (1.2) suggests that the sample observations
should be adjusted by

X;=X;—Mx and Y, =Y;,-My fori=1,2,....m
andj=1,2,...,n

Then the X; and Y} populations both have zero medians, and the
arrangement of X’ and Y’ random variables in the combined ordered
sample should indicate dispersion differences as unaffected by location
differences. The model is then Fy(x) = Fx (6x). In practice, Mx and My
would probably not be known, so that this is not a workable approach.
If we simply assume that Mx=My=M unspecified, the combined
sample arrangement of the unadjusted X and Y should still reflect
dispersion differences. Since the X and Y populations differ only in
scale, the logical model for this situation would seem to be the alter-
native

Hg: Fy(x) = Fx(6x) for all x and some 6 >0, 0#1 (1.3)

This is appropriately called the scale alternative because the cumu-
lative distribution function of the Y population is the same as that of
the X population but with a compressed or enlarged scale according as
0 > 1 or 0 < 1, respectively.

In Figure 1l.1a, the relation Fy(x)=Fx(0x) is shown for
Fy(x) = ®(x), the standard normal, and 6 >1. Since pyy = Mx = py =0
and 0 =ox/oy, this model is a special case of (1.1) and (1.2).

1 F,(x) 1+

F.(x)
Fix) X

Fy2)

(a) &)

Fig. 1.1 Fy(x) = Fx(0x). (a) Fx normal, 6 > 1; (b) Fx exponential, 6 < 1.
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Figure 1.1b illustrates the difficulty in thinking any arbitrary dis-
tribution may be taken for the scale alternative in (1.3) to be inter-
preted exclusively as a dispersion alternative. Here we have a
representation of the exponential distribution in Hg for 8 < 1, for ex-
ample, fx(x) =e™,x > 0, so that fy(x) = 0 e~® for some 6 < 1. Since
var(X) =1 and var(Y) = 1/6%, it is true that oy > ox. However,
EX)=1 and E(Y)=1/0>E(X), and further Mx =1n2 while
My =1n(2/0) > Mx for all 6 < 1. The combined ordered arrangement
of samples from these exponential populations will be reflective of both
the location and dispersion differences. The scale alternative in (1.3)
should be interpreted as a dispersion alternative only if the population
locations are zero or very close to zero.

Actually, the scale model Fy(x) = Fx(6x) is not general enough
even when the locations are the same. This relationship implies that
EX)=0E(Y) and Mx = 6My, so that the locations are identical for all
0 only if iy = py = 0 or Mx = My = 0. A more general scale alternative
can be written in the form

Hg: Fy y(x) = Fx_p(0x) for all x and some 6 > 0,0 £ 1
(1.4)

where M is interpreted to be the common median. Both (1.3) and (1.4)
are called the scale alternatives applicable to the two-sample scale
problem, but in (1.3) we essentially assume without loss of generality
that M = 0.

Many tests based on the ranks of the observations in a combined
ordering of the two samples have been proposed for the scale problem.
If they are to be useful for detecting differences in dispersion, we must
assume either that the medians (or means) of the two populations are
equal but unknown or that the sample observations can be adjusted to
have equal locations, by subtracting the respective location para-
meters from one set. Under these assumptions, an appropriate set of
weights for a linear rank-test statistic will provide information about
the relative spread of the observations about their common central
value. If the X population has a larger dispersion, the X values should
be positioned approximately symmetrically at both extremes of the Y
values. Therefore the weights a; should be symmetric, for example,
small weights in the middle and large at the two extremes, or vice
versa. We shall consider several choices for simple sets of weights of
this type which provide linear rank tests particularly sensitive to scale
differences only. These are basically the best-known tests—the Mood
test, the Freund-Ansari-Bradley-David-Barton tests, the Siegel-Tukey
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test, the Klotz normal-scores test, the percentile modified rank tests,
and the Sukhatme test. Many other tests have also been proposed in
the literature; some of these are covered in Section 9.9. Duran (1976)
gives a survey of nonparametric scale tests. Procedures for finding
confidence interval estimates of relative scale are covered in Section 9.8.
Examples and applications are given in Section 9.10.

9.2 THE MOOD TEST

In the combined ordered sample of N variables with no ties, the
average rank is the mean of the first N integers, (N + 1)/2. The
deviation of the rank of the ith ordered variable about its mean rank
is i — (N+1)/2, and the amount of deviation is an indication of
relative spread. However, as in the case of defining a measure of
sample dispersion in classical descriptive statistics, the fact that the
deviations are equally divided between positive and negative numbers
presents a problem in using these actual deviations as weights in
constructing a linear rank statistics. For example, if Z; is the usual
indicator variable for the X observations and m = n = 3, the ordered
arrangements

XYXYXY and XXYYYX

both have Y7 | (i —¥41)Z; = —1.5, but the first arrangement suggests
the variances are equal and the second suggests the X’s are more
dispersed than the Y’s. The natural solution is to use as weights either
the absolute values or the squared values of the deviations to give
equal weight to deviations on either side of the central value.

The Mood (1954) test is based on the sum of squares of the de-
viations of the X ranks from the average combined rank, or

My = i@ —Z%YZL- (2.1)

i=1

A large value of My would imply that the X’s are more widely dis-
persed, and My small implies the opposite conclusion. Specifically, the
set of weights is as shown in Tables 2.1 and 2.2 for N even and N odd,
respectively. The larger weights are in the tails of the arrangement.
When N is odd, the median of the combined sample is assigned a
weight of zero. In that case, therefore, the middle observation is
essentially ignored, but this is necessary to achieve perfectly sym-
metric weights.
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Table 2.1 Mood test weights for N even

CHAPTER 9

i 1 2
a (7Y’ (7’ (3)°
i ¥+1 ¥42

ai @)’ @’

1 T
2 2
@ ®
N-2 N-1 N
_5\2 _3\2 _1\2
et et e

i 1 2

a; (B5)? (23)? (22)*
i N3 N-2
a; (1)? - (259)°

(1)2 0
N-1 N
(5 (5

The moments of My under the

null hypothesis are easily found

from Theorem 7.3.2 (Section 7.3) as follows:

N/ N+1\2
NE(My) = 2T
(My) mzl( >)

2
m[2i2—(N+1)Zi+W
 INN+1)(@N+1) NN +1° NN +1)7°
- 6 a 2 4

Then 12NE(My) =mN(N + 1)(N — 1) and
By - "D 22)
Further,
N%(N — 1)var(My)
NN+ [ N1
= N L R v
m{ (EL N (e }
zmn{N 4—4N+1Zi3 G(NZ1)ZZi2_4(N;1)3

N(N +1)*

16

=51
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Using the following relations, which can be easily proved by
induction,

ﬁ’:ﬁ [NN+ )}

i=1
1

~.

N(N + 1)(2N + 1)(3N? + 3N — 1)
> it= 180

i=

and simplifying, the desired result is

mn(N + 1)(N? — 4)
180

The exact null probability distribution of My can be derived by
enumeration in small samples. The labor is somewhat reduced by
noting that since a; = ay_;,1, the properties of Theroem 7.3.7 apply.
From Theroem 7.3.5 the distribution is symmetric about N(N? — 1)/24
when m = n, but the symmetry property does not hold for unequal
sample sizes. Exact critical values are tabled in Laubscher, Steffens,
and DeLange (1968). For larger sample sizes, the normal approxima-
tion can be used with the moments in (2.2) and (2.3). Under the
assumption of normal populations differing only in variance, the
asymptotic relative efficiency of the Mood test to the F test is
15/2n? = 0.76.

var(My) =

(2.3)

9.3 THE FREUND-ANSARI-BRADLEY-DAVID-BARTON TESTS

In the Mood test of the last section, the deviation of each rank from its
average rank was squared to eliminate the problem of positive and
negative deviations balancing out. If the absolute values of these
deviations are used instead to give equal weight to positive and
negative deviations, the linear rank statistic is

N N
> N+1Z
i=1 =1

There are several variations of this test statistic in the literature,
proposed mainly by Freund and Ansari (1957), Ansari and Bradley
(1960), and David and Barton (1958). There seems to be some confu-
sion over which test should be attributed to whom, but they are all
essentially equivalent anyway.

N+1

Ay 5

i

N+1 2 (3-1)
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The Freund-Ansari-Bradley test can be written as a linear rank
statistic in the form

N
N+1 |, N+1 m(N +1)
Fy=Y (—1=—li- Z; = "y 2
N ;( 5 ‘l 5 ') 5 N (3.2)
or

(V+1)/2] N
Fy= Y iZi+ >  (N-i+1)z (3.3)

i=1 i=[(N+1)/2]+1

where [x] denotes the largest integer not exceeding the value of x.
Specifically the weights assigned then are 1 to both the smallest and
largest observations in the combined sample, 2 to the next smallest
and next largest, etc., N/2 to the two middle observations if N is even,
and (N + 1)/2 to the one middle observation if N is odd. Since the
smaller weights are at the two extremes here, which is the reverse of
the assignment for the Mood statistic, a small value of Fy would
suggest that the X population has larger dispersion. The appropriate
rejection regions for the scale-model alternative

Hg: Fy_j(x) = Fx_p(0x) for all x and some 6 > 0,6 # 1

are then

Subclass of alternatives Rejection region P value

06>1 Fy <k P(FN<f‘H0)
0<1 Fy >k P(Fy = [ |H))
0#1 Fy <ksorFy>ky 2(smaller of above)

The fact that this test is consistent for these subclasses of alternatives
will be shown later in Section 9.7.

To determine the critical values for rejection, the exact null dis-
tribution of Fy could be found by enumeration. From Theorem 7.3.6,
we note that the null distribution of Fyy is symmetric about its mean if
N is even. A recursion relation may be used to generate the null dis-
tribution systematically. For a sequence of m + n = N letters occurring
in a particular order, let r,, ,(f) denote the number of distinguishable
arrangements of m X and n Y letters such that the value of the Fy
statistic is the number f, and let p,,,(f) denote the corresponding
probability. A sequence of N letters is formed by adding a letter to each
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sequence of N — 1 letters. If N — 1 is even (N odd), the extra score will
be (N + 1)/2, so that f will be increased by (N + 1)/2 if the new letter
is X and be unchanged if Y. If N — 1 is odd, the extra score will be N /2.
Therefore we have the relations

N odd: rm,n(f) =Tm-1n <f _]V;_l) +rmJt—l(f)

N even: Tmn(f) =Tm-1n (f — 15\7) +rmn-1(f)

These can be combined in the single recurrence relation

Fon(F) = Fovtn(f — ) + Fmn1(f)  fork= F%}

Then in terms of the probabilities, the result is

() =rmaF) /(" ")

(m + n)pmn(f) = mpm—l,n(f - k) + npm,n—l(f)

which is the same form as (6.6.14) and (8.2.2) for the Mann-Whitney
and Wilcoxon rank-sum tests, respectively. Tables of the null prob-
ability distributions for N < 20 are available in Ansari and Bradley
(1960).

For larger sample sizes the normal approximation to the dis-
tribution of Fiy can be used. The exact mean and variance are easily
found by applying the results of Theorem 7.3.2 to Fy in the forms of
(3.3) and (3.2) as follows, where x = (N +1)/2.

N even: E(Fy)=2m Z— =
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var(Fy) = var(Ay)

NZ2(N —1) 12 4
_ mn(N? —4)
- 48(N -1)
mn  [N2(N2-1) (N?2-1\"
N odd:  var(Fy) = yoi l e ( ; )
~ mn(N +1)(N? +3)
B 48N?2
Collecting these results, we have
N even N odd
E(Fy) =m(N +2)/4 E(Fy) = m(N +1)?/4N (3.4)
N2 —4 N +1)(N2+3
Var(FN) = % Var(FN) = mn( 48]{7(2 )

Another test which is almost identical is generally attributed to
David and Barton (1958). This test also assigns symmetric integer
weights but in the reverse order. That is, scores are given starting
from the middle with 1 for N even, and 0 for N odd, and going out in
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both directions. The David-Barton test can be written as a linear rank
statistic as

(N+1)/2] rrar s o N N1
w3 (Pl 20, )
i=1 i=[(N+1)/2]+1

For N even, By and Fy have the exact same set of weights (but
rearranged), and therefore the means and variances are equal. But for
N odd this is not true because of the difference in relative assignment
of the one “odd” weight, i.e., the middle observation. By assigns a
weight of 0 to this observation, while Fi scores it as (N + 1)/2. The
following results are easily verified from Theorem 7.3.2:

(3.5)

N even N odd
EBy)=m(N+2)/4 E(By) =m(N? —1)/4N (3.6)
_ mn(N? - 4) _mn(N +1)(N? +3)
Var(BN) = m Var(BN) = 48N2
The exact relationship between By and Fly is
Fn +By =m[(N +2)/2] (3.7

Since this relation is linear, the tests are equivalent in properties.
Tables of the null distribution of By are given in David and Barton
(1958) for m =n < 8.

Since these three tests, Fy, By, and Ay, are all linearly related,
they all have equivalent properties. All are consistent against the
same alternatives. The asymptotic relative efficiency of each to the F
test is 6/n2 = 0.608 for normal populations differing only in scale.

9.4 THE SIEGEL-TUKEY TEST

Even simpler than the use of positive integer weights symmetric about
the middle would be some arrangement of the first IV integers. Since
these are the weights used in the Wilcoxon rank-sum test Wy for
location, tables of the null probability distribution would then be
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readily available. Siegel and Tukey (1960) proposed a rearrangement
of the first NV positive integers as weights which does provide a statistic
sensitive to differences in scale. The rearrangement for N even is

i 1 2 3 4 5 ... N/@2¢ ... N-4 N-3 N-2 N-1 N

a; 1 4 5 8 9 ... N 10 7 6 3 2

*If N/2 is odd, i = (N/2) + 1 here.

and if N is odd, the middle observation in the array is thrown out and
the same weights used for the reduced N. This rearrangement
achieves the desired symmetry in terms of sums of pairs of adjacent
weights, although the weights themselves are not exactly symmetric.
Since the weights are smaller at the extremes, we should reject the
null hypothesis in favor of an alternative that the X’s have the greater
variability when the linear rank statistic is small.

In the symbolic form of a linear rank statistic, the Siegel-Tukey
test statistic is

N

SN :ZaiZi
-1

where

21 for i even,1 <i<N/2
2i—1 fori odd, 1 <i <N/2

a; = ) ) : (4.1)
2(N—-i)+2 fori even,N/2 <i <N
2(N—-i)+1 fori odd, N/2 <i <N

Since the probability distribution of Sy is the same as that of the
Wilcoxon rank-sum statistic Wy, the moments are also the same:

m(N +1)
2

mn(N + 1)

E(Sx) = =

var(Sy) = (4.2)

To find critical values of Sy, tables of the distribution of Wy may be
used, like that given in Table J of the Appendix for m < n < 10.

The asymptotic relative efficiency of the Siegel-Tukey test is
equivalent to that of the tests Fy, By and Ay, because of the following
relations. With IV even, let S}y be a test with weights constructed in the

same manner as for Sy but starting at the right-hand end of the array,
as displayed in Table 4.1 for N/2 even.
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Table 4.1 Weights for Siegel-Tukey test
i
Test Weights 1 2 3 4 5 N/2
S a; 1 4 5 8 9 N
Sy a) 2 3 6 7 10 N-1
Sy + Sy a; +a; 3 7 1 15 19 2N -1
Sy (a; +a;+1)/4 1 2 3 4 5 N/2
i
Test Weights (N/2)+1 N-4 N-3 N-2 N-1 N
S a; N-1 10 7 6 3 2
Sy a; N .. 9 8 5 4 1
Sy + Sy a;+a; 2N -1 19 15 11 7 3
Sy (a; +a}+1)/4 N/2 5 4 3 2 1

If N/2 is odd, the weights ay/s and a) /o are interchanged, as are
an/2)+1 and a’(N 9)41- In either case, the weights (ai +a, + 1)/4 are
equal to the set of weights for Fiy when N is even, and therefore
the following complete cycle of relations is established for N even:

m(N +1)

S}(,:FN:m(%[Jrl)—BN:m( 5 —Ax (4.3)

9.5 THE KLOTZ NORMAL-SCORES TEST

The Klotz (1962) normal-scores test for scale uses the same idea as the
Mood test in that it employs as weights the squares of the weights
used in the inverse-normal-scores test for location [van der Waerden
test of (8.3.2)]. Symbolically, the test statistic is

- flo ()

i=1

(5.1)

where ®(x) is the cumulative standard normal probability distribu-
tion. Since the larger weights are at the extremes, we again reject Hy
for large Ky for the alternative that the X population has the larger
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spread. Tables of critical values for N < 20 are give in Klotz (1962).
The moments are

E(Ky) _]"\}g;[cpl (N; 1)]2

Ko) = mn N -1 l 4 n (K2
var( N)—m;[ (N+1)} —m[ (Bn)]

Since this is an asymptotically optimum test against the alternative of
normal distributions differing only in variance, its ARE relative to the
F test equals 1 when both populations are normal.

An asymptotically equivalent test proposed by Capon (1961) uses
the expected values of the square of the normal order statistics as
weights or

> IEE])Zi (5.2)

where ;) is the ith-order statistic from a standard normal distribu-
tion. This test is the scale analog of the Terry test for location in (8.3.1).
The weights are tabled in Teichroew (1956), Sarhan and Greenberg
(1962) for N < 20, and Tietjen, Kahaner, and Beckman (1977) for
N < 50.

9.6 THE PERCENTILE MODIFIED RANK TESTS FOR SCALE

If the Ts and B, statistics defined in (8.3.3) are added instead of sub-
tracted, the desired symmetry of weights to detect scale differences is
achieved. When N is even and S = R = N/2, T' + B is equivalent to the
David-Barton type of test. The mean and variance of the statistic for NV
even and S =R are

mS? mnS(4NS? — N — 6S3

E(T; +B,) = N var(Ts + B,) = (6N2(N — )

The null distribution is symmetric for S = R when m = n. Tables for
m = n < 6 are given in Gibbons and Gastwirth (1966), and, as for the
location problem, the normal approximation to critical values may be
used for m =n > 6.

This scale test has a higher asymptotic relative efficiency than its
full-sample counterparts for all choices of s = r < 0.50. The maximum
ARE (with respect to s) is 0.850, which occurs for normal alternatives
when s = r = 1/8. This result is well above the ARE of 0.76 for Mood’s
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test and the 0.608 value for the tests of Sections 9.3 and 9.4. Thus
asymptotically at least, in the normal case, a test based on only the 25
percent of the sample at each of the extremes is more efficient than a
comparable test using the entire sample. The normal-scores tests of
Section 9.5 have a higher ARE, of course, but they are more difficult to
use because of the complicated sets of scores.

9.7 THE SUKHATME TEST

A number of other tests have been proposed for the scale problem. The
only other one we shall discuss in detail here is the Sukhatme test
statistic. Although it is less useful in applications than the others, this
test has some nice theoretical properties. The test also has the
advantage of being easily adapted to the construction of confidence
intervals for the ratio of the unknown scale parameters.

When the X and Y populations have or can be adjusted to have
equal medians, we can assume without loss of generality that this
common median is zero. If the Y’s have a larger spread than the X’s,
those X observations which are negative should be larger than most of
the negative Y observations, and the positive observations should be
arranged so that most of the Y’s are larger than the X’s. In other
words, most of the negative Y’s should precede negative X’s, and most
of the positive Y’s should follow positive X’s. Using the same type of
indicator variables as for the Mann-Whitney statistic (6.6.2), we define

p.—J11 Y <Xi<0or0<X;<Y;
! 0 otherwise

and the Sukhatme test statistic (Sukhatme, 1957) is

T=>Y > Dy (7.1)

i=1 j=1

The parameter relevant here is

p=PY <X <0or0<X<Y)

0 x - -
:/_oo/_ocfy(y)fx(x)dydx+/0 /x fr () (x) dy dac
0 o0
= | Fe@)dFs)+ [ (1= Fy()dFx()

0 00
- / Fy (x) — Fx(x)] dFx(x)) + /0 Fy(x) — Fy(x)]dFy(x) + 1/4
(7.2)
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Then the null hypothesis of identical populations has been
parameterized to Hy: p = 1/4, and T/mn is an unbiased estimator of
p since

E(T)=mnp

By redefining the parameters p,p1, and py of the Mann-Whitney
statistic as appropriate for the present indicator variables D;;, the
variance of T can be expressed as in (6.6.10) and (6.6.11). The prob-
abilities relevant here are

p1=P[(Y;i<Xi<00or0<X;<Y))N(Yp<X;<00r0<X; <Y})]
:P[(YJ <Xi<0orY,<X; < 0)] JrP[(YJ >X; > 0) ﬂ(Yk >X; > O)]
0 oo
= [ [Fx(x)]* dFy(x) + /0 [1—Fy(x)* dFx(x) (7.3)

p2=P[Y;<X;<00r0<X; <Y;)N(Y; <Xj, <0o0r0 <X, <Y})]
=P[(Y;<X;<0)N(Y; <X} <0)]+P[(Y; >X; >0)N(Y; > X, > 0)]

0 00
- / 12— Fy(y)* dFy(y) + /0 Fx(y) - 1/22dFy(y)  (7.4)

o0

Then from (6.6.11), the variance of T is

var(T) = mn[p = p*(N = 1) + (n — 1)p1 + (m — 1)p2)] (7.5)

Since E(T'/mn) = p and var(T/mn) — 0 as m,n approach infinity,
the Sukhatme statistic provides a consistent test for the following
cases in terms of p in (7.2) and e = p — 1/4 so that

0 o0
o= [ IFy(x) - Fx@]dFx@ + | [Fx(w) - Fy()]dFx(x)
_ 0

oo
(7.6)
Subclass of alternatives Rejection region P value
p<l/4(e<0)(0>1) T —mn/4 < ky P(T < t|Hy)
p>1/4(>0)(0<1) T —mn/4 > ke P(T > t|Hy) (7.7)
p#1/4(e#0) (0#1) [T —mn/4| = ks 2(smaller of above)
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It would be preferable to state these subclasses of alternatives as
a simple relationship between Fy(x) and Fx(x) instead of this integral
expression for €. Although (7.6) defines a large subclass, we are par-
ticularly interested now in the scale alternative model where
Fy(x) = Fx(0x). Then

1. Ifo<1, Fy(x) > Fx(x) for x < 0 and Fy(x) < Fx(x) for x > 0.
2. If6>1, Fy(x) < Fx(x) for x < 0 and Fy(x) > Fx(x) for x > 0.

In both cases, the two integrands in (7.6) have the same sign and can
therefore be combined to write

e=+ [ " | (0x) — Fx (x)| dFx () (7.8)

where the plus sign applies if 6 <1 and the minus if 6 > 1. This
explains the statements of subclasses in terms of 6 given in (7.7).

The exact null distribution of 7T"can be found by enumeration or a
recursive method similar to that for the Mann-Whitney test. The null
distribution of T is not symmetric for all m and n. The minimum value
of T is zero and the maximum value is

M=UW+(m-U)n-W) (7.9)

where U and W denote the number of X and Y observations respec-
tively which are negative. The minimum and maximum occur when
the X or Yvariables are all clustered. Tables of the exact distribution of
T are given in Laubscher and Odeh (1976) and these should be used to
find critical values for small samples.

Another test statistic which could be used for this situation is

m n 1 if X; < ij <0
T/:ZZDQJ.:M—T WhereD;j{ or 0<Y; <X
i=1 j=1 0 otherwise
(7.10)

where M is defined in (7.9). Then a two-sided critical region could be
written as T' < £,0 or T < ¢, /2 where ./, and ¢, /2 have respective left-
tail probabilities equal to o/2.

For larger sample sizes, U and W converge, respectively, to m /2
and n/2 and M converges to mn/2 while the distribution of T
approaches symmetry and the normal distribution. Laubscher and
Odeh (1976) showed that this approximation is quite good for m and n
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larger than ten. In the null case where Fy(x) = Fx(x) for allx, p =1/4
and p; = pg = 1/12. Substituting these results in (7.5) gives the null
mean and variance as

E(T)=mn/4 and  var(T)= (mn(N +7))/48

For moderate m and n, the distribution of

4/3(T — mn/4)

(7.11)
mn(N +7)

may be well approximated by the standard normal.

Ties will present a problem for the 7T test statistic whenever an
Xi=Y;, or X; =0, or Y; =0. The T statistic could be redefined in a
manner similar to (6.6.16) so that a correction for ties can be in-
corporated into the expression for the null variance.

The Sukhatme test has a distinct disadvantage in application
inasmuch as it cannot be employed without knowledge of both of the
individual population medians My and My. Even knowledge of the
difference My — Mx is not enough to adjust the observations so that
both populations have zero medians. Since the sample medians do
converge to the respective population medians, the observations might
be adjusted by subtracting the X and Y sample medians from each of
the X and Y observations, respectively. The test statistic no longer has
the same exact distribution, but for large sample sizes the error in-
troduced by this estimating procedure should not be too large.

The Sukhatme test statistic can be written in the form of a linear
rank statistic by a development similar to that used in Section 8.2 to
show the relationship between the Wilcoxon and Mann-Whitney tests.
Looking at (7.1) now, we know that for all values of i, 337 ; Dj; is the
sum of two quantities:

1. The number of values of j for which Y; <X; <0, which is
rxy(X;) — U;
2. The number of values of j for which Y; > X; > 0, which is

N*rxy(Xi)JrlfVi

where
U; is the number of X’s less than or equal to X; for all X; < 0

V; is the number of X’s greater than or equal to X; for all X; > 0
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Then for Z; = 1 if the ith variable in the combined array is an X and
Z; = 0 otherwise, we have

T = +Z —rxy(X;) +1-Vj

X>0

2zi+z<wfi+1>zf2mf2vi
X< X>0
2
X<

Xy
OH

UU+1) V(V+1)
2 2

1Z; +Z —i+1)Z

X>0

where ) y_, indicates that the sum is extended over all values of ¢
such that X; < 0, U is the total number of X observations which are
less than zero, and V is the number of X observations which are
greater than zero. From this result, we can see that T'is asymptotically
equivalent to the Freund-Ansari-Bradley test, since as N — oo, the
combined sample median will converge in probability to zero, the
population median, and U and V will both converge to m/2, so that T
converges to Fy — m(m + 2)/4 with Fy defined as in (3.3). The test
statistic is therefore asymptotically equivalent to all of the tests pre-
sented in Sections 9.3 and 9.4, and the large-sample properties are
identical, including the ARE of 6/n%. Note that inasmuch as con-
sistency is a large-sample property, the consistency of these other tests
follows also from our analysis for T here.

9.8 CONFIDENCE-INTERVAL PROCEDURES

If the populations from which the X and Y samples are drawn are
identical in every respect except scale, the nonparametric model of
(1.2) with Mx = My =M is

Fy_y(x) =Fx_p(0x) for all x and some 6 > 0

Since 0 is the relevant scale parameter, a procedure for finding a
confidence-interval estimate of 6 would be desirable. In the above
model, we can assume without loss of generality that the common
median M is zero. Then for all 6 > 0, the random variable Y’ = Y0 has
the distribution

P(Y'<y)=P(Y <y/0) =Fy(y/0) = Fx(y)

and Y’ and X have identical distributions. The confidence-interval
estimate of 0 with confidence coefficient 1 — oo should consist of all
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values of 6 for which the null hypothesis of identical populations will
be accepted for the observations X; and Y0, i=1,2 ... ,m;
Jj=1,2 ... n. Using the Sukhatme test criterion of (7.1), here T
denotes the number of pairs (x;,y;0) for which either y;6 <x; <0 or
0 < x; <y;0, or equivalently the number of positive pairs such that
x;/yj < 0. Suppose the rejection region for a two-sided test of size o
based on the T criterion is to reject Hy for T'< ky or T > ke. The
appropriate confidence interval with coefficient 1 — o is then

<’i) <0< (’i> (8.1)
Yi/ k) Yi/ (k)

where (x;/y;)) and (xi/y;),,, denote the kth and k'th smallest in an
array made from only those ratios x/y which are positive. For small
sample sizes, & and %' are found from the tables in Laubscher and
Odeh (1976). If m and n are larger than ten, the number % can be found
using the normal approximation given in (7.9); the result with a con-
tinuity correction of 0.5 is

_mn mn(N +7)
k —_ T + 05 2:1/2 T

4
which should be rounded down to the next smaller integer. Then £’ is
found from k&' = mn/2 — k + 1 since the approximate gives symmetric
endpoints to the confidence interval estimate.
One other approach to obtaining a confidence interval when
there is no information about location is given later in Section 9.10.

(8.2)

9.9 OTHER TESTS FOR THE SCALE PROBLEM

All the tests for scale presented so far in this chapter are basically of
the Mann-Whitney-Wilcoxon type, and except for the Mood and Klotz
tests all are asymptotically equivalent. Other tests have been pro-
posed—some are related to these while others incorporate essentially
different ideas. A few will be summarized here even though they do
not all fall within the category of linear rank statistics.

A test whose rationale is similar to the two-sample median test
can be useful to detect scale differences. In two populations differing
only in scale, the expected proportions of the two samples between two
symmetric quantile points of the combined sample would not be equal.
Since the total number of observations lying between the two quan-
tiles is fixed by the order of the quantile, an appropriate test statistic
could be the number of X observations lying between these two points.
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If these quantiles are the first and third quartiles and the sample sizes
are large so that the sample quartiles approach the corresponding
population parameters in the null case, then the statistic might be
considered asymptotically a test for equal population interquartile
ranges. The null distribution of the random variable U, the number of
X observations within the sample interquartile range, is the hyper-
geometric distribution, and the appropriate rejection region for the
alternative that the X’s are more widely dispersed is U < u,. If
m +n = N is divisible by 4, so that no observations equal the sample
quartile values, the distribution is

fulw) = () (N/2n— u)/ (NA/72) (9-1)

This test is usually attributed to Westenberg (1948).

Rosenbaum suggests that the number of observations in the
X sample which are either smaller than the smallest Y or larger than
the largest Y is a reasonable test criterion for scale under the
assumption that the population locations are the same. The null
probability that exactly r X values lie outside the extreme values of the
Y sample is

fr(r) = n(n — 1)(”:)3(m tn—1-rr+2) (9.2)

This result is easily verified by a combinational argument (Problem
9.9). Tables of critical values are given in Rosenbaum (1953).

Another criterion, suggested by Kamat, is based on the pooled
sample ranks of the extreme X and Y observations. Let R,, and R,
denote the ranges of the X ranks and Y ranks, respectively, in the
combined sample ordering. If the locations are the same, a test sta-
tistic is provided by

Dn =R —Rn+n (9.3)

Tables of critical values are given in Kamat (1956). It should be
noted that when the X sample observations all lie outside the extremes
of the Y sample, we have D, , = R + n, where R is Rosenbaum’s sta-
tistic. The performance of these two tests is discussed in Rosenbaum
(1965).

These three tests, as well as the others presented earlier in this
chapter, are reasonable approaches to detecting dispersion differences
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only when the X and Y populations have the same location. If
the populations do not have the same location but some measure of
location is known for each population, say the medians Mx and My,
these values can be subtracted from the respective X and Y sample
values to form samples from the X' =X -Mx and Y =Y — My
populations which do have equal medians (in fact, zero). Then any of
the tests introduced earlier in this chapter can be performed on the X’
and Y’ variables. This is also true if the given data can be interpreted
as deviations from some specified value or norm (as in Example 10.1,
Section 9.10). In this case there is an alternative approach to testing
the null hypothesis of equal scale. The absolute values of the devia-
tions X' = |[X — Mx| and Y’ =|Y — My| are themselves measures of
spread for the respective populations. Each of the sample deviations x;
and yj’~ are estimates of the population deviation. If these sample de-
viations are arranged from smallest to largest in a single array, the
arrangement of x’' and y’ is indicative of relative spread between the
two populations. Thus any of the two-sample location tests from
Chapter 8 can be used on these absolute values to test for relative scale
differences. This procedure will be illustrated in Example 10.1 using
the Wilcoxon rank-sum test introduced in Section 8.2.

If the observations are adjusted before performing a test, say by
subtracting the respective sample medians, the tests are no longer
exact or even distribution-free. In fact, Moses (1963) shows that no test
based on the ranks of the observations will be satisfactory for the
dispersion problem without some sort of strong restriction, like equal
or known medians, for the two populations. There is one type of
approach to testing which avoids this problem. Although strictly
speaking it does not qualify as a rank test, rank scores are used. The
procedure is to divide each sample into small random subsets of equal
size and calculate some measure of dispersion, e.g., the variance,
range, average deviation, for each subsample. The measures for both
samples can be arranged in a single sequence in order of magnitude,
keeping track of which of the X and Y samples produced the measure.
A two-sample location test can then be performed on the result. For
example, if m and n are both divisible by 2, random pairs could be
formed and the Wilcoxon rank-sum test applied to the N/2 derived
observations of ranges of the form |x; — x;|, |y; — yj|. The test statistic
then is an estimate of a linear function of P(|X; —X;| > |Y; —Y}|). In
general, for any sample dispersion measures denoted by U and V when
computed for the X and Y subsamples, respectively, the Wilcoxon rank-
sum test statistic estimates a linear function of P(U > V). Questions
such as the best subsample size and the best type of measure of
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dispersion remain to be answered generally. Tests of this kind are
called ranklike tests. Their ARE depends on the sizes of the random
subsets, and ranges from 0.304 to a limiting value of 0.955 when the
distributions are normal.

9.10 APPLICATIONS

The Siegel-Tukey test for scale differences in Section 9.4 is the most
frequently used procedure because it does not require a new set of
tables. The table for the distribution of the Wilcoxon rank-sum test,
given here as Table J of the Appendix, can be used. We note, however,
the limitation of this test in that it can detect scale differences only
when the locations are the same. The null hypothesis is Hy: 6 =
ox/oy =1, and the test statistic is Sy, the sum of the weights
assigned to the X sample in the pooled array, where the method of
assignment of all weights for m +n =N even is spelled out in
(4.1). The appropriate rejection regions and the P values for
m < n < 10 are as follows, where s denotes the observed value of the
test statistic Sy.

Alternative Rejection region P value
ezcx/0y<1 SNZLU,J P(SN>S‘H0)
ezﬁx/6y>1 SNSLU'H P(SNSS‘H())
0 =ox/oy #1 SN 2 wqye or Sy = w;/Z 2(smaller of above)

For larger sample sizes, the appropriate rejection regions and P
values based on the normal approximation with a continuity correc-
tion of 0.5 are as follows:

Alternative Rejection region P value
0- %1 Sy > M 1) - [ 05 miti+1)/
Oy mn
mn(N + 1)
+05+2, 13
ox m(N +1) s+05-—m({N+1)/2
0=—>1 Sy < ——5—
oy N 2 Vmn(N +1)/12
mn(N + 1)
— 05—z, 19
6= X #1 Both above with z, /s 2(smaller of above)

Oy
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Example 10.1 An institute of microbiology is interested in purchasing
microscope slides of uniform thickness and needs to choose between
two different suppliers. Both have the same specifications for median
thickness but they may differ in variability. The institute gauges the
thickness of random samples of 10 slides from each supplier using a
micrometer and reports the data shown below as the deviation from
specified median thickness. Which supplier makes slides with a
smaller variability in thickness?

Supplier X:  0.028, 0.029, 0.011, —0.030, 0.017, —0.012, —0.027,
—0.018, 0.022, —0.023

Supplier Y: —-0.002, 0.016, 0.005, —0.001, 0.000, 0.008, —0.005,
—0.009, 0.001, —0.019

Solution Since the data given represent differences from specified
median thickness, the assumption of equal locations is tenable as long
as both suppliers are meeting specifications.

First, we use the Siegel-Tukey test. The data arranged from
smallest to largest, with X underlined, and the corresponding as-
signment of weights are shown in Table 10.1. The sum of the X weights
is Sy =60, and Table J gives the left-tail probability for m = 10,
n = 10 as P = 0.000. Since this is a left-tail probability, the appropriate
conclusion is to reject Hy in favor of the alternative Hy: ox/oy > 1 or
ox > oy. The data indicate that supplier Y has the smaller variability
in thickness.

The STATXACT and SAS outputs for Example 10.1 are
shown below. The answers and the conclusions are the same as ours.

Table 10.1 Array of data and weights

Data Weight Data Weight
—0.030 1 0.000 19
-0.027 4 0.001 18
—0.023 5 0.005 15
—-0.019 8 0.008 14
—0.018 9 0.011 11
-0.012 12 0.016 10
—0.009 13 0.017 7
—0.005 16 0.022 6
~0.002 17 0.028 3
—0.001 20 0.029 2
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Note that STATXACT provides both the exact and the asymptotic
P values and so does SAS. The asymptotic P value using the
STATXACT package is based on the value of the Z statistic without a
continuity correction (—3.402) while the SAS package solution does
use the continuity correction (—3.3639). It may be noted that at the
time of this writing MINITAB does not provide any nonparametric test

for scale.

LA AR L AR L ERE LS EL L ER EE R PRy

STATXACT SOLUTICN TOQ EXAMPLE 10.1

IR R R R R R R R R R R R R

SIEGEL~TUKEY TEST

[ Sum of scores from population < 1 >}
Min Max Mean Std-dev Observed Standardized
55.00 155.0 105.0 13.23 60,00 -3.402
Bsymptotic Inference:
One-sided p-value: Pr [ Test Statistic _LE. Obhserved } = 0.0003
Two-sided p-value: 2 * Qne-sided = 0.0007
Exact Inference:
One-sided p-value: Pr { Test Statistic .LE. CObserved | = 0.0001
Pr | Test Statistic .EQ. Observed }| = 0.0000
Two-sided p-value: Pr { | Test Statistic - Mean |
.GE. | Observed - Mean | = 0.0002
Two-sided p-value: 2*0One-Sided = 0.0002

kkkhdkd bk ddhd kb khhdok ok ke ek e Wk ok ko

SAS SOLUTION TO EXAMPLE 10.1

dedk ik ek ok ek bk e ko de ok ok ek e e ok e e ek ok W ke bk

Program:

DATA TIME;
INPUT GROUP Time @8;
DATALINES;
1 0,028 1 0.029 1 ©.011 1 -0.030 1 0.017 1 -0.012 1 -0.027 1 -0.018 1 0.022 1 -0.023
2 -0.002 2 0.016 2 0.005 2 -0.001 2 0.000 2 0.008 2 -0.005 2 -.00% 2 0,001 2 -0.01%
PROC NPARIWAY ST DATA=TIME;
CLASS GROUP;
VAR TIME;
exact;
RON;

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. ﬂ
270 Madison Avenue, New York, New York 10016 0



344 CHAPTER 9

OQutput:
The NPARIWAY Procedure
Siegel-Tukey Scores for Variable Time

Classified by Variable GROUP
Sum of Expected 5td Dev Mean
GROUP ) Scores Under HO Under HQ Score
1 10 00.0 105.0 13.228757 6.0
2 10 150.0 105.0 13.228757 15.0

Siegel-Tukey Two-Sample Test
Statistic ($) €0.0000

Normal Approximaticon

Z -3.3639
One-5ided Pr < Z 0.0004
Two—-Sided Pr * 2] 0.0008
Exact Test

One-Sided Fr <= 3§ 1.02BE-04
Two=-Sided Pr >= S - Mean] 2.057E-04

Z includes a continuity correction of 0.5,

Siegel-Tukey One-Way Analysis

Chi-5guare 11.5714
DF 1
Pr » Chi-S5quare 0.0007

Second, we use the Sukhatme test on these same data. The first
step is to form separate arrays of the positive and negative deviations,
with the X sample underlined.

Negatives: —0.030, —0.027, —0.023, —0.019, —0.018, —0.012, —0.009,
—0.005, —0.002, —0.001
Positives: 0.000, 0.001, 0.005, 0.008, 0.011, 0.016, 0.017, 0.022, 0.028,
0.029

WefindT =2+ 1 =38from(7.1) and 7" = 23 + 24 = 47 from (7.10). The
normal approximation is z = —2.93 without a continuity correction
and a one-tailed P value of 0.0017. (The corrected value is z = —2.87
with P value =0.0021.) The reader can verify the relation T+ 7' =M
where M is the maximum value of T. We note that the result is quite
similar to the Siegel-Tukey test and the conclusion is the same.
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The Sukhatme test is not available in SAS or STATXACT at the time of
this writing.

Third, we give another alternative for equal scale. The data re-
present deviations X — M and Y — M for some common median M. If
the X and Y populations are both symmetric about M, each of the
differences is equally likely to be positive and negative. If, further, the
variables have the same scale, then the absolute values of these de-
viations |[X — M| and |Y — M| should have the same median value of
zero. Note that these absolute values are themselves measures of
variability. Thus we can use the Wilcoxon rank-sum test for location to
measure the scale difference. Then the weights should be the ordinary
ranks, i.e., the integers 1 to 20 in their natural order, and the pooled
ordered data and corresponding ranks are shown in Table 10.2. The
sum of the X ranks here is Wy = 149 and the corresponding exact
P value from Table J is 0.000, a right-tail probability, which makes us
conclude that the median variability measure for X is larger than the
median variability measure for Y. This result, while not the same as
that obtained with the Siegel-Tukey or Sukhatme tests, is consistent
with both previous conclusions. This will generally be true. We note,
however, that the Wilcoxon test for location on the absolute values is
consistent against scale alternatives only when the data are given in
the form X — M and Y — M or can be written this way because M is
known.

The advantage of this alternative procedure is that it has a cor-
responding confidence interval procedure for estimation of the ratio
0 = ox/oy under the assumption of symmetry, the scale model re-
lationship in (1.1), and the observations written in the form X — M
and Y — M for equal medians or X — My and Y — My in general.

Table 10.2 Array of absolute values of data and ranks

|Datal Rank |Datal Rank
0.000 1 0.016 11
0.001 2.5 0.017 12
0.001 2.5 0.018 13
0.002 4 0.019 14
0.005 5.5 0.022 15
0.005 5.5 0.023 16
0.008 7 0.027 17
0.009 8 0.028 18
0.011 9 0.029 19
0.012 10 0.030 20
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The procedure is to form the mn ratios |X; — Mx|/|Y; — My| for all i, j,
and arrange them from smallest to largest. The confidence interval
end points are the uth smallest and uth largest among these ratios,
where u is found in exactly the same manner as it was in Section 8.2
using Table J or the normal approximation.

Confidence Interval Estimate for Example 10.1 The mn = 10(10) =
100 ratios of absolute values |Y — M|/|X — M| are shown in Table 10.3.
Note that the ratios used are the reciprocals of the usual ratio and this
will give an interval on oy /ox; this is done in order to avoid division by
zero. Note also that each set of sample data is written in increasing
order of their absolute magnitudes so that the uth smallest and uth
largest can be easily identified. For m = 10, n = 10 and confidence
coefficient nearest 0.95 say, Table J gives P = 0.022 with rank 24 so
that u = 24. The interval estimate is 0.06 < oy/ox < 0.53 with con-
fidence coefficient 1 — 2(0.022) = 0.956; taking the reciprocals we get
19 < Gx/GY < 16.7.

We also use these data to illustrate the confidence interval esti-
mate of ox /oy based on the Sukhatme test procedure. Here we take
only the positive ratios (X —M)/(Y — M) shown in Table 10.4 and
there are 50 of them. In order to avoid division by zero, we form the
ratios (Y —M)/(X — M) to find the interval on oy/cx, and then take
the reciprocal to obtain a confidence interval estimate of ox/cy. The
value of & from (8.2) for 95% confidence is 10.80 and we round down
and use k£ = 10. The confidence interval is 0.0435 < oy/ox < 0.571,

Table 10.3 Ratios of absolute Values

X — M|

Y -M| 0.011 0.012 0.017 0.018 0.022 0.023 0.027 0.028 0.029 0.030

0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.001 0.09 0.08 0.06 0.06 005 004 004 004 003 0.03
0.001 0.09 0.08 0.06 0.06 005 004 004 004 003 0.03
0.002 0.18 0.17 012 011 0.09 0.09 0.07 0.07 0.07 0.07
0.005 045 042 029 028 023 022 019 018 017 0.17
0.005 045 042 029 028 023 022 019 018 017 0.17
0.008 0.73 0.67 047 044 036 035 030 029 028 027
0.009 0.82 075 053 050 041 039 033 032 031 0.30
0.016 145 133 094 08 073 070 059 057 055 0.53
0.019 173 158 112 106 086 083 070 0.68 0.66 0.63
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Table 10.4 Ratios (Y — M)/(X — M)

Negatives

Y-M
X-M -0.019 —0.009 —0.005 —0.002 —0.001
—0.030 0.6333 0.3000 0.1667 0.0667 0.0333
—0.027 0.7037 0.3333 0.1852 0.0741 0.0370
-0.023 0.8261 0.3913 0.2174 0.0870 0.0435
-0.018 1.0556 0.5000 0.2778 0.1111 0.0556
—0.012 1.5833 0.7500 0.4167 0.1667 0.0833
Positives

Y-M
X-M 0.000 0.001 0.005 0.008 0.016
0.011 0 0.0909 04545 0.7273 1.4545
0.017 0 0.0588 0.2941 0.4706 0.9412
0.022 0 0.0455 0.2273 0.3636 0.7273
0.028 0 0.0357 0.1786 0.2857 0.5714
0.029 0 0.0345 0.1724 0.2759 0.5517

and taking the reciprocals yields 1.75 < ox/oy < 23.0. Note that this
interval is wider than the one based on the Wilcoxon rank-sum test.
This will frequently be the case.

The confidence interval procedure based on the Wilcoxon test
for location can also be used when the data given are not variations
from some central value and hence not measures of variability in
themselves, but are from populations that can take on only positive
values. Many variables fall into this category—for example, age,
height, weight, income, GPA, test scores, survival times, relative
efficiencies, and the like. For samples from such distributions, each
of the mn ratios X;/Y; is itself a measure of the relative spread of
the X and Y populations in the sense that it is an estimate of the
range (measured from zero) of the X variable relative to the range of
the Y variable if both are positive variables. In other words, we are
looking at scale as measured by total spread, as opposed to spread
based on a central value. Then the confidence interval endpoints are
the uth smallest and the uth largest of the mn ratios X/Y, where u
is found from Table J or from the normal approximation using
(8.2.6). We call this the method of positive variables and illustrate it
by Example 10.2.
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Example 10.2 Two potential suppliers of streetlighting equipment,
A and B, presented their bids to the city manager along with the fol-
lowing data as a random sample of life length in months.

A: 35, 66, 58, 83, 71

B: 46, 56, 60, 49
Test whether the life length of suppliers A and B have equal varia-
bility.

Solution Before we can test for scale, we must determine whether we
can assume the locations can be regarded as equal. We will use the
Wilcoxon rank-sum test. Since supplier B has fewer observations, we
label it the X sample so that m = 4 and n = 5. The pooled sample array
with X underlined is 35, 46, 49, 56, 58, 60, 66, 71, 83. The test statistic
is Wy = 15 and the one-tailed exact P value from Table J is P = 0.143.
Thus there is no reason not to assume that the locations are the same,
and we use the Siegel-Tukey test for scale. The test statistic is Sy = 24
with a one-sided exact P value of P = 0.206 from Table J. We conclude
that there is no difference in the scales of the A and B populations.
Now we will find a confidence interval estimate of cg/c4 using the
method of positive variables with confidence coefficient near 0.95.
From Table J with m =4, n =5, we find u = 3 for exact confidence
level 0.936. The 20 ratios are shown in Table 10.5. The confidence
interval estimate is 0.648 < op/c4 < 1.400. Note that this interval
includes the ratio one, as was implied by our hypothesis test. These
analyses imply that there is no basis for any preference between
suppliers A and B.

9.11 SUMMARY

In this chapter we have covered many different tests for the null
hypothesis that the scale parameters are identical for the two popu-
lations, ox/oy = 1. Each of these procedures (except for ranklike

Table 10.5 Ratios B/A

A
B 35 58 66 71 83
46 1.314 0.793 0.697 0.648 0.554
49 1.400 0.845 0.742 0.690 0.590
56 1.600 0.966 0.848 0.789 0.675
60 1.714 1.034 0.909 0.845 0.723
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tests) required some assumption about the location of the two dis-
tributions. If we can assume that the locations are the same, then each
of the procedures in Sections 9.2 to 9.6 can be carried out even when
the common value is unknown or unspecified. When the locations are
not the same but their difference Mx — My is known, we can form
X' =X — (Mx — My) and carry out the same tests on X’ and Y because
X' and Y now have the same location (in fact, equal to My). When the
locations are not the same but are both known as, say, Mx and My,
these values can be subtracted to form X' =X — My and Y =Y — My,
and all of the tests in this chapter can be carried out because the
locations of X’ and Y’ are now the same (in fact, equal to zero). If
the medians are unknown and unequal, we can estimate them from
the sample medians or use ranklike tests, but these are only ad hoc
procedures whose performance is unknown.

Recall from Chapter 1 that the confidence interval estimate of
any parameter is the set of all values of the parameter which, if stated
in the null hypothesis, would be accepted at the o level that corres-
ponds to one minus the confidence level. Therefore, in order to develop
a procedure for finding a confidence interval estimate for 6 = ox/oy,
we must be able to generalize the test for 6 = 1 to a test for 6 = 0 # 1.

1. First, assume that Mx = My, unspecified. The natural approach
would be to form X' =X/0p so that ox /oy =1. But then
My = Mx /6y must be equal to My which cannot be true unless
0p = 1, a contradiction unless My = My = 0.

2. Second, assume that My — My is known but not equal to zero. The
natural approach would be to form X' = [X — (Mx — My)]/6¢ so
that ox//oy = 1. But then Mx = My/6y must be equal to My,
which cannot be true unless 0y =1, a contradiction unless
Mx =My = 0.

3. Third, assume that Mx and My are known. The natural approach
would be to form X' = (X —Mx)/6p and Y =Y — My so that
ox//oy = 1. This makes Mx = My = 0 and hence we can have a
test of 6 = 0 # 1.

This argument shows that Mx and My must both be known in order to
test the null hypothesis where 6y # 1, and that we can have a corre-
sponding confidence interval procedure only in this case. The simplest
ones to use are those based on the Wilcoxon rank-sum test of the
absolute values and the Sukhatme test, since tables are available in
each case. The corresponding confidence interval procedures were
illustrated in Example 10.1.
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If we assume only that X/0 and Y are identically distributed, we
can test the null hypothesis 6 = 6y # 1 and this gives us the confidence
interval based on the method of postive variables. This procedure was
illustrated by Example 10.2. But notice that this makes Mx = 6My,
and hence the estimate of relative scale is based on spread about the
origin and not spread about some measure of central tendency.

The asymptotic relative efficiency of each of the Freund-Ansari-
Bradley-David-Barton tests of Section 9.3 is 0.608 relative to the F test
for normal populations differing only in scale, is 0.600 for the con-
tinuous uniform distribution, and is 0.94 for the double-exponential
distribution. The ARE for the Mood test of Section 9.2 is 0.76 for
normal distributions differing only in scale. The Klotz and Capon
tests of Section 5 have an ARE of 1.00 in this case. The ARE of the
percentile modified rank tests for scale against the F' test for normal
alternatives differing only in scale reaches its maximum of 0.850
when s =r=1/8.

PROBLEMS

9.1. Develop by enumeration for m = n = 3 the null probability distribution of Mood’s
statistic My.

9.2. Develop by enumeration for m =n =3 the null probability distribution of the
Freund-Ansari-Bradley statistic of (3.3).

9.3. Verify the expression given in (2.3) for var(My).

9.4. Apply Theorem 7.3.2 to derive the mean and variance of the statistic Ay defined
in (3.1).

9.5. Apply Theorem 7.3.2 to derive the mean and variance of the statistic By defined
in (3.5).

9.6. Verify the relationship between Ay, By, and Fy given in (4.3) for N even.

9.7. Use the relationship in (4.3) and the moments derived for Fy for N even in (3.4) to
verify your answers to Problems 9.4 and 9.5 for N even.

9.8. Use Theorem 7.3.2 to derive the mean and variance of Ts + B, for N even, S # R,
where S +R < N.

9.9. Verify the result given in (9.2) for the null probability distribution of Rosenbaum’s
R statistic.

9.10. Olejnik (1988) suggested that research studies in education and the social sci-
ences should be concerned with differences in group variability as well as differences in
group means. For example, a teacher can reduce variability in student achievement
scores by focusing attention and classroom time on less able students; on the other hand,
a teacher can increase variability in achievement by concentrating on the students with
greatest ability and letting the less able students fall farther and farther behind. Pre-
vious research has indicated that mean student achievement for classes taught by tea-
chers with a bachelor’s degree is not different from that of classes taught by teachers
with a master’s degree. The present study was aimed at determining whether variability
in student achievement is the same for these two teacher groups. The data below are the
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achievement scores on an examination (10 = highest possible score) given to two classes
of ten students. Class 1 was taught by a teacher with a master’s degree and class 2 by a
teacher with a bachelor’s degree. The mean score is 5 for each class. is there a difference
in variability of scores?

Class 1 Class 2
7 3
4 6
4 7
5 9
4 3
6 2
6 4
4 8
3 2
7 6

9.11. The psychology departments of public universities in each of two different states
accepted seven and nine applicants, respectively, for graduate study next fall. Their
respective scores on the Graduate Record Examination are:

University X: 1200, 1220, 1300, 1170, 1080, 1110, 1130

University Y: 1210, 1180, 1000, 1010, 980, 1400, 1430, 1390, 970

The sample median and mean scores for the two universities are close to equal, so an
assumption of equal location may well be justified. Use the Siegel-Tukey test to see
which university has the smaller variability in scores, if either.
9.12. In industrial production processes, each measurable characteristic of any raw
material must have some specified average value, but the variability should also be
small to keep the characteristics of the end product within specifications. Samples of lead
ingots to be used as raw material are taken from two different distributors; each dis-
tributor has a specification of median weight equal to 16.0 kg. The data below represent
actual weight in kilograms.

X: 15.7,16.1, 15.9, 16.2, 15.9, 16.0, 15.8, 16.1, 16.3, 16.5, 15.5

Y: 154, 16.0, 15.6, 15.7, 16.6, 16.3 16.4, 16.8, 15.2, 16.9, 15.1
(a) Use the deviations from specified median weight to find two different interval es-
timates of ox /oy with confidence coefficient nearest 0.95.

(b) Use the method of positive variables to find a confidence interval estimate of the
ratio X/Y of scale measured relative to zero.

9.13. Data on weekly rate of item output from two different production lines for seven
weeks are as follows:

Line I: 36, 36, 38, 40, 41, 41, 42

Line IT: 29, 34, 37, 39, 40, 43, 44

We want to investigate the relative variability between the two lines.
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(@) Find a one-tailed P value using the Siegel-Tukey test and state all assump-
tions needed for an exact P.

(b) Find the one-tailed P value using the Wilcoxon procedure assuming the
population medians are M; = My = 40 and state all assumptions needed for an exact P.

(¢) In (b), you should have found many ties. Is there another appropriate pro-
cedure for analyzing these data, one for which the ties present no problem? Explain fully
and outline the procedure.

(d) Find a 95% confidence interval estimate of the relative scales of line 1
relative to line 2 when spread is measured from zero.
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Tests of the Equality of k Independent
Samples

10.1 INTRODUCTION

The natural extension of the two-sample problem is the k-sample
problem, where observations are taken under a variety of different
and independent conditions. Assume that we have %k independent sets
of observations, one from each of % continuous populations
Fi(x),Fo(x),...,Fr(x) where the ith random sample is of size
ni, t=1,2,...,k and there are a total of Zle n; = N observations.
Note that we are again assuming the independence extends across
samples in addition to within samples. The extension of the two-
sample hypothesis to the k-sample problem is that all £ samples are
drawn from identical populations

Hy: Fi(x) =Fg(x) =--- = Fp(x) for all x

The general alternative is simply that the populations differ in some
way.

353
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The location model for the k-sample problem is that the cdf’s are
Fx—01),F(x—02),...,F(x — 0), respectively, where 0; denotes a loca-
tion parameter of the ith population, frequently interpreted as the med-
ian or the treatment effect. Then the null hypothesis can be written as

H(): 91292:=9k
and the general alternative is

Hy:06; #06; for at least one i #j

In classical statistics, the usual test for this problem is the ana-
lysis-of-variance F' test for a one-way classification. The underlying
assumptions for this test are that the & populations are identical in
shape, in fact normal, and with the same variance and therefore may
differ only in location. The test of equal means or

Ho:pyp=pp ==
is, within the context of this model, equivalent to the hypothesis above
of k identical populations. Denoting the observations in the ith sample
by Xi1,Xi2, ..., Xin, the izh-sample mean by X; = Zj’il(Xij/ni), and the
grand mean by X =377, > (X;;/N), the classical analysis-of-var-
iance F test statistic may be written
S oni(X; - X)?
T E—=1  _ mean square between samples
Dy S (X — X)? ~ mean square within samples
i= (j=
N -k

This test statistic follows the F distribution exactly, with £ — 1 and
N — k degrees of freedom, under the parametric assumptions when H
holds. The F' test is robust for equal sample sizes, but it is known to be
sensitive to the assumption of equality of variances when the sample
sizes are unequal.

The nonparametric techniques which have been developed for this
k-sample problem require no assumptions beyond continuous popula-
tions and therefore are applicable under any circumstances, and they
involve only simple calculations. We shall cover here the extensions of
the two-sample median test and the control median test, the Kruskal-
Wallis analysis-of-variance test, some other extensions of rank tests
from the two-sample problem, and tests against ordered alternatives
including comparisons with a control or standard. Finally, the chi-
square test for equality of & proportions will be discussed. This latter
test is applicable only to populations where the random variables are
dichotomous, often called count data, and therefore does not fit within
the basic problem of £ continuous populations as defined here. However,
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when appropriate, it is a useful k-sample technique for the hypothesis of
identical populations and therefore is included in this chapter.

10.2 EXTENSION OF THE MEDIAN TEST

Under the hypothesis of identical populations, we have a single ran-
dom sample of size Zf:ﬂli =N from the common population. The
grand median 6 of the pooled samples is an estimate of the median of
this common population. Therefore, an observation from any of the %
samples is as likely to be above 3 as below it. The set of N observations
will support the null hypothesis then if, for each of the %2 samples,
about half of the observations in that sample are less than the grand
sample median. A test based on this criterion is attributed to Mood
(1950, pp. 398-406) and Brown and Mood (1948, 1951).

As in the two-sample case, the grand sample median & will be
defined as the observation in the pooled ordered sample which has
rank (N+1)/2 if N is odd and any number between the two
observations with ranks N /2 and (N + 2)/2 if N is even. Then, for each
sample separately, the observations are dichotomized according as
they are less than 6 or not. Define the random variable U; as the
number of observations in sample number i which are less than 6, and
let ¢ denote the total number of observations which are less then §.
Then, by the definition of 8, we have

N/2 if N is even

k
(=3 ui=
i=1

(N —1)/2 if N is odd

Letting u; denote the observed value of U;, we can present the calcu-
lations in the following table.

Sample 1 Sample 2 e Sample k Total
<3 u 172 e up t
>0 ny—ui ng — U ny —up N —t
Total ni ng . np N

Under the null hypothesis, each of the (ZX ) possible sets of ¢

observations is equally likely to be in the less-than-6 category, and the
number of dichotomizations with this particular sample outcome is
Hle (n’) Therefore the null probability distribution of the random

ui
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variables is the multivariate extension of the hypergeometric dis-
tribution, or

oY) (/) e

If any or all of the U; differ too much from their expected value of n;0,
where 0 denotes the probability that an observation from the common
population is less than 6, the null hypothesis should be rejected.
Generally, it would be impractical to set up join rejection regions for
the test statistics Uy, Uy, ..., U, because of the large variety of com-
binations of the sample sizes ni,ne,...,n; and the fact that the
alternative hypothesis is generally two-sided for £ > 2, as in the case of
the F test. Fortunately, we can use another test criterion which,
although an approximation, is reasonably accurate even for N as small
as 25 if each sample consists of at least five observations. This test
statistic can be derived by appealing to the analysis of goodness-of-fit
tests in Chapter 4. Each of the N elements in the pooled sample is
classified according to two criteria, sample number and its magnitude
relative to 3. Let these 2%k categories be denoted by (i,j), where
i=1,2,...,k according to the sample number and j = 1 if the obser-
vation is less than 6 and j = 2 otherwise. Denote the observed and
expected frequencies for the (i,j) category by f;; and e;;, respectively.
Then

fii=uw

fori =1,2,...,k
fio =ni —u;

and the expected frequencies under Hj are estimated from the data by

. n;t
i1 =37
N .
. N t) fori =1,2,...,k
12 — N

The goodness-of-fit test criterion for these 2k categories from (4.2.1),
Section 4.2, is then

J
k(ui —nit/N)? I [ni —ui —ni(N —t) /N
=2 T NN

i=1
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o (u — nit/N)? ' (nit/N — ;)

_N; n;t +N; ni(N—t)

(Wi —nt/NP (11

_N; n; <t+N— t)

N & (wi—nit/N)Y

Ct(N —t) ; n; (2.2)

and @ has approximately the chi-square distribution under H,. The
parameters estimated from the data are the 2k probabilities that an
observation is less then 6 for each of the 2 samples and that it is not
less then 3. But for each sample these probabilities sum to 1, and so
there are only %k independent parameters estimated. The number of
degrees of freedom for @ is then 2k — 1 — k&, or £ — 1. The chi-square
approximation to the distribution of @ is somewhat improved by
multiplication of @ by the factor (N —1)/N. Then the rejection
region is

QeR  for w =2,

As with the two-sample median test, tied observations do not
present a problem unless there is more than one observation equal to
the median, which can occur only for N odd, or if N is even and the two
middle observations are equal. The conservative approach is sug-
gested, whereby the decision is based on that resolution of ties which
leads to the smallest value of @.

Example 2.1 A study has shown that 45 percent of normal sleepers
snore occasionally while 25 percent snore almost all the time. More
than 300 patents have been registered in the U.S. Patent Office for
devices purported to stop snoring. Three of these devices are a
squeaker sewn into the back of night clothes, a tie to secure the
wrists to the sides of the bed, and a chin strap to keep the mouth
shut. An experiment was conducted to determine which device is
the most effective in stopping snoring or at least in reducing it.
Fifteen men who are habitual snorers were divided randomly into
three groups to test the devices. Each man’s sleep was monitored
for one night by a machine that measures amount of snoring on a
100-point scale while using a device. Analyze the results shown
below to determine whether the three devices are equally effective
or not.
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Squeaker Wrist tie Chin strap
73 96 12
79 92 26
86 89 33
91 95 8
35 76 78

Solution The overall sample median is 78. Since N = 15 is odd, we
have t = 7 and the data are

Group 1 2 3
<78 2 1 4
>78 3 4 1

We calculate @ = 3.75 from (2.2) and (N — 1)Q/N = 3.50. With df = 2
we find 0.10 < P < 0.25 from Table B of the Appendix. There is no
evidence that the three medians differ.

The STATXACT solution to Example 2.1 is shown below. Note
that the results do not agree with ours. This is because they define the
U statistics as the number of sample observations that are less than or
equal to delta, rather than the number strictly less than delta as we
did. This means that they define ¢ = (IV 4+ 1)/2 whenever N is odd,
while we define ¢ = (N — 1)/2. The U statistics with this definition of
< 78 are 2, 1, and 5, for groups 1, 2, and 3, respectively. The reader can
verify that these values make @ = 6.964 as the printout shows. The
difference in the answers is surprisingly large and the conclusions are
not the same. The STATXACT printout also shows an exact P-value
and a point probability. We discuss these after Example 2.2.

LR EEE IR E T AR R SRR R RE RN AL ERE SRS

STATXACT SOLUTION TQ EXAMPLE 2.1

LR R RS EEEEEREREERE AN A RESE A REEESES]

MEDIAN TEST

Statistics based on the cbserved cne-way layout:

Number of groups =3
Number of observaions = 15
The overall median = 78.00
Observed Statistic = 6.964

Asymptotic p-value: (based on Chi-Square distribution with 2 df )
Pr { CH(X) .GE. 6.964 } = 0.0307
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Exact p-value and point probability :
Pr { CH{X} .GE. 6.964 }
Fr { CR{X} .EQ. 6.964 }

0.0676
0.0466

I

Example 2.2 The staff of a mental hospital is concerned with which
kind of treatment is most effective for a particular type of mental
disorder. A battery of tests administered to all patients delineated a
group of 40 patients who were similar as regards diagnosis and also
personality, intelligence, and projective and physiological factors.
These people were randomly divided into four different groups of 10
each for treatment. For 6 months the respective groups received (1)
electroshock, (2) psychotherapy, (3) electroshock plus psychotherapy,
and (4) no type of treatment. At the end of this period the battery of tests
was repeated on each patient. The only type of measurement possible
for these tests is a ranking of all 40 patients on the basis of their relative
degree of improvement at the end of the treatment period; rank 1 in-
dicates the highest level of improvement, rank 2 the second highest,
and so forth. On the basis of these data (see Table 2.1), does there seem
to be any difference in effectiveness of the types of treatment?

Table 2.1 Ranking of patients

Groups
1 2 3 4
19 14 12 38
22 21 1 39
25 2 5 40
24 6 8 30
29 10 4 31
26 16 13 32
37 17 9 33
23 11 15 36
27 18 3 34
28 7 20 35

Solution We use the median test to see whether the four groups have
the same location. The overall sample median is the observation with
rank 20.5 since N = 40, and we note that ¢ = 20 and n;¢/N = 5. The
results are

Group 1 2 3 4
<205 1 9 10 0
>20.5 9 1 0 10
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We calculate @ = 32.8 from (2.2) and (N — 1)@ /N = 31.98. From Table
B with df = 3, we find P < 0.001 and we reject the null hypothesis of
equal medians for the four groups.

The STATXACT solution for this example is shown below. The
results agree with ours and always will when N is even. As with
Example 2.1, the STATXACT solution shows the calculation of an
exact P value and a point probability; this is exact in the sense that it
is calculated using the multivariate hypergeometric distribution given
in (2.1). STATXACT also provides a Monte Carlo estimate of the
P-value. The reader is referred to the STATXACT manual for more
details.

CEEEXE RS LR AR SRS R R 2 R Rt Ry

STATXACT SOLUTION TO EXAMPLE 2.2

PR EE RIS R AR R R R E R R R R R R RS SR

MEDIAN TEST

Statistics based on the cbserved one-way layout:

Number of groups = 4
Number of obserwvations = 40
The overall median = 20.50
Observed Statistic = 32.80

Asymptotic p-value: (based on Chi-Square distribution with 3 df }

Pr { CH(¥) .GE. 32.80 ) = 0.0000
Exact p-value and point probability :

Pr { CH{X) .GE. 32.80 ) = 0.0000

Pr { CH(X) .EQ. 32,80 ) = Q0.6000
Monte Carlo estimate of p-value :

Pr { CH({X) .GE. 32.80 ) = 0.0000

99.00% Confidence Interval = {0.0000, 0.0005)

10.3 EXTENSION OF THE CONTROL MEDIAN TEST

The control median test was presented in Chapter 6 as an alter-
native to the median test in the context of the two-sample problem.
We showed that the control median test is simple to use, is as
efficient as the median test in large samples, and is advantageous
in certain experimental situations. We now present a generalization
of the control median test, due to Sen (1962), to the k-sample case,
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where the null hypothesis is that £(>2) populations are identical
against the general alternative that the populations are different in
some way.

Suppose that independent random samples of size ni,ng,...,n;
are available from populations 1 through k2. Without any loss of gen-
erality let sample 1 be the control sample. First, we choose q(>1)
fractlons 0<pi<p2<---<pg <1l and find the quantiles X <
X <- < X\, correspondlng to the fractions, from the first sample
Thus X is the r;th-order statistic of the first sample where

[nlpl] + 1 and [x] denotes the largest integer not exceeding x.

The ¢ quantiles define (¢ + 1) nonoverlapping and contiguous
cells or blocks written as

L (xV, XUy forj=0,1,...,q

where X§0) = —oo and X{‘Hl) = 00. For the two-sample control median
test we have k = 2, ¢ = 1, p1 = [n1/2] + 1, and the test is based on the
number of observations in sample 2 that belong to Iy. For £ > 2 sam-
ples and ¢>1 quantiles, we count for the ith sample the number
of observations V;; that belong to the block I;, j=0,1,...,q,
i=12,... ksothatn; =3¢, V;;, Vi =rj1 forj>1and Vip = r1. The
generalization of the control median test is based on these counts. It
may be noted that in the terminology introduced in Chapter 2, the
count V;; is the frequency of the jth block for the ith sample.

The derivation of the joint distribution of the counts
Vi,i=2,3,...,k, j=0,1,...,q, provides an interesting example of
computing probablhtles by conditioning. To this end, observe that
given (condltlonal on) the ¢ quantiles from the first sample, X U<
X << qu , the joint distribution of Vjo,Vii,...,Vj,, for any
i1 =2,3,...,k, is multinomial, given by

n1!
UioVi1! * - - Vjg!

CFX?) - FiX V) 1 - Fy(X(0))e (3.1)

where v, =n; — (Vio + Vi1 + - -+ + Vig—1)-

The desired (unconditional) joint probability distribution of
Vio,Vi1,...,Vig can be derived by calculating the expectation of the
expression in (3.1) with respect to the chosen quantiles from the first
sample. The joint distribution of the ¢ quantiles from the first sample is
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nl!
(Ulo — 1)!(011 — 1)! s (U1q71 — 1)!Ulq!

x [Fy(wg) — F1(w1)]™ 1 [Fi(wg) — F1(wg—1)]" " 1 — Fy(wg)]"™

Where—oo<w1<w2< - <wg <ooand vig =n1 — (Vio+ v+ F
vig-1). Given XV X® X9 the distribution of (Vig, Vi, ..., Vi) is

independent of that of (Vj,Vj1,...,Vq)for i #j. Thus we obtain the
unconditional joint distribution of the Vs as

P[Vij:vij7i:2,3,...,k;j:O,l oq

o H = 1/ /HFI wys1) —F1(w))]"V " [1-F1(wg)]"™
q- JO -

UL
H [ tH (Wi —Fi(w)]”

where the region A is defined by —oco=wo<wi < - <wy <
wg+1 = oo. Under Hj, the unconditional joint distribution of the V;/’s
reduces to

[Ty vyl “l (o~ 1! ] (33)

| % %
N [lies Vig! j=0 (vy-)! [ [ip vy

where N = Zle n; and v; = Zle v forj=0,1,...,q

As in the case of the median test, we reject the null hypothesis if
any or all of the V; are too different from their expected values under
the null hypothesis. An exact P value can be calculated from (3.3)
corresponding to the observed values of the counts and hence we can
make a decision about rejecting Hy for a given level of significance. In
practice, however, such an implementation of the test is bound to be
tedious, especially for large &, ¢, and/or sample sizes.

Alternatively, we can use a test criterion defined as

HdF1 w)) (3.2)

Jj=1

J Ovlq

where m; =vy;/(n1+1) for j=0,1,...,q. Massey (1951a) has con-
sidered an extension of the median test based on a similar criterion.
Under the null hypothesis, the distribution of @* can be approximated
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by a chi-square distribution with (¢ — 1)q degrees of freedom, provided
that N tends to infinity with n;/N —¢;0<cy,...,c, <1 and
T, 1, . ..,y are all nonzero in the limit. Thus, an approximate size o
test is to reject Hy in favor of the general alternative if

* 2
Q"> Uik-1)q,

As with the median test, ties do not present any problems here
except perhaps in the choice of the quantiles from the first sample.
Also, the test is consistent against the general alternative under some
mild conditions on the cdf’s. When the distributions belong to the lo-
cation family, F;(x) = F(x — 6;) with Hyp:0; = 02 = --- = 0, = 0, the test
is consistent against any deviations from H,. However, when the
distributions belong to the scale family, F;(x)=F(0;x) with
Hy:0, =03 = --- =0, =1, the test is consistent provided either q >2, or
g =1but & # 0, where F1(&;) = no.

The asymptotic power of this test as well as efficacy expressions
are derived in Sen (1962). An important result is that when ¢ = 1 and
o = M1 = 1/2, the test is as efficient as the median test (ARE is one).
More generally, when the same set of quantiles (i.e., the same g and
the same set of p’s) is used, this test is as efficient as the generalization
of the median test (based on g preselected quantiles of the pooled
sample) studied by Massey (1951a). Hence, when the sample sizes are
large, there is no reason, on the basis of efficiency alone, to prefer one
test over the other. However, as a practical matter, finding a quantile
or a set of quantiles is always easier in a single sample than in the
combined samples, and thus the control median test would be pre-
ferred, especially in the absence of any knowledge about the perfor-
mance of the tests when sample sizes are small. Finally, with regard to
a choice of ¢, the number of quantiles on which the test is based, there
is evidence (Sen, 1962) that even though the choice depends on the
class of underlying alternative specifications, ¢ =1 or 2 is usually
sufficient in practice.

10.4 THE KRUSKAL-WALLIS ONE-WAY ANOVA TEST AND MULTIPLE
COMPARISONS

The median test for £ samples uses information about the magnitude
of each of the N observations relative to a single number which is the
median of the pooled samples. Many popular nonparametric k-sample
tests use more of the available information by considering the relative
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magnitude of each observation when compared with every other
observation. This comparison is effected in terms of ranks.

Since under Hj we have essentially a single sample of size N from
the common population, combine the IV observations into a single or-
dered sequence from smallest to largest, keeping track of which ob-
servation is from which sample, and assign the ranks 1,2,...,N to the
sequence. If adjacent ranks are well distributed among the k& samples,
which would be true for a random sample from a single population, the
total sum of ranks, Zﬁi 11=N({NN+1)/2, would be divided pro-
portionally according to sample size among the £ samples. For the ith
sample which contains n; observations, the expected sum of ranks
would be

niNN+1) ni(IN+1)

N 2 2

Equivalently, since the expected rank for any observation is the
average rank (IV + 1)/2, the expected sum of ranks for n; observations
is n;(N + 1)/2. Denote the actual sum of ranks assigned to the ele-
ments in the ith sample by R;. A reasonable test statistic could be
based on a function of the deviations between these observed and
expected rank sums. Since deviations in either direction indicate dis-
parity between the samples and absolute values are not particularly
tractable mathematically, the sum of squares of these deviations can
be employed as

S:Xk:[Ri—ni(N;Ll)r (4.1)
i=1

The null hypothesis is rejected for large values of S.

In order to determine the null probability distribution of S,
consider the ranked sample data recorded in a table with %2 columns,
where the entries in the ith column are the n; ranks assigned to the
elements in the ith sample. Then R; is the ith-column sum. Under H,
the integers 1,2, ..., N are assigned at random to the % columns except
for the restriction that there be n; integers in column i. The total
number of ways to make the assignment of ranks then is the number
of partitions of N distinct elements into & ordered sets, the ith of size
n;, and this is

N!/Hleni!
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Each of these possibilities must be enumerated and the value of S
calculated for each. If £(s) denotes the number of assignments with the
particular value s calculated from (4.1), then

fs(s) = t(s)[T2 ! /N!

Obviously, the calculations required are extremely tedious and
therefore will not be illustrated here. Tables of exact probabilities for S
are available in Rijkoort (1952) for 2 = 3,4, and 5, but only for n; equal
and very small. Critical values for some larger equal sample sizes are
also given.

A somewhat more useful test criterion is a weighted sum of
squares of deviations, with the reciprocals of the respective sample
sizes used as weights. This test statistic, due to Kruskal and Wallis
(1952), is defined as

12 &a ni(N +1)]2
S Y e “2

The consistency of H is investigated in Kruskal (1952). H and S are
equivalent test criteria only for all n; equal. Exact probabilities for H
are given in Table K of the Appendix for £ =3, all n; < 5. The tables in
Iman, Quade, and Alexander (1975) also cover k=4, all n; <4 and
k=5, all n; < 3 for the upper 10% of the exact distribution.

Since there are practical limitations on the range of tables which
can be constructed, some reasonable approximation to the null dis-
tribution is required if a test based on the rationale if S is to be useful
in application.

Under the null hypothesis, the n; entries in column i were ran-
domly selected from the set {1,2,... ,N}. They actually constitute a
random sample of size n; drawn without replacement from the finite
population consisting of the first N integers. The mean and variance of
this population are

N . 2 2
2 [i—(N+1)/2]" N*-1
* =2 N T 12
The average rank sum for the ith column, R;=R;/n;, is the mean

of this random sample, and as for any sample mean from a finite
population.
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5\ OXN —ny)

ER;) =np var(R;) = m

Here then we have

5 _N+1 5 _(N+1)(N—ni)

ER;) = 9 ar(R;) = T
- N+1
cov(R;, R;) = ~ g

Since R; is a sample mean, if n; is large, the Central Limit Theorem
allows us to approximate the distribution of

Ri—(N+1)/2
\/(N+ 1)(N — ni)/12ni

(4.3)

by the standard normal. Consequently Z? is distributed approximately
as chi square with one degree of freedom. This holds fori = 1,2,... &,
but the Z; are clearly not independent random variables since
Zle nR; = N(N +1)/2, a constant. Kruskal (1952) showed that
under Hy, if no n; is very small, the random variable

EN - k
Z NnZiZ:Z

i=1 i=1

12n;[R; — (N +1)/2]?

N(N +1) —H

(4.4)

is distributed approximately as chi square with £—1 degrees of free-
dom. The approximate size o rejection is H >x§{k_1. Some other
approximations to the null distribution of H are discussed in Alexander
and Quade (1968) and Iman and Davenport (1976). For a discussion
about the power of this test, see for example Andrews (1954).

The assumption made initially was that the populations were
continuous, and this of course was to avoid the problem of ties. When
two or more observations are tied within a column, the value of H is
the same regardless of the method used to resolve the ties since the
rank sum is not affected. When ties occur across columns, the midrank
method is generally used. Alternatively, for a conservative test the ties
can be broken in the way which is least conducive to rejection of Hy.

If ties to the extent ¢ are present and are handled by the midrank
method, the variance of the finite population is

o2 :N2 -1 Yt -1)
12 12
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where the sum is over all sets of ties in the population, and this

expression should be used in var(R;) for the denominator of Z;. In this
case (4.4) becomes

N(N + 1)} 2

iN_ni [Ri - 2

= N (N+1)N—-n;)) N-—n; >t(#*-1)
12n; n(N—-1) 12
5 NV +1)7?
12n; [R; - A+ L)
- Zk: : [ NZ2t(t2 —}1) B Zf([tz —1) (4.5)
SNNHD-T R N

The details are left as an exercise for the reader. Hence the correction
for ties is simply to divide H in (4.2) by the correction
factor 1 — Y ¢(¢2 — 1)/N(N? — 1) where the sum is over all sets of ¢ tied
ranks.

When the null hypothesis is rejected, as in the normal theory
case, one can compare any two groups, say i and j (with 1 <i<j <
k), by a multiple comparisons procedure. This can be done by calcu-
lating

IR; — R

Zij = VINN + 1)/12](1/n; + 1/n;)

(4.6)

and comparing it to z* =z, /1), the [o/k(k—1)lst upper standard
normal quantile. If Z;; exceeds z*, the two groups are declared to be
significantly different. The quantity o is called the experimentwise
error rate or the overall significance level, which is the probability of at
least one erroneous rejection among the k(k—1)/2 pairwise compar-
isons. Typically, one takes o =0.20 or even larger because we are
making such a large number of statements. We note that 1—a is the
probability that all of the statements are correct. It is not necessary to
make all possible comparisons, although we usually do. For con-
venience, we give the z* values to three decimal places for a total of d
comparisons at o =0.20 as follows:

d 1 2 3 4 5 6 7 8 9 10
z¢ 1282 1.645 1834 1960 2.054 2.128 2189 2.241 2287 2.326

This multiple comparisons procedure is due to Dunn (1964).
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APPLICATIONS

The Kruskal-Wallis test is the natural extension of the Wilcoxon test
for location with two independent samples to the situation of &
mutually independent samples from continuous populations. The null
hypothesis is that the %2 populations are the same, but when we
assume the location model this hypothesis can be written in terms of
the respective location parameters (or treatment effects) as

Hy:0; =0y =--- =0

Hj: At least two 0’s differ

To perform the test, all ny+ns+---+n, =N observations are
pooled into a single array and ranked from 1 to N. The test statistic
H is easier to calculate in the following form, which is equivalent
to (4.2):

H:Li}ﬁ—sw+ 1) (4.7)

for R; being the sum of the ranks from the ith sample. The appropriate
rejection region is large values of H. The critical values or P values are
found from Table K for £ =3, each n; < 5. This statistic is asymptoti-
cally chi-square distributed with %2 — 1 degrees of freedom; the
approximation is generally satisfactory except when k2 =3 and the
sample sizes are five or less. Therefore, Table B can be used when
Table K cannot. When there are ties, we divide H by the correction
factor.

For multiple comparisons, using (4.6), we declare treatments i
and j to be significantly different in effect if

|Ri —Rj| >z \/% (i‘F l) (4.8)

n; n;

If n; =n; =N/k for all i and j, the right-hand side of (4.6) reduces to
z*\/k(N +1)/6.

Example 4.1 For the experiment described in Example 2.2, use the
Kruskal-Wallis test to see if there any difference in the medians of the
four groups.
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Solution The data are already ranked from 1 to 40 in Table 2.1 so we
need only calculate the rank sums as R; = 260, Ry = 122, R3 = 90,
R4 = 348. With N1 =Ng =N3g =Ny4g = 10, we get

12

H= 40(41)(10) [

2602 + 1222 + 902 + 348?) — 3(41) = 31.89

with 3 degrees of freedom. The P value from Table B is P < 0.001, so
we reject the null hypothesis that the four medians are the same and
therefore do a follow-up analysis by a multiple comparisons of the
medians, using o = 0.20. We have R; = 26.0, Ry = 12.2, R3 = 9.0 and
R, =24.8 and the right-hand side of (4.8) is 11.125. The treatments
which have significantly different medians are 1 and 2, 1 and 3, 2
and 4.

The computer solutions to Example 4.1 are shown below using
the MINITAB, SAS, and STATXACT packages. All of the results for H
agree exactly.

Thh ko hhdedoh kW hhdkhkdkh h kbbb ok ko kkd
MINITAE SQLUTION TO EXAMPLE 4.1
dedkdr ke k ok dr gk ke ko k ek ok ok ok ok ok ko ke

Kruskal-Wallis Test: C2 wversus Cl

Kruskal-Wallis Test: on CZ2

Ccl N Median Ave Rank 2
1 14 25.540 26.0 1.%2
2 10 12.500 12.2 -2.58
3 10 8.500 .0 -3.58
4 10 34.500 34.8 4.47
Overall 44 20.5

H=31.89 DF = 3 P = 0.000

MINITAB shows the value of the test statistics as H = 31.89 and
the asymptotic P value of 0.000 based on the chi-square approximation
with 3 degree of freedom. If there had been ties in the data, MINITAB
would have shown H(adjusted), which is calculated from (4.5). MINI-
TAB also shows the median, average rank, and Z value for each group.
The Z values given are calculated from (4.3). This is the standardized
value of the deviation between the mean rank R; for the ith group and
its expected value (N + 1)/2 under the null hypothesis. The sign of the
Z statistic indicates whether the mean rank is larger or smaller than
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expected, and the magnitude measures the relative deviation. The
largest absolute Z value is 4.47, which indicates that the mean rank
for group 4, which is 34.8, differs from the average rank of 20.5 more
than that of any other group. And the smallest absolute Z value, 1.72,
shows that the average for group 1, 26.0, differs from the average rank
less than that of any other group.

Now we show the program code and the results for SAS and
STATXACT.

de ek ko v ko ol ke ke ko W bk ko o ko ok ek

SAS SOLUTION TO EXRMPLE 4.1

LA AR R R RS R R RREERESLESERLTEREY.S

Frogram:

data a;

input group N;

do i=1 to N;

input battery B@8;

cutput;

end;

cards;

110

19 22 25 24 2% 26 37 23 27 28
2 10

14 21 2 & 10 16 17 11 18 7

3 10

12 1 58 4 13 8 15 3 240

4 10

39 39 40 30 31 32 33 36 34 35
proc nparlway wilcoxon;

class group:;

run;
Qutput
The NPARIWAY Procedure
Wilcoxon Scores {Rank Sums) for Variable battery

Classified by Variable group

Sum of Expectad Std Dev Maan
group -N Scores Under HO Under HO Score
1 10 280.0 205.0 32.014119 26.00
2 10 122.0 205.0 32.014119 12.20
3 10 390.0 205.0 32.014119 9.00
4 10 348.0 205.0 32.014119 34,80

Average scores were used for ties.

Kruskal-Wallis Test

Chi-Square 31.8867
DF 3
Pr » Chi-Square <.0001
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IEZESE RS SR EE SRS EREEREREREERERE SRR R E]

STATXACT SOLUTICN TO EXAMPLE 4.1

LE A ERE AR LR ERRERERERREEESERERERERRERS]

KRUSKAL-WALLIS TEST [That the 4 populations are identically
distributed]

Statistic based on the cbserved data
T(¥) = The Observed test Statistic = 31.89

Asymptotic p-value: (based on Chi-square distribution with 3 df }

Pr { T(X} .GE. 31.8% } = 0.0000
Monte Carlo estimate of p-value :
Pr { Statistic .GE. 31.89 ) = 0.0000
99, 00% Confidence Interval = { 0.0000, 0,0005})

Example 4.2 For the experiment described in Example 2.1, use the
Kruskal-Wallis test to see if there is any difference in the medians of
the three groups.

Solution The first step is to rank the data from 1 to 15, as shown
below, where rank 1 is given to the smallest score, which indicates the
most effective result.

Squeaker Wrist tie Chin strap

6 15 2

9 13 3

10 1 4

12 14 1

5 7 8

Sum 42 60 18

We calculate " R?/n = 5688/5 = 1137.6 and H = 12(1137.6)/15(16)—
3(16). Table K for £ = 3,n; = ng = ng = 5 shows that 0.001 < P value <
0.010, so the null hypothesis of equal treatment effects should be
rejected. It appears that the chin strap is the most effective device in
reducing snoring since it has the smallest sum of ranks. Since the null

hypothesis was rejected, we carry out a multiple comparisons proce-
dure at the 0.20 level. We have z* = 1.834 for d =3 and the right-hand
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side of (4.8) is 5.19. The sample mean ranks are R; =84,
Ry =12, Rs = 3.6. Our conclusion is that only groups 2 and 3 have
significantly different median treatment effects at the overall
0.20 significance level. Recall that our hand calculations did not
lead to a rejection of the null hypothesis by the median test in
Example 2.1.

The computer solutions to Example 4.2 are shown below using
the SAS, STATXACT, and MINITAB packages. The results for the
value of H agree exactly. The P value using the chi-square approx-
imation is 0.012, which agrees with the outputs. Note that both
STATXACT and SAS allow the user the option of computing what they
call an exact P value based on the permutation distribution of the
Kruskal-Wallis statistic. This can be very useful when the sample si-
zes are small so that the chi-square approximation could be suspect.
However, the exact computation is quite time consuming even for
moderate sample sizes, such as 10 as in Example 4.1. For this
example, SAS finds this exact P value to be 0.0042, which makes
the results seem far more significant than those inferred from either
Table K or the chi-square approximation. MINITAB does not have an
option to calculate an exact P value and it does not provide the cor-
rection for ties.

Fhhhkhkhrhhkh kR bk hkhdhrd xkkdtk

SAS SOLUTION TO EXAMPLE 4.2

Fhhkrhkdkhkhdkkhkkkkdkkhkhkhkkkddkk ok

The HPARIWAY Procedure

Wilcoxon 3cores [(Rank Sums) for Variable snore
Classified by Variable group

sum of Expected 5td Dew Mean
group L] Scores Under HO Under HO Score
1 5 42.0 40.0 8.164966 §.40
2 5 60.0 40.0¢ 8.16496¢6 12.00
3 5 18.0 40.0 §.164966 3.60

Kruskal-wallis Test

Chi-Square 8.8800
bF 2
Asymptotic Pr > Chi-Square 0.0118
Exact Pr >»>= Chi-Scuare 0.0042
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gk kR kR kR ok ke ok ke ok ok ok ok ko

STATHACT SOLUTICN TO EXABMPLE 4,2

L2 XSRS ERE LSRR RES RE S R EEEREEEELPETEY

KRUSKAL-WALLIS TEST [That the 3 populations are identically
distributed]

Statistic based on the observed data
T(X) = The Observed test Statistic = 8.880

Asymptotic p-value: (based on Chi-square distribution with 2 df )

Pr { T{¥} .GE. 8.880 } = 0.0118
Exact p-value and point probability :

Pr { Statistic .GE. 8,880 } = 0.0042

Pr { Statistic .EQ. 8.880 } = 0.0003

LA R SR R E R E L FE X TR LR R R R R R R R

MINITAB SOLUTION TO EXAMPLE 4,2

drkhkkhhkk bk hok ok ke wh kbbb bk ko hhx

Kruskai-Wallis Test: C1 versus C2

Kruskal-Wallis Test on Cl

ce N Median Ave Rank z
1 5 79.00 8.4 0.24
2 5 92.00 12.0Q 2.45
3 5 26.00 3.6 -2.69
Overall 15 8.0

H=28.,88 DF=2 P =0.012

10.5 OTHER RANK-TEST STATISTICS

A general form for any k-sample rank-test statistic which follows the
rationale of the Kruskal-Wallis statistic can be developed as follows.
Denote the Zle n; = N items in the pooled (not necessarily ordered)
sample by X;,Xs,..., Xy, and put a subscript on the ranks as an
indication of which sample the observation is a member. Thus r;(X;) is
the rank of X; where X; is from the jth sample, for some j =1,2,... k.
The rank sum for the jth sample, previously denoted by R; would now
be denoted by >, rj(X;). Since the r;(X;) for fixed j are a random sample
of n; numbers, for every j the sum of any monotone increasing function
g of rj(X;) should, if the null hypothesis is true, on the average be
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approximately equal to the average of the function for all N observa-
tions multiplied by n;. The weighted sum of squares of these deviations
provides a test criterion. Thus a general k-sample rank statistic can be
written as

{5018l (X)] — ny (S, S glry(Xa)) /N
>

nj

Q- (5.1)

=1

For simplicity, now let us denote the set of all N values of the function
glrj(x;)] by a1,aq,...,any and their mean by

N~

i=1

It can be shown (see Hajek and Sidak, 1967, pp. 170-172) that as
minimum (n1,n9,...,R,) — 00, under certain regularity conditions the
probability distribution of

(N -1)@Q
SV (@i —a)?

approaches the chi-square distribution with 2 — 1 degrees of freedom.

Two obvious possibilities for our function g are suggested by the
scores in the two-sample location problem for the Terry (normal
scores) and the van der Waerden (inverse normal scores) test statis-
tics. Since in both these cases the scores are symmetric about zero, a is
zero and the k-sample analogs are

k
T =
ZL I[E(E.:( 2 ]Z

=1
a 71 N+1) ]2
X =
Zl l[d) + 2;

]2

The T and X tests are asymptotically equivalent as before.

Example 5.1 For the data in Example 2.2, the normal scores test is
illustrated using STATXACT to see if there are any differences in the
medians of the four groups.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



TESTS OF THE EQUALITY OF & INDEPENDENT SAMPLES 375

PEACRO IR AP R R R I EP R R S ER A RSN S EA LR RNtk
STATXACT SOLUTION TO EXAMPLE 5.1

LA R EL LA R LSS L EREL RIS RIS LI LT LI LAY Y]

NORMAL SCORES TEST [That the 4 populations are identically
distributed]

Statistic based on the observed data :
The Observed Statistic = 29,27

Asymptotic p-value: (based on Chi-square distribution with 3 df }
Pr { Statistic .GE. 29.27 } = 0.0000

Monte Carlo estimate of p-value :
Pr { Statistic .GE. 29.27 }
99._00% Confidence Interval =

= 0.0000
{ 0.0000, 0.0005)

The value of the T statistic is found to be 29.27 with an approximate P
value close to 0 and this leads to a rejection of the null hypothesis.
Recall that for these data, both the median test and the Kruskal-Wallis
test also led to a rejection of the null hypothesis.

So far we have discussed the problem of testing the hypothesis
that & continuous populations are identical against the general (om-
nibus) alternative that they differ in some way. In practice the ex-
perimenter may expect, in advance, specific kinds of departures from
the null hypothesis, say in a particular direction. For example, it
might be of interest to test for an increasing (or decreasing) effect of a
group of treatments on some response variable. Conceptually, some of
these problems can be viewed as generalizations of one-sided alter-
natives to the case of more than two samples. It seems reasonable to
expect that we will be able to construct tests that are more sensitive
(powerful) in detecting the specific departures (from the null hypoth-
esis) than an omnibus test, like the Kruskal-Wallis test, since the
latter does not utilize the prior information in a postulated ordering
(the omnibus tests are used to detect “any” deviations from homo-
geneity).

The problem of testing the null hypothesis of homogeneity
against alternative hypotheses that are more specific or restricted in
some manner than a global alternative (of nonhomogeneity) has been
an area of active research. The seminal work of Barlow, Bartholomew,
Bremner, and Brunk (1972) and the book by Robertson, Wright, and
Dykstra (1988) are excellent references to this subject. We will discuss
some of these problems in the following sections.
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10.6 TESTS AGAINST ORDERED ALTERNATIVES

Suppose we are concerned with testing the null hypothesis Hy that the
populations are identical against the alternative hypothesis that the
location parameters are in an increasing order,

Hi: 01 <0< - <0

where at least one of the inequalities is strict. This alternative would
be of interest if, for example, it is expected that increasing the value of
a factor would result in an increase in the value of a response. If the
expected direction in H; is not the natural ordering, we may simply
relabel the treatments so that the postulated order agrees with the
natural order here. This alternative is also known as the “simple
order.” It may be noted that under the location model when 6; < 6;, the
population corresponding to F; is stochastically larger than the
population corresponding to Fj;.

A number of distribution-free tests for the problem of simple
order are available in the literature. One way to motivate some of
these tests is to note that the alternative hypothesis H; may be written
in an expanded form as

01 < 02,01 <03,...,61 <O
02 < 03,00, <04,...,00 <0 (6.1)
Orp—2 < 0p_1,0,_2 < O
Op_1 < O

where at least one of the £(k — 1)/2 inequalities must be strict. Hence
the problem of testing H, against H; may be viewed as a collection of
k(k —1)/2 test problems, each of which is a two-sample problem. This
observation allows us to contemplate several tests for the problem at
hand since we have a number of tests already available for the two-
sample problem.

There are two basic questions we need to address. It is clear that
all of the k(k — 1)/2 two-sample test statistics must be of the same
form, for example, Mann-Whitney, median, or control median. The
first question is which of the available two-sample tests should be used
and why. This is a problem we first encountered in Chapter 6, and we
can use either the optimal test (from the ARE point of view) or some
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test that is more attractive from a practical point of view. Now, after a
two-sample test is chosen and k(k — 1)/2 of these tests are performed,
the next question is to decide how to combine these tests into a single
final test with desirable properties.

A popular test for the ordered alternatives problem is a
test proposed by Terpstra (1952) and Jonckheere (1954) indepen-
dently, hereafter called the JT test. The JT test uses a Mann-
Whitney statistic U;; for the two-sample problem comparing samples
i and j, where i,j=1,2,...,k with i<j, and an overall test
statistic is constructed simply by adding all the U;. Thus the test
statistic is

BZU12+U13+"'+Ulk+U23+Uz4+"'-‘rU2k+"'+Uk_1,k
ni nj

=y ZUU:kil i SO IXir < X6

I<i<j<k i1 j=it1r=1 s=1

where X, is the rth observation in sample i and X, is the sth obser-
vation in sample j, and [ is the usual indicator function. The appro-
priate rejection region is large values of B because if the alternative H;
is true, observations from the jth sample will tend to be larger than the
observations from the ith sample. Thus the appropriate rejection
region is

B = B(o,k,ny,ng,...,ng)

where PB>B(a,k,n1,n9,...,n;)] < o is satisfied under H,.

The JT test is distribution free if the cdf’s are all continuous.
Since all N!/ (Hleni!) rank assignments are equally likely under H,
the null distribution of the test statistic B can be obtained by com-
puting the associated value of B for each possible ranking and enu-
merating. The required calculations are bound to be tedious, especially
for large n;, and will not be illustrated here. However, some exact
critical values have been tabulated for £ =3, 2<n; <ngs <n3z <8;
k=4,5,6,n1=ng=---=n; =2(1)(6) and are given in Table R of the
Appendix for selected .

In practice, for larger sample sizes, it is more convenient to use
an approximate test. If n; /N tends to some constant between 0 and 1,
the distribution of the random vector (Uig, Uss,..., U 1) under H
can be approximated by a k(k — 1)/2 -dimensional normal distribution.
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From the results in Section 6.6 for the Mann-Whitney test we have
E(U;j) = nin;/2 under Hj so that

k
Byp) = Y Y N

1<i< j<k

(6.2)

The derivation of the variance of B is more involved and is left as an
exercise for the reader. The result under Hy is

N2(2N +3) — 2% n2(2n; +3)

vary(B) = 7

(6.3)

In view of these results, an approximate level « test based on the JT
statistic is to reject Hy in favor of H; if

B>E(B) +z,[vary(B)]"/?

where z, is the (1 — o)th quantile of the standard normal probability
distribution.

Because of our assumption of continuity, theoretically there can
be no tied observations within or between samples. However, ties do
occur in practice, and when the number of ties is large the test should
be modified in a suitable manner. When observation(s) from sample i
are tied with observation(s) from sample j, we replace U;; by Uj; (see
the discussion of the problem of ties with the Mann-Whitney statistic
in Chapter 6), defined as

5 3) 8
r=1 s=1
where
1 if X; < Ast
D,s=<{1/2 ifX;, = st
0 iinr > )(js

This is equivalent to replacing the ranks of the tied observations by
their midranks in the combined samples i and j. The JT test in the
case of ties is then based on

E-1
B =3 2 Uj

i=1 j=1

(6.4)
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Under the null hypothesis, the expectation of B* is the same as
that of B, given in (6.2). Also, the variance of B* under Hj is

vary(B*) = (72) [N(N —1)(2N +5) — zk: ni(n; — 1)(2n; + 5)
i=1

— > Ht—1)(2t+ 5)] +[36N(N — 1)(N —2)]*

X {ini(ni —1)(n; — 2)“21‘@ — 1)t - 2)}

i=1 1
+[8N(N — 1) [izk;ni(ni - 1)} [zl:t(t - 1)] (6.5)

where ), denotes the summation over all distinct values among the N
observations, and ¢ denotes the number of occurrences (multiplicity) of
a particular distinct value. For a proof of this result see, for example,
Kendall and Gibbons (1990, pp. 95-96). When there are no ties in the
data, ¢ = 1 for all N observations and the expression (6.5) reduces to
(6.3). Although tables are apparently not yet available for the exact
null distribution of B*, an approx1mate test for lar, /ge sample sizes can
be based on the statistic [B* — Eo(B*)]/[varo(B*)]’* and the standard
normal distribution. Thus, in the case of ties, an appr0x1mately size o
JT test is to reject Hy in favor of Hy if

B*>E((B*) + z,[var,(B*)]"/? (6.6)

The JT test is consistent against ordered alternatives under the
assumption that n;/N tends to some constant between 0 and 1 as N
tends to infinity. The asymptotic relative efficiency and some asymp-
totic power comparisons with competing tests are discussed in Puri
(1965).

A vast body of literature is available on related and alternative
procedures for this problem. Chacko (1963), Hogg (1965), Puri (1965),
Conover (1967), Shorack (1967), Johnson and Mehrotra (1971), Tryon
and Hettmansperger (1973), Shirahata (1980), Fairley and Flinger
(1987), and Hettmansperger and Norton (1987), among others,
consider various extensions. Among these, Puri (1965) studies a
generalization of the JT test by introducing a class of linear rank
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statistics using an arbitrary score function and any two-sample
Chernoff-Savage statisticc. When the expected normal scores are
used, Puri’s procedure is highly recommended (Berenson, 1982) when
the samples are from (1) normal populations; (2) light-tailed popu-
lations of the beta family, regardless of symmetry; (3) heavy-tailed
and moderately skewed populations; and (4) heavy-tailed and very
skewed populations. Tyron and Hettmansperger generalize Puri’s
class of tests by including weighting coefficients to form linear
combinations of two-sample Chernoff-Savage statistics and provide
some interesting results about how to determine the optimal
weighting coefficients. Chakraborti and Desu (1988a) adopt a similar
approach using the two-sample control quantile (median) test sta-
tistics and show that their optimal test has higher ARE in certain
situations.

APPLICATIONS

The JT test rejects Hy against the ordered alternative H; when B is
significantly large. Thus, the exact P value is

P(B>b|H,)

where b is the observed value of the test statistic B. When sample sizes
are moderately large, the normal approximation to the P value is
given by

B —E((B)
vary(B)

1-0

where Ey(B) and vary(B) are given in (6.2) and (6.3).

Example 6.1 Experts have long claimed that speakers who use some
sort of audiovisual aids in their presentations are much more effective
in communicating with their audience. A consulting agency would like
to test this claim; however, it is very difficult to find many speakers
who can be regarded as (virtually) identical in their speaking cap-
abilities, and the agency is successful in locating only 15 such speakers
from a nationwide search. The speakers are randomly assigned to one
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of three groups. The first group of speakers were not allowed to use
any audiovisual aids, the second group of speakers were allowed to use
a regular overhead projector and a microphone, and the third group of
speakers could use a 35-mm color slide projector together with a mi-
crophone and a tape recorder (which played prerecorded audio mes-
sages). After a certain period of time, each of the speakers made a
presentation in an auditorium, on a certain issue, in front of a live
audience and a selected panel of judges. The contents of their pre-
sentations were virtually the same, so that any differences in effec-
tiveness could be attributed only to the audiovisual aids used by the
speakers. The judges scored each presentation on a scale of 30 to 100,
depending on their own judgment and the reaction of the audience,
with larger scores denoting greater effectiveness; the scores are given
below. It seems reasonable to expect that the use of audiovisual aids
would have some beneficial effect and hence the median score for
group 1 will be the lowest, that for group 3 the highest, and the median
score for group 2 somewhere in between.

Group 1 Group 2 Group 3

74, 58, 68, 60, 69 70, 72, 75, 80, 71 73, 78, 88, 85, 76

Solution The hypotheses to be tested are Hy: 6; = 62 = 03, where 0; is
the median of the ith group, against Hy: 6; < 02 < 03, where at least
one of the inequalities is strict. Here £ = 3 and in order to apply the JT
test the three two-sample Mann-Whitney statistics Ujg, U3, and Ugg
are needed. We find Uy =22,U;3 =24, and Uss3 =21 and hence
B = 67. The exact P value for the JT test from Table R of the Appendix
is P(B=67|H)) < 0.0044. Thus Hj is rejected in favor of H; at any
commonly used value of o and we conclude that audiovisual aids do
help in making a presentation more effective, and in fact, when all
other factors are equal, there is evidence that the more audiovisual
aids are used, the more effective is the presentation. Also, we have
Ey(B) =375 and vary(B) = 89.5833, so that using the normal ap-
proximation, z = 3.1168 (without a continuity correction) and the ap-
proximate P value from Table A of the Appendix is
1 - ®(3.12) = 0.0009; the approximate JT test leads to the same con-
clusion. The SAS and STATXACT computer solutions shown below
agree exactly with ours.
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LA R R LR AR R EEEEEEE R R LR R R R

SAS5 SOLUTION TO EXAMPLE 6.1

khdhkkhhhkh kbbb bbb kb khhddedd

Program:

data example;

input group score RQ;

datalines;

1 74 1 581681601 692702722 75280271
373 378 388 385 3 76

proc freq data=example;

tables group*score/noprint;

exact JT;

Lun;

Cutput:
The FREQ Procedure
Statistics for Table of group by score

Jonckheere-Terpstra Test

Statistic (JT) 67.0000
4 3.1168
Asymptotic Test
One-sided Pr > 2 0.0009
Two-sided Pr > |2 0.0018
Exact Test
One-sided Pr »>= JT 5.259E-04
Twe-sided Pr »= |JT - Mean| 00011

Sample Size = 15

Frhkdrdh koo ok ok ok ok ko ok ek ok ke kb

STATXACT SCLUTION TCO EXAMPLE £.1
L R e T R R T R L

JONCKHEERE-TERPSTRA TEST [That the 3 populations are identically
distributed]
Statistic based on the 15 cbservations:
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Mean Std-dev Observed (JT {x1) Standardized (JT* {x))
37.50 9.465 . 67.00 3.117

Asymptotic p-value:

Cne-sided: Pr { JT*(X} .GE. 3,117}y = 0.0009

Two-sided: 2 * One-sided = 0.0018
Exact p-values:

One-sided: Br { JT*{X} .GE. 3,117}y = 0.0005

Pr { JT*({X] LEQ. 3.117 } = 0.0002

Two-sided: Pr { |[JT*{X}]| .GE. 3,117}y = 0.0011

10.7 COMPARISONS WITH A CONTROL

The case of ordered alternatives is one example of a situation where
the experimenter wishes to detect, a priori, not just any differences
among a group of populations, but differences only in some specific
directions. We now consider another example where the alternative to
the null hypothesis of homogeneity is restricted, a priori, in a specific
direction.

Suppose we want to test only a partial ordering of the (k£ —1)
distributions with respect to a common distribution. This will be the
situation where only a comparison between each of the distributions
and the common distribution is of interest and what happens among
the (k — 1) distributions is somewhat irrelevant. For example, in a
drug screening study, it is often of interest to compare a group of
treatments under development to what is currently in use (which
may be nothing or a placebo), called the control, and then subject
those treatments that are “better” than the control to more elaborate
studies. Also, in a business environment, for example, people
might consider changing their current investment policy to one of a
number of newly available comparable policies provided the payoff is
higher.

The alternative hypothesis of interest here is another general-
ization of the one-sided alternatives problem to the case of several
samples and constitutes a subset of the ordered alternatives problem
discussed earlier. One expects, at least intuitively, to be able to utilize
the available pertinent information to construct a test which is more
powerful than the tests for either the general or the ordered alter-
natives problem.

Without any loss of generality let F; be the cdf of the control
population and let F; be the cdf of the ith treatment population,

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



384 CHAPTER 10

i=2.3,...,k, where F; = F(x — 0;) with F;(0) = p, so that 0; is the pth
(0 < p < 1) quantile of F;. Our problem is to test, for a specified p, the
null hypothesis that the pth treatment quantiles are equal and equal
to the pth control quantile,

H(): 92293=~--=9k=91
against the one-sided alternative hypothesis,

Hi: 09201, 03>01,...,6,>01

where at least one of the inequalities is strict. As pointed out earlier,
when 0; > 01, F; is stochastically larger than F. In the literature on
hypothesis testing with restricted alternatives, this alternative is
known as the simple-tree alternative. Miller (1981), among others,
calls this a “many-one” problem.

In some cases it might be of interest to test the alternative in the
opposite direction, 0y < 01, 03 < 01,...,0;, < 01, where at least one of
the inequalities is strict. The tests we discuss can easily be adapted for
this case.

Our approach in the many-one problem is basically similar to
that in the ordered alternatives problem in that we view the testing
problem as a collection of (k — 1) subtesting problems Hy;: 0; = 0;
against Hy;: 6,>07 for i = 2,3,...,k Thus, a distribution-free test for
testing H, against H; is obtained in two steps. First an appropriate
one-sample test for the ith subtesting problem is selected and then
(k — 1) of these tests are combined in a suitable manner to produce an
overall test.

Before considering specific tests we would like to make a dis-
tinction between the cases (i) where sufficient prior knowledge about
the control is at hand so that the control population may be assumed to
be known (in this case the control is often called a standard), at least to
the extent of the parameter(s) of interest, and (ii) where no concrete
knowledge about the control group is available. These two cases will be
treated separately and the test procedures for these cases will be
somewhat different.

CASE (I): 6; KNOWN

First consider the case of testing Hy where 0; is either known or
specified in advance, against the alternative H;. In this case, the
subtesting problem, for every i = 2,3, ... k%, is a one-sample problem
and therefore one of several available distribution-free tests can be
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used in step one. For example, if the only reasonable assumption about
the parent distributions is continuity, we would use the sign test. On
the other hand, if it can be assumed that the underlying distributions
are symmetric about their respective preselected quantiles, we may
want to use the Wilcoxon signed rank test. For simplicity and ease of
presentation we detail only the tests based on the sign test, although
one can proceed in a similar manner with some other one-sample
distribution-free tests. Part of this discussion is from the papers by
Chakraborti and Gibbons (1991, 1992).

The usual sign test statistic for testing H; against H1; is based on
the total number of negative differences X;; — 6; in the ith sample,

Vi=> I(X;—6,<0)
=1

Jj=

1=2,3,...,k, and we reject Hy; in favor of Hy; if V; is small. With this
motivation, a simple overall test of H, against H; can be based on V,
the sum of the V;’s, i = 2, 3,...,k, and the rejection region consists of
small values of V. One practical advantage of using V is that under H,
V has a binomial distribution with parameters N = Ef:z n; and p.
Accordingly, P values or exact critical values can be found using
binomial tables for small to moderate sample sizes. For larger sample
sizes, the normal approximation to the binomial distribution can be
used to construct tests with significance levels approximately equal to
the nominal value or to find the approximate P value.

A simple modification of this sum test when the sample sizes are
quite different is to use V* = ZfZQ(V,- /n;) as the test statistic since the
V’s, and hence V, may be quite sensitive to unequal sample sizes. The
exact and/or approximate test can be implemented as before, although
for the exact test we no longer have the convenience of using tables of
the binomial distribution. The details are left as an exercise for the
reader (see, for example, Chakraborti and Gibbons, 1992).

An alternative test for this problem may be obtained by applying
the union-intersection principle (Roy, 1953). Here the null hypothesis
H, is the intersection of the (k— 1) subalternative hypotheses
Hiy;: 6,>0;1. Thus, Hy should be rejected if and only if at least one of the
subnull hypotheses Hy; is rejected and the latter event takes place if
the smallest of the statistics Vi, V3, ..., V; is too small. In other words,
an overall test may be based on

et V)

7.1
PR L (7.1

vVt = min<
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and one should reject Hy in favor of Hy if V' is small. The test based on
V' is expected to be more sensitive than the sum test since a rejection
of any of the (£ — 1) subnull hypotheses here would lead to a rejection
of the overall null hypothesis.

The exact distribution of V* can be obtained using the fact that
Vy,V3,...,V, are mutually independent and under H, each V; has a
binomial distribution with parameters n; and p. Thus

(7.2)

k [niv] ) ) A
P(V* <vlHo) =1-]] [1 -y (’;f)pm e

=2 Jj=0

where v is a fraction between 0 and 1 and [x] denotes the greatest
integer not exceeding x. The exact null distribution can be used to
calculate exact P values for small sample sizes. When sample sizes are
large, it is more convenient to use the normal approximation to the
binomial distribution to calculate approximate P values.

CASE (Il): 6; UNKNOWN

When 60, is unknown, we use the same general idea of first choosing a
suitable test for the ith subtesting problem (which in the present case
is a two-sample problem), i =2 3,...,k, and then combining the
(k — 1) test statistics to construct an overall test statistic. However, as
might be expected, the details are more involved, because the statistics
to be combined are now dependent.

To study our tests in this case consider, for the ith subtesting
problem, the following “i to 1” statistics

Wi = iI(XlJ < T)

J=1

where T is a suitable estimate of 6;. By analogy with the one-sample
case the quantity W; can be called a two-sample sign statistic, which
allows us to consider direct extensions of our earlier procedures to the
present case. It may be noted that if in fact 7" is a sample order statistic
(for example, when 0 is the median of 1, T should be the median of
the sample from F;), W; is simply the placement of 7' among the
observations from the ith sample. We have seen that the distribution
of W; does not depend on F; under Hy, and therefore any test based on
the W’s is a distribution-free test.

Now consider some tests based on a combination of the W’s.
Again, as in case (i), we can use the sum of the W’s for a simple overall
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test and reject Hy in favor of H; if W is small. This test has been
proposed and studied by Chakraborti and Desu (1988b) and will be
referred to as the CD test. The exact (unconditional) distribution of the
sum statistic W is obtained by noting that the exact distribution of W
is simply the expectation of the joint distribution of the W;’s,
1=2,3,...,k, with respect to 7" and that conditional on T, the W,’s are
independent binomial random variables with parameter n; and F;(T)
This yields, for w =0,1,..., (N — n1)

oo k
P —ul =3 [CT1(0)E0rn - R are 13
—00 i3

i

where the sum is over all a; =0,1,...,n;,i =2,3,...,k, such that
ast+ag+---+ap=w.

Under the null hypothesis the integral in (7.3) reduces to a
complete beta integral and the exact null distribution of W can be
enumerated. However, a more convenient closed-form expression for
the null distribution of W may be obtained directly by arguing as
follows. The statistic W is the total number of observations in treat-
ment groups 2 through % that precede T'. Hence the null distribution of
W is the same as that of the two-sample precedence statistic with
sample sizes n; and N — n; and this can be obtained directly from the
results in Problems 2.28¢ and 6.10a. Thus we have, when T is the ith
order statistic in the control sample,

P =witi) <[ (T (0] (e )

w=01,....N:i=1,2,....n

or equivalently,

pw—wr = (M) (1) /Sy e

Also, using the result in Problem 2.28d we have

Eo(W) = (N — ny) (n L 1) (75)
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and
ni—1i-+ 1)(N+ 1)(N — n1)
(n1+1)*(n1 +2)

varg(W) = i (7.6)

The null distribution can be used to determine the exact critical
value for a given level of significance o or to find the P value for an
observed value of W.

For some practical applications and further generalizations, it is
useful to derive the large sample distribution of W. We first find the
large sample distribution of the (£ — 1) dimensional random vector
(Wo,Ws,...,W). It can be shown (Chakraborti and Desu, 1988a;
Gastwrith and Wang, 1988) that the large sample distribution of this
random vector can be approximated by a (k — 1)-variate normal dis-
tribution. The result is stated below as a theorem.

Theorem 7.1 Let Wy be the (k — 1)-dimensional vector whose ith ele-
ment is NY2[W; 1/n; 1 —F;1(01)],i =1,2,...,k — 1. Suppose

that, as min(ny,ng,...,n;) — oo, we have n;/N — %;,0 < X; < 1,
i=1,2,...,k Also let F}(01)=/fi(61) exist and be positive for
i =1,2,... k. The random vector Wy converges in distribution to

a (k —1)-dimensional normal distribution with mean vector 0
and covariance matrix X whose i,jth element is

5. - @i€ip(1—p) N 8;Fi11(01)[1 — Fir1(01)]
v M Mit1

where Q; = fi11(61)/f1(01),i,7=1,2,...,k — 1, and 3;; is equal to 1
if i =j and is equal to 0 otherwise.

From Theorem 7.1, the null distribution of W can be approximated
by a normal distribution with mean (N —n;)p and variance
N(N —n1)p(1 — p)/n1. Thus, for case (ii), an approximately size o test
based on the sum of the W’s is to reject Hy in favor of Hy if

N(N —ny)p(1 —p)]*?

- (7.7)

W< (N —ni)p—2z4

As we noted earlier, alternative nonparametric tests are available
for our consideration in step 1, where the basic set of test statistics is
chosen. For example, when 0; is unknown so that we choose a
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two-sample test for the ith subtesting problem, we can employ the
Mann-Whitney U statistic (or more generally any linear rank statistic)
between the ith and the first sample, say Uy;, and combine these U’s in
some suitable manner for an overall test statistic. The resulting tests
are distribution-free since the distribution of U;y; does not depend on
either F; or F; under H,.

As in the case of the W’s, the sum of the U’s, say
W* = Zf:z U,;, can be used for a simple overall test and such a test
has been proposed and studied by Fligner and Wolfe (1982), here-
after referred to as FW test. The null distribution of W* is the
same as that of a two-sample Mann-Whitney statistic (see Section
6.6) with m =n; and n =N — n;. It can be seen that the FW test
rejects Hy in favor of the simple-tree alternative if W* is large so
that the P value is in the upper tail. A choice between the tests
based on the sum of U’s and the sum of W’s may be made on the
basis of the ARE. Interestingly, when p = 0.5 (that is, when 6; is the
median of F;), the ARE between these two tests can be shown to be
the same as the ARE between the sign test and the signed-rank
test, regardless of the underlying distribution. For example, when
the underlying distribution F' is normal, the ARE is 0.67, whereas
when F' is double exponential, the ARE is 1.33.

APPLICATIONS

The CD test rejects Hp against the simple-tree alternative H; when W
is significantly small. Thus the P value is P(W < w|H)), where w is the
observed value of the test statistic W. The exact P value can be cal-
culated using the null distribution of W given in (7.4) by adding the
individual probabilities under H, However, for moderately large
sample sizes, the normal approximation to the P value is adequate.
This can be calculated from @[W;i"%))}, where Eo(W) and vary(W)
0
are given in (7.5) and (7.6), respectively.

Example 7.1 Consider again the problem in Example 6.1, where a
group of speakers are compared with respect to their ability to com-
municate. Since the first group of speakers use no audiovisual aids, we
could regard this as the control group. It is reasonable to expect that
the use of audiovisual aids would have some beneficial effects in
communication, and hence the scores for at least one of the groups 2
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and 3 should be greater than those for group 1. Thus we are interested
in testing Hy: 03 = 02 = 0; against Hi: 09>01,03>0;1, where at least
one of the inequalities is strict. In this example, 6; is unknown, and
therefore we will use the CD test with £ = 3,ny = ng = ng = 5. From
the data we find T'= 68, Wy =0, and W3 = 0. Hence W = 0 and the
exact P value from (7.4) is

(70 ) o0)/ s )] oo

Therefore, at say o = 0.05, there is evidence that the median scores of
at least one of groups 2 and 3 is greater than that of group 1. In order
to use the normal approximation we find Ey(W)=5 and
varg(W) = 5.7143, from (7.5) and (7.6), and the approximate P value
from Table A of the Appendix is ®(—2.09) = 0.0183. This is reasonably
close to the exact P value even though the sample sizes are small.

For the Fligner-Wolfe test, we find U9 = 22 and U3 = 24 so that
the P value is P(W*>46 | Hy). To calculate this probability note that
W* is in fact the value of the Mann-Whitney statistic calculated be-
tween sample 1 (as the first sample) and samples 2 and 3 combined (as
the second sample). Now using the relationship between U statistics
and rank-sum statistics, it can be seen that the required probability is
in fact equal to the probability that the rank-sum statistic between two
samples of size m = 5 and n = 10 is at most 19 under Hy. This is found
from Table J of the Appendix as 0.004. Thus, the evidence against the
null hypothesis in favor of the simple tree alternative is stronger, on
the basis of the FW test.

10.8 THE CHI-SQUARE TEST FOR k PROPORTIONS

There is one further k-sample test which should be mentioned,
although it is applicable in a situation different from that of the other
tests in this chapter. If the £ populations are all Bernoulli distribu-
tions, the samples consist of count data. The % populations are all
equivalent if the Bernoulli parameters 01,6s,...,0; are all equal. Let
X1,Xs, ..., X;, denote the numbers of successes in each of the £ sam-
ples, respectively. For i = 1,2,... k, X; has the binomial distribution
with parameter 0; and number of trials n;. A test statistic for the null
hypothesis

Hy: 60 =03 = --- = 0, unspecified
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against the alternative that the 6’s are not all equal can be derived
from the goodness-of-fit test exactly as in the case of the k-sample
median test in Section 10.2, except that our classification criterion
besides sample number is now simply success or failure for each
sample instead of less than & or not. Using the same notation as before,
with 0y denoting the estimated common parameter under H, (which
replaces t/N), we have

fir =x;

fiz =ni —x;

ej1 = n;0g

ejg = n;(1 —0o)

and the test criterion from (2.2) is

k 2
(% —n;0)
Q o ;nieo(l — 90)

where 6y = Zle(xi /N), which has approximately the chi-square dis-
tribution with £ — 1 degrees of freedom. Hence the approximately size
o test is to reject Hy in favor of the alternative if @ >X;?;_M.

A simple form of the test statistic , useful for calculations, is

1 k x-2 Neo

QZ@o(lfeo);n_i_lfeo

(8.1)

Example 8.1 In a double-blind study of drugs to treat duodenal peptic
ulcers, a large number of patients were divided into groups to compare
three different treatments, antacid, antipepsin, and anticholinergic.
Antacid has long been considered the major medication for ulcers; the
latter two drugs act on different digestive juices. The number of pa-
tients in the groups and the percent who benefited from that treat-
ment are shown below. Does there appear to be a difference in
beneficial effects of these three treatments?

Treatment Number Percent benefited
Antacid 40 55
Anticholinergic 60 70
Antipepsin 75 84

Solution We must first calculate the number of patients benefited by
each drug asx; = 40(0.55) = 22,x9 = 60(0.70) = 42, x5 = 75(0.84) = 63;
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then the estimate of the common probability of benefit is 6y =
(22 +42+63)/175 = 0.726 and

1 (222 42?2 632>_175(0.726)

_ 22° 42" 63° — 10.97
0.726(0.274) \ 40 | 60 ' 75 0.274

Q

with 2 degrees of freedom. Table B of the Appendix shows that
P < 0.001, so we conclude that the probabilities of benefit from each
drug are not equal.

10.9 SUMMARY

In this chapter we have been concerned with data consisting of &
mutually independent random samples from £ populations where the
null hypothesis of interest is that the & populations are identical.
Actual measurements are not required to carry out any of the tests.

When the location model is appropriate and the alternative is
that the locations are not all the same, the median test extension, the
Kruskal-Wallis, Terry and van der Waerden tests are all appropriate.
The median test uses less information than the others and therefore
may be less powerful. Further, exact P values require calculations
based on the multivariate extension of the hypergeometric distribu-
tion and this is quite tedious. As in the two-sample case, the median
test is primarily of theoretical interest. On the other hand, the Krus-
kal-Wallis test is simple to use and quite powerful. Tables of the exact
distribution are available and the chi-square approximation is rea-
sonably accurate for moderate sample sizes.

All of the tests are quicker and easier to apply than the F test and
may perform better if the F' test assumptions are not satisfied. Fur-
ther, as in the parametric setting, nonparametric methods of multiple
comparisons can be used in many cases to determine which pairs of
population medians differ significantly; see, e.g., Miller (1966, 1981).
The advantage of a multiple comparisons procedure over separate
pairwise comparisons is that the significance level is the overall level,
the probability of a Type I error in all of the conclusions reached.

If the alternative states a distinct complete ordering of the
medians, the Jonckheere-Terpstra test is appropriate and exact P
values can be obtained. We also discuss tests where the alternative
states an ordering of medians with respect to a control group only,
where the control median may be either known or unknown.

The asymptotic relative efficiency of the Kruskal-Wallis test
compared to the normal theory test is at least 0.864 for any continuous
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distribution and is 0.955 for the normal distribution. The Terry and
van der Waerden tests should have an ARE of 1 under these circum-
stances, since they are asymptotically optimum for normal distribu-
tions. The ARE of the median test is only 2/n = 0.637 relative to the F
test for normal populations with equal variances, and 2/3 relative to
the Kruskal-Wallis test, in each case for normal distributions. For
further details, see Andrews (1954). All the ARE results stated for the
median test apply equally to the control median test, since these two
tests have an ARE of 1, regardless of the parent distribution.

Finally, we discuss the chi-square test for £ proportions as an
approximate test for identical populations when the populations are
all Bernoulli and the only relevant parameters are the probabilities of
success.

PROBLEMS

10.1. Generate by enumeration the exact null probability distribution of the k-sample
median test statistic for £ = 3,n; = 2,ny = 1,n3 = 1. If the rejection region consists of
those arrangements which are least likely under the null hypothesis, find this region R
and the exact a. Compute the values of the @ statistic for all arrangements and compare
that critical region for the same value of o with the region R.

10.2. Generate the exact distribution of the Kruskal-Wallis statistic H for the same &
and n; as in Problem 10.1. Find the critical region which consists of those rank sums
R1,R5,R3 which have the largest value of H and find exact .

10.3. By enumeration, place the median test criterion (U;,Usz,Us) and the H test
criterion (R1,Rg2,R3) in one-to-one correspondence for the same % and n; as in Problems
10.1 and 10.2. If the two tests reject for the largest values of @ and H, respectively, which
test seems to distinguish better between extreme arrangements?

10.4. Verify that the form of H given in (4.4) is algebraically equivalent to (4.2).
10.5. Show that H with & = 2 is exactly equivalent to the large-sample approximation
to the two-sample Wilcoxon rank-sum test statistic mentioned in Section 8.2 with
m=niy,n =ny.

10.6. Show that H is equivalent to the F test statistic in one-way analysis-of-variance
problem if applied to the ranks of the observations rather than the actual numbers.

Hint: Express the F ratio as a function of H in the form given in (4.3) or (4.2) to show

that
k-1(N-1 !
FZ{N—k( H _lﬂ

This is an example of what is called a rank transform statistic. For related interesting
results, see for example, Iman and Conover (1981).
10.7. Write the k-sample median test statistic given in (2.2) in the form of (5.1) (cf.
Problem 7.2).
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10.8. How could the subsampling procedure described in Section 9.9 be extended to
test the equality of variances in . populations?

10.9. In the context of the k-sample control median test defined in Section 10.3,
show that for any i(=2,3,...,k) and j(=0,1,...,q) the random variable V;; has a
binomial distribution. What are the parameters of the distribution (i) in general and
(ii) under Hy?

10.10. Show that under Hy: 6; = 62 = --- = 6, the distribution of V*, the sum test
statistic for comparisons with a control when 6; is known in the case of unequal sample
sizes defined in Section 10.7, is given by

oV =0 =] (0)0s

1=2 t

where N = Zf:Z n;,v; =0,1,...,n;,i=1,2,...,k, are such that Z'{z;(vi/ni) =v. Enu-
merate the probability distribution of V* when () n;=ng=ng=3 and (ii)
ny=3,ng=n3=2.

10.11. In the context of the Jonckheere-Terpstra test discussed in Section 10.6, show
that under Hy fori <j <r,

COV(Z-J,‘J'7 Ui |H0) = COV((Jﬁ7 U, |H0) = ninjnr/12

cov(Uy;, Uy | Hy) = cov(Uj;, Uy | Hy) = —ninjn, /12

Hint: 2 cov(Uy;, U;,) =var(U;;,U;,) —var(Uyj) +var(U;,.) =var(U, j.,) —var(Uy;) +var(U;,),
where Uj j,, is the Mann-Whitney U statistic computed between the ith sample and the
combined jth and rth samples.

10.12. Struckman-Johnson (1988) surveyed 623 students in a study to compare the
proportions of men and women at a small midwestern university who have been coerced
by their date into having sexual intercourse (date rape). A survey of over 600 students
produced 623 responses. Of the 355 female respondents, 79 reported an experience of
coercion, while 43 of the 268 male respondents reported coercion. Test the null hy-
pothesis that males and females experience coercion at an equal rate.

10.13. Many psychologists have developed theories about how different kinds of
brain dominance may affect recall ability of information presented in various for-
mats. Brown and Evans (1986) compared recall ability of subjects classified into
three groups according to their approach to problem solving as a result of their
scores on the Human Information Process Survey. The three groups are Left (ac-
tive, verbal, logical), Right (receptive, spacial, intuitive), and Integrative (combi-
nation of right and left). Information was presented to these subjects in tabular
form about the number of physicians who practice in six different states. Recall
was measured by how accurately the subjects were able to rank the states from
highest to lowest after the presentation concluded. For the scores in Table 1 de-
termine whether median recall ability is the same for the three groups (higher
scores indicate greater recall).
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Table 1

Left Right Integrative
35 17 28

32 20 30

38 25 31

29 15 25

36 10 26

31 12 24

33 8 24

35 16 27

10.14. A matching-to-sample (MTS) task is used by psychologists to understand how
other species perceive and use identity relations. A standard MTS task consists of having
subjects observe a sample stimulus and then rewarding the subject if it responds to an
identical (matching) sample stimulus. Then the psychologist studies the ability of sub-
jects to transfer the matching concept to other sample stimuli. Oden, Thompson, and
Premack (1988) reported a study in which four infant chimpanzees learned an MTS task
with only two training sample stimuli. Then the chimpanzees were tested on their ability
to transfer the learning to three kinds of novel items, classified as Objects, Fabrics, and
Food. The data were recorded as number of correct matches in a total of 24 trails. One
purpose of the study was to show that the concept of matching is broadly construed by
chimpanzees irrespective of the type of sample stimulus. Determine whether the data in
Table 2 support this theory.

Table 2

Chimp Training Object Fabric Food
Whiskey 20 22 22 18
Liza 23 19 22 13
Opal 18 20 18 15
Frieda 21 21 19 19

10.15. Andrews (1989) examines attitudes toward advertising by undergraduate
marketing students at universities in six different geographic regions. Attitudes were
measured by answers to a questionnaire that allowed responses on a 7-point Likert scale
(1 =strongly disagree and 7= strongly agree). Three statements on the questionnaire
related to the social dimension were (1) most advertising insults the intelligence of the
average consumer; (2) advertising often persuades people to buy things they shouldn’t
buy; and (3) in general, advertisements present a true picture of the product being ad-
vertised. For the mean scores given in Table 3, determine whether there are any regional
differences in attitude for the social dimension.
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Table 3

Region Insults Persuades True picture
Northwest 3.69 4.48 3.69
Midwest 4.22 3.75 3.25
Northeast 3.63 4.54 4.09
Southwest 4.16 4.35 3.61
South Central 3.96 4.73 3.41
Southeast 3.78 4.49 3.64

10.16. Prior to the Alabama-Auburn football game, 80 Alabama alumni, 75 Auburn
alumni, and 45 residents of Tuscaloosa who are not alumni of either are asked who they
think will win the game. The responses are as follows:

Alabama Auburn Tuscaloosa
Alabama win 55 15 30
Auburn win 25 60 15

Do the three groups have the same probability of thinking Alabama will win?

10.17. Random samples of 100 insurance company executives, 100 transportation
company executives, and 100 media company executives were classified according to
highest level of formal education using the code 10 =some college, 20 =bachelor’s de-
gree, 30 =master’s degree, 40 =more than master’s. The results are shown below. De-
termine whether median education level is the same for the three groups at o = 0.05.

Education Insurance Transportation Media
10 19 31 33
20 20 37 34
30 36 20 21
40 25 12 12
Total 100 100 100

10.18. Four different experimental methods of treating schizophrenia—(1) weekly
shock treatments, (2) weekly treatments of carbon dioxide inhalations, (3) biweekly
shock treatment alternated with biweekly carbon dioxide inhalations, and (4) tranqui-
lizer drug treatment—are compared by assigning a group of schizophrenic patients
randomly into four treatment groups. The data below are the number of patients who did

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRrceL DEkkER, INc. (ﬂ
270 Madison Avenue, New York, New York 10016 0



TESTS OF THE EQUALITY OF & INDEPENDENT SAMPLES 397

and did not improve in four weeks of treatment. Test the null hypothesis that the
treatments are equally effective.

Treatment Number improved Number not improved
1 43 12
2 24 28
3 32 16
4 29 24

10.19. Eighteen fish of a comparable size in a particular variety are divided randomly
into three groups and each group is prepared by a different chef using the same recipe.
Each prepared fish is then rated on each of the criteria of aroma, flavor, texture, and
moisture by professional tasters. Use the composite scores below to test the null
hypothesis that mean scores for all three chefs are the same.

Chef A Chef B Chef C
4.05 4.35 2.24
5.04 3.88 3.93
3.45 3.02 3.37
3.57 4.56 3.21
4.23 4.37 2.35
4.18 3.31 2.59

10.20. An office has three computers, A, B, and C. In a study of computer usage, the
firm has kept records on weekly use rates for 7 weeks, except that computer A was out
for repairs for part of 2 weeks. The eventual goal is to decide which computers to put
under a service contract because they have a higher usage rate. As a first step in this
study, analyze the data below on weekly computer usage rates to determine whether
there is a significant difference in average usage. Can you make a preliminary
recommendation?

A B C
12.3 15.7 32.4
15.4 10.8 41.2
10.3 45.0 35.1
8.0 12.3 25.0
14.6 8.2 8.2
20.1 18.4
26.3 32.5

10.21. A company is testing four cereals to determine taste preferences of potential
buyers. Four different panels of persons are selected independently; one cereal is
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presented to all members of each panel. After testing, each person is asked if he would
purchase the product. The results are shown below. Test the null hypothesis that taste
preference is the same for each cereal.

Cereal
A B (o} D
Number who would buy 75 80 57 80
Number who would not buy 50 60 43 70

10.22. Below are four sets of five measurements, each set an array of data (for your
convenience) on the smoothness of a certain type of paper, each set obtained from a
different laboratory. Find an approximate P value to test whether the median smooth-
ness can be regarded as the same for all laboratories.

Laboratory Data

A 38.7 41.5 43.8 44.5 45.5
B 39.2 39.3 39.7 41.4 41.8
C 34.0 35.0 39.0 40.0 43.0
D 34.1 34.8 34.9 35.4 37.2

10.23. Verify the value of the Kruskal-Wallis test statistic given in the SAS solution to
Example 2.1 in Chapter 8.
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Measures of Association for
Bivariate Samples

11.1 INTRODUCTION: DEFINITION OF MEASURES OF ASSOCIATION IN
A BIVARIATE POPULATION

In Chapter 5 we saw that the ordinary sign test and the Wilcoxon
signed-rank test procedures, although discussed in terms of inferences
in a single-sample problem, could be applied to paired-sample data by
basing the statistical analysis on the differences between the pairs of
observations. The inferences then must be concerned with the popu-
lation of differences as opposed to some general relationship between
the two dependent random variables. One parameter of this popula-
tion of differences, the variance, does contain information concerning
their relationship, since

var(X —Y) = var(X) + var(Y) — 2cov(X,Y)

It is this covariance factor and a similar measure with which we
shall be concerned in this chapter.

399
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In general, if X and Y are two random variables with a bivariate
probability distribution, their covariance, in a certain sense, reflects
the direction and amount of association or correspondence between the
variables. The covariance is large and positive if there is a high
probability that large (small) values of X are associated with large
(small) values of Y. On the other hand, if the correspondence is inverse
so that large (small) values of X generally occur in conjunction with
small (large) values of Y, their covariance is large and negative. This
comparative type of association is referred to as concordance or
agreement. The covariance parameter as a measure of association is
difficult to interpret because its value depends on the orders of mag-
nitude and units of the random variables concerned. A nonabsolute
or relative measure of association circumvents this difficulty. The
Pearson product-moment correlation coefficient, defined as

cov(X,Y)
[var(X) Var(Y)]l/2

p(X,Y) =

is a measure of the linear relationship between X and Y. This coef-
ficient is invariant under changes of scale and location in X and Y,
and in classical statistics this parameter is usually used as the rela-
tive measure of association in a bivariate distribution. The absolute
value of the correlation coefficient does not exceed 1, and its sign is
determined by the sign of the covariance. If X and Y are independent
random variables, their correlation is zero, and therefore the mag-
nitude of p in some sense measures the degree of association.
Although it is not true in general that a zero correlation implies
independence, the bivariate normal distribution is a significant
exception, and therefore in the normal-theory model p is a good
measure of association. For random variables from other bivariate
populations, p may not be such a good description of relationship
since dependence may be reflected in a wide variety of types of
relationships. One can only say in general that p is a more descriptive
measure of dependence than covariance because p does not depend on
the scales of X and Y.

If the main justification for the use of p as a measure of asso-
ciation is that the bivariate normal is such an important distribution
in classical statistics and zero correlation is equivalent to indepen-
dence for that particular population, this reasoning has little sig-
nificance in nonparametric statistics. Other population measures of
association should be equally acceptable, but the approach to mea-
suring relationships might be analogous, so that interpretations are
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simplified. Because p is so widely known and accepted, any other
measure would preferably emulate its properties.

Suppose we define a “good” relative measure of association as one
which satisfies the following criteria:

1. For any two independent pairs (X;,Y;) and (X;,Y;) of random
variables which follow this bivariate distribution, the measure will
equal + 1 if the relationship is direct and perfect in the sense that

X; <X; whenever Y; <Y, or X;>X; whenever Y; >Y;

This relation will be referred to as perfect concordance (agree-
ment).

2. For any two independent pairs, the measure will equal —1 if the
relationship is indirect and perfect in the sense that

X; <X; whenever Y; >Y; or X;>X; whenever Y; <Y,

This relation will be referred to as perfect discordance (disagree-
ment).
3. If neither criterion 1 nor criterion 2 is true for all pairs, the
measure will lie between the two extremes —1 and + 1. It is also
desirable that, in some sense, increasing degrees of concordance
are reflected by increasing positive values, and increasing degrees
of discordance are reflected by increasing negative values.
The measure will equal zero if X and Y are independent.
The measure for X and Y will be the same as for Y and X, or —X
and -Y, or —Y and —X.
6. The measure for —X and Y or X and —Y will be the negative of the
measure for X and Y.
7. The measure will be invariant under all transformations of X and
Y for which order of magnitude is preserved.

ouk

The parameter p is well known to satisfy the first six of these
criteria. It is a type of measure of concordance in the same sense that
covariance measures the degree to which the two variables are asso-
ciated in magnitude. However, although p is invariant under positive
linear transformations of the random variables, it is not invariant
under all order-preserving transformations. This last criterion seems
especially desirable in nonparametric statistics, as we have seen that
in order to be distribution-free, inferences must usually be determined
by relative magnitudes as opposed to absolute magnitudes of the
variables under study. Since probabilities of events involving only
inequality relations between random variables are invariant under all
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order-preserving transformations, a measure of association which is
a function of the probabilities of concordance and discordance will
satisfy the seventh criterion. Perfect direct and indirect association
between X and Y are reflected by perfect concordance and perfect
discordance, respectively, and in the same spirit as p measures a
perfect direct and indirect linear relationship between the variables.
Thus an appropriate combination of these probabilities will provide
a measure of association which will satisfy all seven of these desirable
criteria.

For any two independent pairs of random variables (X;,Y;) and
(X;,Y;), we denote by p. and p; the probabilities of concordance and
discordance, respectively.

pe =P{{X; <X;) N (Y; <Y)]U[X; >X;) N (Y; > 7))
=P[(X; - X;)(Y; - Y;) > 0]
=P[X; <X))N(Y; <Y))| + P[X; > Xj) N (Y; > Y})]

pa = P[(X; - X;)(Y; - Y;) <0
— P(X; < X)) N (¥; > ¥})] + P[(X; > X)) N (Y < Y))]
Perfect association between X and Y is reflected by either perfect
concordance or perfect discordance, and thus some combination of

these probabilities should provide a measure of association. The
Kendall coefficient t is defined as the difference

T=DPc —Pd
and this measure of association satisfies our desirable criteria 1 to 7.
If the marginal probability distributions of X and Y are continuous,
so that the probability of ties X; =X, or Y; =Y, within groups is
eliminated, we have
pe ={P(Y; <Yj) - P[(X; > X)) N (Y; <Y})]
+{P(Y; >Y)) - P[(X; <Xj) N (Y; > Y})]}
=P(Y; <Yj)+P(Y; >Y}) —pa
=1-pq
Thus in this case 1 can also be expressed as
1=2p,—1=1-2py

How does t measure independence? If X and Y are independent
and continuous random variables, P(X; < X;) = P(X; > X;) and further
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the joint probabilities in p. or p; are the product of the individual
probabilities. Using these relations, we can write

pe =PX; <Xj)P(Y; <Y)) + P(X; > Xj)P(Y; > Y))
=PX,>X;))PY;<Y;))+PX;, <X;)P(Y; >Y;) =pq
and thus t = 0 for independent continuous random variables. In gen-
eral, the converse is not true, but this disadvantage is shared by p. For
the bivariate normal population, however, T = 0 if and only if p =0,

that is, if and only if X and Y are independent. This fact follows from
the relation

2 .
T = —arcsin p
T

which can be derived as follows. Suppose that X and Y are bivariate
normal with variances c% and o2 and correlation coefficient p. Then
for any two independent pairs (X;,Y;) and (X}, Y;) from this population,
the differences
_Xi X and V:Yiiyj
V2ox V2oy

also have a bivariate normal distribution, with zero means, unit var-
iances, and covariance equal to p. Thus p(U,V) = p(X,Y). Since

pe=P(UV > 0)

we have

0 0 00 00
Pe = / / ox,y)dudy + /0 /0 ox,y) dxdy

0 /0
=2 / / o(x,y)dxdy = 20(0,0)

where ¢(x,y) and ®(x,y) denote the density and cumulative distribu-
tions, respectively, of a standardized bivariate normal probability
distribution. Since it can be shown that

1 1
® =~ 4+ arcsi
(0,0) 1 + oy aresinp
we see that for the bivariate normal

1 1 .
Pc =5+ — arcsinp
2 ' mn
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and

2 .
T =— arcsinp
T

CHAPTER 11

In this chapter, the problem of point estimation of these two po-
pulation measures of association, p and 1, will be considered. We shall
find estimates which are distribution-free and discuss their individual
properties and procedures for hypothesis testing, and the relationship
between the two estimates will be determined. Another measure of
association will be discussed briefly.

11.2 KENDALL’S TAU COEFFICIENT

In Section 11.1, Kendall’s tau, a measure of association between ran-
dom variables from any bivariate population, was defined as

T=DPc —Pd

(2.1)

where, for any two independent pairs of observations (X;,Y;), (X;,Y;)
from the population,

pe=P[X;—=X;)(Y;-Y:)>0] and pq=P[X;-X;)(Y;—-Y:) <O]

(2.2)

In order to estimate the parameter t from a random sample of n

pairs

(X17Y1)1 (XZaYZ)a SRR (Xn7Yn)

drawn from this bivariate population, we must find point estimates of
the probabilities p. and p,;. For each set of pairs (X,Y)), (X;,Y,) of
sample observations, define the indicator variables

A =sgn(X; - X;) sgn(Y; - Y;) (2.3)
where
ifu<0
sgn(u) = ifu=0
ifu>0

Then the values assumed by A;; are

if these pairs are concordant

if these pairs are discordant

if these pairs are neither concordant nor
discordant because of a tie in either component
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The marginal probability distribution of these indicator variables is

DPe if ajj = 1
fAij (au) =4 Pd if ajj = -1 (2.4)
1—p.—pg if gj=0

and the expected value is
E(Ajj) = 1pc + (-1)pg = pc —pa =1 (2.5)
Since obviously we have a;; = a;; and a;; = 0, there are only (}) sets of

pairs which need be considered. An unbiased estimator of t is therefore
provided by

T = ZZ 2> > nil (2.6)

1<l<j<n( ) 1<L<]<n

This measure of the association in the paired-sample observations is
called Kendall’s sample tau coefficient.

The reader should note that with the definition of A;; in (2.3) that
allows for tied observations, no assumption regarding the continuity of
the population was necessary, and thus 7T is an unbiased estimator of
the parameter t in any bivariate distribution. Since the variance of T
approaches zero as the sample size approaches infinity, T is also a
consistent estimator of t for any bivariate distribution, as we now
show.

In order to determine the variance of T, the variances and cov-
ariances of the A;; must be evaluated since T is a linear combination of
these indicator random variables. From (2.6), we have

nz(n—l) var(T ZZ var(A;) +ZZZZCOV (A, Anr)

I<igjsn 1<i<gj<n
1<h<k<n
i£h or j£k

(2.7)

Since the A;; are identically distributed for all i < j, and A;; and A, are
independent for all i ## A and j # k& (no pairs in common), (2.7) can be
written as
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nz(n—l)gvar K )Var i) +Z Z Z cov(A;;,Air)

i=1 j=i+1k=i+1

J#k
n_Jj-1/-1
+3 D cov(Ay,Ay)
=2 i=1 k=1
ik
n j-1 n
+ Z COV(AL'J',Ajk>
=2 i=1 k=11
itk
n-1 n i-1
+> > cov(Aij,Aki)} (2.8)
i=2 j=it1 k=1

~.
t*
™

By symmetry, all of the covariance terms in (2.8) are equal. They are
grouped together according to which of the (X,Y) pairs are common to
the (A;;, Apz) in order to facilitate counting the number of terms in each
summation set. Within the first set we have two distinct permutations,
(Aj,Aip) and (A, A, for each of the (}) choices of i #j#k, and
similarly for the second set. But the third and fourth sets do not allow
for reversal of the A;; and Ay, terms since this makes a different (X,Y)
pair in common, and so there are only (g) covariance terms in each of
these summations. The total number of distinguishable covariance
terms then is (2+2+1+1)(3) =6(3), and (2.8) can be written as
simply

n?(n —1)? var(T) = 4 [(g) var(A;) + 6<§> cov(Aij,Aik)]
or
n(n — 1)var(T) = 2 var(A;;) + 4(n — 2)cov(A;;,Ajr) (2.9)
for any
i<jii<kyj#ki=12....n-1;j=2,3,...,n;k=2,3,...,n

Using the marginal probability distribution of A;; given in (2.4),
the variance of A;; is easily evaluated as follows:

E(A?%) = 1pc + (—1)°pa = pe + Pa

2.10
var(A;) = (pe +pa) — (Pc — pa)” (219
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The covariance expression, however, requires knowledge of the joint
distribution of A;; and A;;, which can be expressed as

Pece lf aij =a;r,= 1

Pdd if ajj=a;=-1

Ded ifaijzl,aik:—l
fAiink (aijvaik): or aij:_L aip=1

1-pec—Pdaa—2pca if a;;=0,a;,=-1,0,1
ora;=-1,0,1,a;=0
0 otherwise

(2.11)

foralli<j, i<k, j#k, i=1,2,...,n, and some 0 < pcc,Pdq;Pead < 1.
Thus we can evaluate

E(AzAi) = 1%pec + (—1)*paa + 2(~1)pea
cov(Ajj, Aix) = Pec + Pad — 2Pea — (Pc — Pa)’ (2.12)
Substitution of (2.10) and (2.12) in (2.9) gives
n(n —1)var(T) = 2(pc + pa) + 4(n — 2)(Pec + Pdd — 2Pcd)
—2(2n - 3)(pe — pa)® (2.13)

so that the variance of T'is of order 1/n and therefore approaches zero
as n approaches infinity.

The results obtained so far are completely general, applying to all
random variables. If the marginal distributions of X and Y are conti-
nuous, P(A;;=0)=0 and the resulting identities

pct+pa=1 —and  pe+Ppdd +2pa =1
allow us to simplify (2.13) to a function of, say, p. and p.q only:
n(n—1) var(T) = 2 — 2(2n — 3)(2p. — 1)* + 4(n — 2)(1 — 4p.q)
—8(2n—3pe(1-p.) — 16(n—2pa  (2.14)
Since for X and Y continuous we also have
pPea =P(A; =1NA;=-1)
:P(AU = 1) —P(Aij =1NA; = 1)
= Pc — Pce
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another expression equivalent to (2.14) is
n(n —1)var(T) =8(2n — 3)p.(1 —p.) — 16(n — 2)(pc — Pec)
= 8pc(1 _pc) + 16(”’ - 2)(pcc _pc) (2'15)

We have already interpreted p. as the probability that the pair
(X,,Y)) is concordant with (X;,Y;). Since the parameter p.. is

pcc—P(AJ—lﬂAk—l)
—P[X; - X)(Y;-Y) > 0N (X —X)(Ys—Y) > 0] (2.16)

foralli<j,i<k,j#k, i=1,2, ...,n, we interpret p.. as the prob-
ability that the pair (X;,Y;) is concordant with both (X;,Y;) the (X},,Y;).

Integral expressions can be obtained as follows for the prob-
abilities p. and p,. for random variables X and Y from any continuous
bivariate population Fx y(x,y).

pe = P[(X; < X;) N (Y; < Y)] + P[(X; > X;) N (Y; > Y;)]
= /00 /°° Pl(X; < xj) N (Yi <y))Ifx.y,(xj,5;) dxj dy;
’ /°° /j" PIXj < x:) N (Y <yi)lfx, v (xi,yi) dx; dyi

= 2/: /:vay(x,y)fxﬂy(x,y)dxdy (2.17)

Pee = P({[(X; <X;) N (Y; <¥))]U[(Xi > X)) N (Yi > Y})]}
N{[(X; <Xp) N (Y; <Y3)U[(X; >Xp) N (Y >Y3)]})
_ P[(AUB)N(CUD)
_ P[(ANC)U(BND)U(AND)U(BNC)]
— P(ANC)+P(BND)+2P(AND)

— [ ] P50 (%2500 KN (T >3]
+P[(X; <x;) N (Y <yi) N (Xp <) N (Y}, <pi)]
+2P[(X;>x;) N (Y >y:) N (X <x:) N (Ve <yi)]}
X fx, v, (x:,5:) dx; dy;
= [ [ P an @y PIE <x)n (¥ <y
+2P((X )N (Y >9)|P|(X <x)N\(Y <3)])ficy (x,y) dxdy
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— [ [ @00 )+ P <o (¥ <o)}y () dedy

// [1-Fx(x)—Fy(y)+2Fxy(x.y)fxy(xy)dxdy  (2.18)

Although T as given in (2.6) is perhaps the simplest form for
deriving theoretical properties, the coefﬁment can be written in a
number of other ways. In terms of all n? pairs for which A;j is defined,
(2.6) can be written as

T = Z;Z n—l (2.19)
i=1J

Now we introduce the notation
U = sgn(X; — X;) and Vi =sgn(Y; - Y;)

so that A;; = U;;V;; for all i, j. Assuming that X; # X; and Y; # Y; for all
I #j, we have

IR 9 BB

i=1 j= i=1 j=

and (2.19) can be written in a form resembling an ordinary sample
correlation coefficient as

Z?:I Z;L:I UijVij

IEECSNT

Kendall and Gibbons (1990) often use T in still another form,
which arises by simply classifying sets of differences according to the
resulting sign of A;;. If C and @ denote the number of positive and
negative A;; for 1 <i < j < n, respectively, and the total is S=C-@Q, we
have

(2.20)

= Cc-Q/(5)=5/(3) (2:21)

If there are no ties within either the X or Y groups, that is, A;; # 0 for
1#£],C+Q= < ) and (2.21) can be written as
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2, 29

oo

n
(5)
These two forms in (2.22) are analogous to the expression in Section 1
for the parameter

(2.22)

T=2p.—1=1-2py

and C/(3) and Q/(}) are obviously unbiased estimators for p. and pg,
respectively. The quantity C is perhaps the simplest to calculate for a
given sample of n pairs. Assuming that the pairs are written from
smallest to largest according to the value of the X component, C is
simply the number of values of 1 <i <j<n for which Y¥;-Y; >0,
since only then shall we have a;; = 1.

Another interpretation of T is as a coefficient of disarray, since it
can be shown (see Kendall and Gibbons, 1990, pp. 30-31) that the total
number of interchanges between two consecutive Y observations re-
quired to transform the Y arrangement into the natural ordering from
smallest to largest, i.e., to transform the Y arrangement into the X
arrangement, is equal to @, or (3)(1 —T')/2. This will be illustrated
later in Section 11.6.

NULL DISTRIBUTION OF T

Suppose we wish to test the null hypothesis that the X and Y random
variables are independent. Since t = 0 for independent variables, the
null distribution of 7' is symmetric about the origin. For a general

alternative of nonindependence, the rejection region of size o then
should be

TeR for |T| = t,)2
where £, /5 is chosen so that
P(|T| = ty/2|Ho) = o

For an alternative of positive dependence, a similar one-sided critical
region is appropriate.

We must now determine the random sampling distribution of T
under the assumption of independence. For this purpose, it will be
more convenient, but not necessary, to assume that the X and Y
sample observations have both been ordered from smallest to largest
and assigned positive integer ranks. The data then consist of n sets of
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pairs of ranks. The justification for this assumption is that, like 1, T'is
invariant under all order-preserving transformations. Its numerical
value then depends only on the relative magnitudes of the observa-
tions and is the same whether calculated for variate values or ranks.
For samples with no ties, the n! distinguishable pairings of ranks are
all equally likely under the null hypothesis. The value of T is com-
pletely determined by the value of C or S because of the expressions in
(2.21) and (2.22), and it is more convenient to work with C. Denote by
u(n,c) the number of pairings of n ranks which result in exactly ¢
positive a;;, 1 <i <j < n. Then

P(C=c¢)= ”(Z;c) (2.23)
and
Fr(t) = P(T = ) :P{C: (’;) #} (2.24)

We shall now find a recursive relation to generate the values of
u(n+1,c) from knowledge of the values of u(n,c) for some n and all c.
Assuming that the observations are written in order of magnitude of
the X component, the value of C depends only on the resulting per-
mutation of the Y ranks. If s; denotes the rank of the Y observation
which is paired with the rank i in the X sample, for i =1,2,...,n,c
equals the number of integers greater than s;, plus the number of
integers greater than s, excluding s;, plus the number exceeding ss
excluding s; and s, etc. For any given permutation of n integers which
has this sum ¢, we need only consider what insertion of the number
n+1 in any of the n+ 1 possible positions of the permutation
(s1,82,...,8n) does to the value of c. If n + 1 is in the first position, c is
clearly unchanged. If n + 1 is in the second position, there is one ad-
ditional integer greater than s;, so that c is increased by 1. If in the
third position, there is one additional integer greater than both s; and
S9, so that ¢ is increased by 2. In general, if n + 1 is in the kth position,
cisincreased by £k — 1 for allk =1,2,...,n + 1. Therefore the desired
recursive relation is

u(n+1,c)=u(n,c) +u(n,c—1)+u(n,c—2)+---+u(n,c—n)
(2.25)

In terms of s, since for a set of n pairs

_n(n—1)

=2
s c 5

(2.26)
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insertion of n + 1 in the kth position increases ¢ by £ — 1, the new value
s’ of s for n + 1 pairs will be

2 2
:2C—M+2(k—1)—n:s+2(k—1)—n

2

In other words, s is increased by 2(k — 1) —nfork =1,2,...,n + 1, and
corresponding to (2.25) we have

un+1, s)=u(n, s+n)+un, s+n—2)+u(n,s+n—4)
+--4um,s—n+2)+u(n,s—n) (2.27)

The distribution of S is symmetrical about zero, and from (2.26) it is
clear that S for n pairs is an even or odd integer according as
n(n —1)/2 is even or odd. Because of this symmetry, tables are most
easily constructed for S (or T) rather than C or @. The null distri-
bution of S is given in Table L of the Appendix. More extensive tables
of the null distribution of S or T are given in Kaarsemaker and Van
Wijngaarden (1952, 1953), Best (1973, 1974), Best and Gipps (1974),
Nijsse (1988), and Kendall and Gibbons (1990).

A simple example will suffice to illustrate the use of (2.25) or
(2.27) to set up tables of these probability distributions. When n = 3,
the 3! permutations of the Y ranks and the corresponding values of C
and S are:

Permutation 123 132 213 231 312 321

c 3 2 2 1 1 0
s 3 1 1 -1 -1 -3

The frequencies then are:

c 0 1 2
s -3 -1 1
u(3,c) or u(3,s) 1 2 2
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For C, using (2.25), u(4 c)=
u(4,0) = u(3,0) =

= 23 ou(3c —1i), or

u(4,1) =u(3,1) +u(3,0) 3

u(4,2) = u(3.2) +u(3,1) + u(3,0) = 5
w(4,3) = u(3,3) + u(3,2) + u(3,1) + u(3,0) = 6
u(4,4) =u(3,3) + u(3,2) +u(3,1) =5
u(4,5) =u(3,3)+u(3,2) =3
u(4,6)=u(33)=1

Alternatively, we could use (2.27), or u(4,s) = E?:o u(3,s +3 — 2i).
Therefore the probability distributions for n = 4 are:

0 1 2 3 4 5 6

-6 —4 -2 0 2 4 6

t -1 -2/3  -1/3 0 1/3 2/3 1
f(c,s,ort) 1/24  3/24  5/24 6/24  5/24  3/24  1/24

The way in which the u(n, s, orc¢) are built up by cumulative
sums indicates that simple schemes for their generation may be easily
worked out (see, for example, Kendall and Gibbons, 1990, pp. 91-92).

The exact null distribution is thus easily found for moderate n.
Since T is a sum of random variables, it can be shown using general
limit theorems for independent variables that the distribution of
a standardized T approaches the standard normal distribution as n
approaches infinity. To use this fact to facilitate inferences concerning
independence in large samples, we need to determine the null mean
and variance of 7. Since T'was defined to be an unbiased estimator of 1
for any bivariate population and we showed in Section 1 that t = 0 for
independent, continuous random variables, the mean is E(T' | Hp) = 0.
In order to find var(T' | Hy) for X and Y continuous, (2.15) is used with
the appropriate p. and p.. under Hy. Under the assumption that X and
Y have continuous marginal distributions and are independent, they
can be assumed to be identically distributed according to the uniform
distribution over the interval (0,1), because of the probability-
integral transformation. Then, in (2.17) and (2.18), we have

1 1
pc=2/ / xydxdy =1/2
o Jo

o (2.28)
Pch/ / (1—x—y+2xy)*dxdy = 5/18
o Jo
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Substituting these results in (2.15), we obtain

n(n—1) var(T) =2 +$
var(T) — % (2.29)

For large n, the random variable

Z:3\/n(n— nT (2.30)

2(2n +5)

can be treated as a standard normal variable with density o(z).

If the null hypothesis of independence of X and Y is accepted, we
can of course infer that the population parameter 7 is zero. However, if
the hypothesis is rejected, this implies dependence between the ran-
dom variables but not necessarily that t # 0.

THE LARGE-SAMPLE NONNULL DISTRIBUTION OF KENDALL’S STATISTIC

The probability distribution of T is asymptotically normal for sample
pairs from any bivariate population. Therefore, if any general mean
and variance of T could be determined, 7" would be useful in large
samples for other inferences relating to population characteristics
besides independence. Since E(T") = t for any distribution, 7' is parti-
cularly relevant in inferences concerning the value of t. The expres-
sions previously found for var(7) in (2.13) for any distribution and
(2.15) for continuous distributions depend on unknown probabilities.
Unless the hypothesis under consideration somehow determines
Pes Pd, Pees Pdd, and pgg (or simply p. and p.. for the continuous case),
the exact variance cannot be found without some information about
fxy(x,y). However, unbiased and consistent estimates of these prob-
abilities can be found from the sample data to provide a consistent
estimate 6(7T') of the variance of 7. The asymptotic distribution of
(T — 1)/6(T) then remains standard normal.

Such estimates will be found here for paired samples containing
no tied observations. We observed before that C/(}) is an unbiased and
consistent estimator of p.. However, for the purpose of finding esti-
mates for all the probabilities involved, it will be more convenient now
to introduce a different notation. As before, we can assume without
loss of generality that the n pairs are arranged in natural order ac-
cording to the x component and that s; is the rank of that y which is
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paired with the ith smallest x for i =1,2,...,n, so that the data are
(s1,82,..., Sp). Define

a; = number of integers to the left of s; and less than s;

b; = number of integers to the right of s; and greater than s;

Then

¢; = a; + b; = number of values of j =1,2,...,n such that (x;,y;)
is concordant with (xj,y;). There are n(n — 1) distinguishable sets of
pairs, of which > ;¢; are concordant. An unbiased estimate of p,.
then is

N Ci
Pc = Z =1 (2.31)

i=1
Similarly, we define

a; = number of integers to the left of s; and greater than s;

b; = number of integers to the right of s; and less than s;

and
d; = a, + b, = number of values of j =1,2,...,n such that (x;,y;)
is discordant with (x;,y;). Then

. & d;
Pa = ; ") (2.32)
gives an unbiased estimate of p .

An unbiased and consistent estimate of p.. is the number of sets
of three pairs (x;,y;), (x;,5), (xr,yx) for all i #j # k, for which the
products (x; —x;)(y; —y;) and (x; —xz)(y; —y&) are both positive, di-
vided by the number of distinguishable sets n(n — 1)(rn — 2). Denote by
¢;; the number of values of j and %, i #j #k,1 <j,k <n, such that
(%;,5;) is concordant with both (x;,y;) and (xz,yz), so that

N Cii
Pee = Zn(n “1)(n—2)

i=1

The pair (x;,y;) is concordant with both (x;,y;) and (xz,yz) if:

Group 1: s; <s; <sp forj<i<k
s <s8; <8 fork <i<j
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Group 2: s; <s; <sp fori<j<k
s; <8 < §j fori <k <j
Group 3: s; <s,p <s; forj<k<i
sp <8 <8 fork<j<i

Therefore c¢;; is twice the sum of the following three corresponding
numbers:

1. The number of unordered pairs of integers, one to the left and one
to the right of s;, such that the one to the left is less than s; and the
one to the right is greater than s;.

2. The number of unordered pairs of integers, both to the right of s;,
such that both are greater than s;.

3. The number of unordered pairs of integers, both to the left of s;,
such that both are less than s;.

Then, employing the same notation as before, we have

cii2[(ii>(bli>+(l;i>+(zi)}(ai+bl~) (@i b)) =c?—ci=ci(ci—1)

and

L cila—1)
Pec = ; m (2.33)

Similarly, we can obtain

¢ di(d; —1)
Pdd = ; m (2.34)

zn: aibg + aiag + bia; + blb; o zn: c;d;
P n(n —1)(n — 2)  &nn-1)(n-2)

Substituting the results (2.31) and (2.33) in (2.15), the estimated
variance of T in samples for continuous variables is

n(n —1)6*(T) = 8p. — 86%(2n — 3) + 16(n — 2)Pec

n— n 2.36
n%(n —1)%6? [22 c? — 2n—1 (ch> —2@] (2.36)

(2.35)

ﬁcd =
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In order to obviate any confusion regarding the calculation of the
¢; and c¢; to estimate the variance from (2.36) in the case of no tied
observations, a simple example is provided below for achievement
tests in Mathematics and English administered to a group of six
randomly chosen students.

Student A B C D E F

72
66

78
67

Math score
English score

91
89

52
72

69
69

99
96

The two sets of scores ranked and rearranged in order of increasing
Mathematics scores are:

Student B C E F A D
Math rank 1 2 3 4 5 6
English rank 4 3 1 2 5 6

The numbers c; = a; + b; are
c1=0+2 ¢2=04+2 ¢3=0+4+3 c4=1+2 c5=4+1 c=5+0

dei=20 Y 7=76 n=6
.20 2
Pe=8(5) " 3
. 76-20 7
Pe =6(5)4) 15
t=2(2/3)-1=1/3
9
2.2 _ o0 _ 2| _
3026%(T) = 8(2(76) — 20 6(5)20 96
6%(T) =0.1067  &(T) =0.33
If we wish to count the ¢; directly we have for c; =

2(group 1 + group 2 + group 3), the pairs relevant to cy4, say, are

Group 1: (1,5)(1,6)
Group 2: (5,6)
Group 3: None

so that cqq = 2(3) =6 =c4(cs — 1).
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On the other hand, suppose the English scores corresponding to
increasing Math scores were ranked as

y 3 1 4 2 6 5

Then we can calculate
c1=c4 =3 cg=c3=c5=cg =4
pe=11/15  p=1/2 t=7/15 &%(T)=—32/1125

and the estimated variance is negative! A negative variance from
(2.15) of course cannot occur, but when the parameters p are replaced
by estimates p and combined, the result can be negative. Since the
probability estimates are consistent, the estimated variance of T will
be positive for n sufficiently large.

Two applications of this asymptotic approximation to the nonnull
distribution of 7' in nonparametric inference for large samples are:

1. An approximate (1 — o)100 percent confidence-interval estimate of
the population Kendall tau coefficient is

t —2,96(T) <1 <t+2,26(T)
2. An approximate test of
Hyt =19 versus Hi:t# 1
with significance level o is to reject Hy when

t -l
&(T) = 2

A one-sided alternative can also be tested.

TIED OBSERVATIONS

Whether or not the marginal distributions of X and Y are assumed
continuous, tied observations can occur within either or both samples.
Ties across samples do not present any problem of course. Since the
definition of A;; in (2.3) assigned a value of zero to a;; if a tie occurs in
the (i,j) set of pairs for either the x or y sample values, T as defined
before allows for, and essentially ignores, all zero differences. With t
defined as the difference p. — pg, T as calculated from (2.6), (2.19), or
(2.21) is an unbiased estimator of t with variance as given in (2.13)
even in the presence of ties. If the occurrence of ties in the sample is
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attributed to a lack of precision in measurement as opposed to discrete
marginal distributions, the simplified expression for var(7) in (2.15)
may still be used. If there are sample ties, however, the expressions
(2.20) and (2.22) are no longer equivalent to (2.6), (2.19), or (2.21).

For small samples with a small number of tied observations, the
exact null distribution of T (or S) conditional on the observed ties can
be determined by enumeration. There will be mw pairings of the two
samples, each occurring with equal probability 1/muw, if there are m
and w distinguishable permutations of the x and y sample observa-
tions, respectively. For larger samples, the normal approximation to
the distribution of T can still be used but with corrected moments.
Conditional upon the observed ties, the parameters p., Py, pce, Pdd, and
peg must have a slightly different interpretation. For example, p.
and py here would be the probability that we select two pairs (x;,y;)
and (x;,y;) which do not have a tie in either coordinate, and under the
assumption of independence this is

-l f-Se)

where u denotes the multiplicity of a tie in the x set and the sum is
extended over all ties and v has the same interpretation for the y set.
These parameters in the conditional distribution can be determined
and substituted in (2.13) to find the conditional variance (see, for
example, Noether, 1967, pp. 76-77). The conditional mean of T, how-
ever, is unchanged, since even for the new parameters we have p. = py
for independent samples.

Conditional on the observed ties, however, there are not longer
(’2‘) distinguishable sets of pairs to check for concordance, and thus if T
is calculated in the ordinary way, it cannot equal one even for perfect
agreement. Therefore an alternative definition of T in the presence of
ties is to replace the n(n — 1) in the denominator of (2.6), (2.19), or
(2.21) by a smaller quantity. To obtain a result still analogous to a
correlation coefficient, we might take (2.20) as the definition of T in
general. Since 7 3", Uizj is the number of nonzero differences
X; —X; for all (i,j), the sum is the total number of distinguish-
able differences less the number involving tied observations, or
n(n —1) — > u(u — 1). Similarly for the Y observations. Therefore our
modified 7" from (2.20) is

E?:l Z;L:I UijVij

T= 1/2
{ln(n—1) = Y uw - 1D]nn-1)— Yo -1}

(2.37)
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which reduces to all previously given forms if there are no ties. The
modified T from (2.21) is

T = €-Q (2.38)

{1Q-zGIE -G

Note that the denominator in (2.38) is a function of the geometric
mean of the number of untied X observations and the number of
untied Y observations. The modified T in (2.37) or (2.38) is frequently
called tau, in order to distinguish it from (2.20) or (2.21), which is
called tau, and has no correction for ties.

The absolute value of the coefficient T calculated from (2.37) or
(2.38) is always greater than the absolute of a coefficient calculated
from (2.20) or (2.21) when ties are present, but it still may not be equal
to one for perfect agreement or disagreement. The only way to define a
tau coefficient that does always equal one for perfect agreement or
disagreement is to define

_¢-Q
- C+Q
This ratio, the number of concordant pairs with no ties minus the

number of discordant pairs with no ties by the total number of untied
pairs, is called the Goodman-Kruskal gamma coefficient.

Y (2.39)

A RELATED MEASURE OF ASSOCIATION FOR DISCRETE POPULATIONS

In Section 11.1 we stated the criterion that a good measure of asso-
ciation between two random variables would equal + 1 for a perfect
direct relationship and —1 for a perfect indirect relationship. In terms
of the probability parameters, perfect concordance requires p. = 1, and
perfect discordance requires p; = 1. With Kendall’s coefficient defined
as T = p. — pg, the criterion is satisfied if and only if p. + p; = 1. But if
the marginal distributions of X and Y are not continuous,

pc +pa = Pl(X; - X;)(Y; - Y;) > 0] + P[(X; — X;)(Y; — Y;) < 0]
= 1= Pl(X; ~X,)(¥; ~ Y}) = 0]
=1-P[X;=X;)u(Y; =Y))]=1-p;
where p; denotes the probability that a pair is neither concordant not

discordant. Thus 1 cannot be considered a “good” measure of associa-
tion if p; # 0.
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However, a modified parameter which does satisfy the criteria for
all distributions can easily be defined as

—_ ‘C —
1-p;

*

Pe —Pg

where p; and p); are, respectively, the conditional probabilities of
concordance and discordance given that there are no ties
e P PIX - X)(¥; - Y) > 0)
¢ 1-p P[X;-X)(Y;-Y;) #0]

Since t* is a linear function of 1, an estimate is provided by

T* — T :ﬁc _pd

1 _pt pc +pd
with p. and p; defined as before in (2.31) and (2.32). Since p. and py
are consistent estimators, the asymptotic distribution of T'/(p. + pg) is
equivalent to the asymptotic distribution of T'/(p. + pq), which we
know to be the normal distribution. Therefore for large samples,

inferences concerning t* can be made (see, for example, Goodman and
Kruskal, 1954, 1959, 1963).

USE OF KENDALL'’S STATISTIC TO TEST AGAINST TREND

In Chapter 3 regarding tests for randomness, we observed that the
arrangement of relative magnitudes in a single sequence of time-
ordered observations can indicate some sort of trend. When the theory
of runs up and down was used to test a hypothesis of randomness, the
magnitude of each observations relative to its immediately preceding
value was considered, and a long run of plus (minus) signs or a
sequence with a large predominance of plus (minus) signs was con-
sidered indicative of an upward (downward) trend. If time is treated as
an X variable, say, and a set of time-ordered observations as the Y
variable, an association between X and Y might be considered indi-
cative of a trend. Thus the degree of concordance between such X and
Y observations would be a measure of trend, and Kendall’s tau statistic
becomes a measure of trend. Unlike the case of runs up and down,
however, the tau coefficient considers the relative magnitude of each
observation relative to every preceding observation.

A hypothesis of randomness in a single set of n time-ordered
observations is the same as a hypothesis of independence between
these observations when paired with the numbers 1,2, . .., n. Therefore,
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assuming that x; =ifori=1,2,...,n, the indicator variables A;
defined in (2.3) become

Ajj = sgn(j — 1) sgn(Y; - Y;)

and (2.6) can be written as

(5)7= D> sen(¥; - V)

1<i<j<n

The exact null distribution of T'is the same as before. If the alternative
is an upward trend, the rejection region consists of large positive
values of T, and T can be considered an unbiased estimate of t,
a relative measure of population trend. For a downward trend, we
reject for large negative values of T. This use of T is frequently called
the Mann Test.

11.3 SPEARMAN’S COEFFICIENT OF RANK CORRELATION
A random sample of n pairs
(X17 Yl); (XZa YQ)a SR (Xna Yn)

is drawn from a bivariate population with Pearson product-moment
correlation coefficient p. In classical statistics, the estimate commonly
used for p is the sample correlation coefficient defined as

YiX -X)(Yi -Y)
S X - X)L (Y - ¥))|

In general, of course, the sampling distribution of R depends upon the
form of the bivariate population from which the sample of pairs is
drawn. However, suppose the X observations are ranked from smallest
to largest using the integers 1,2,...,n, and the Y observations are
ranked separately using the same ranking scheme. In other words,
each observation is assigned a rank according to its magnitude rela-
tive to the others in its own group. If the marginal distributions of X
and Y are assumed continuous, unique sets of rankings exist theore-
tically. The data then consist of n sets of paired ranks from which R as
defined in (3.1) can be calculated. The resulting statistic is then called
Spearman’s coefficient of rank correlation. It measures the degree of
correspondence between rankings, instead of between actual variate
values, but it can still be considered a measure of association between
the samples and an estimate of the association between X and Y in the

R:

= (3.1)
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continuous bivariate population. It is difficult to interpret exactly
what R is estimating in the population from which these samples were
drawn and ranks obtained, but the measure has intuitive appeal
anyway. The problem of interpretation will be treated in Section 11.4.

The fact that we know the numerical values of the derived ob-
servations from which Spearman’s R is computed, if not their scheme
of pairing, means that the expression in (3.1) can be considerably
simplified. Denoting the respective ranks of the random variables in
the samples by

R; = rank(X;) and S; = rank(Y;)
the derived sample observations of n pairs are
(7'1,81), (7'2,32), BERE) (rnvsn)

Since addition is commutative, we have the constant values for all
samples

iRi:iSi:ii:M R-g-"tt (3.2)
i=1 i=1 i=1 2 2

= . 2 2 "/ (n+1\? n@nZ-1)
SRR =387 = Y (- ) S

i=1 i=1 i=1
(3.3)

Substituting these constants in (3.1), the following equivalent forms of
R are obtained:

_ 1257 (R —R)(Si - S)

R D) (3.4)
12 [Z?:I RS; —n(n+1)*/4

B =Ty (3.5)

_ 1230 RS 3(n+1) (3.6)

n(n? —1) n—1
Another useful form of R is in terms of the differences.
D;=R;-S;=(R;,—R)—(S; - S)
Substituting (3.3) in the expression

S D=3 (R~ B+ ) (S~ 8P 2 (B~ R)(S: - 5)

i=1 =1 =1
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and using the result back in (3.4), the most common form of the
Spearman coefficient of rank correlation is obtained as

63, D7

We can assume without loss of generality that the n sample pairs are
labeled in accordance with increasing magnitude of the X component,
so that R; =i fori=1,2,...,n. Then S; is the rank of the Y observa-
tion that is paired with the rank i in the X sample, and D; =i — S;.

In Section 11.1, criteria were defined for a “good” relative mea-
sure of association between two random variables. Although the
parameter analogous to R has not been specifically defined, we can
easily verify that Spearman’s R does satisfy the corresponding criteria
of a good measure of association between sample ranks.

1. For any two sets of paired ranks (,S;) and (j,S;) of random
variables in a sample from any continuous bivariate distribu-
tion, in order to have perfect concordance between ranks, the Y
component must also be increasing, or, equivalently,
s;=iandd; =0fori=1,2,...,n so that R equals 1.

2. For perfect discordance between ranks, the Y arrangement must
be the reverse of the X arrangement to have decreasing Y
components, so thats; =n —i+ 1 and

& R B n+1 nn?-1)
;d?—Zz—(n—z—kl _4Z< > 3

i=1

from (3.3). Substituting this in (3.7), we find R = —1.

3-6. Since R in, say, (3.7) is algebraically equivalent to (3.1) and the
value of (3.1) is in the interval [—1,1] for all sets of numerical
pairs, the same bounds apply here. Further, R is commutative
and symmetric about zero and has expectation zero when the X
and Y observations are independent. These properties will be
shown later in the section.

7. Since ranks are preserved under all order-preserving transfor-
mations, the measure R based on ranks is invariant.

EXACT NULL DISTRIBUTION OF R

If the X and Y random variables from which these n pairs of ranks
(R;,S;) are derived are independent, R is a distribution-free statistic
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since each of the n! distinguishable sets of pairing of n ranks is equally
likely. Therefore, the random sampling distribution of R can be
determined and the statistic used to perform exact distribution-free
tests of independence. If we let u, denote the number of pairings which
lead to a value r for the statistic, the null probability distribution is

fr(r)

The null distribution of R is symmetric about the origin, since the
random variable D = 3" | D? is symmetric about n(n? — 1)/6. This
property is the result of the fact that for any sets of pairs

(1,s1), (2,82),...,(n,8)
with

Uy
" nl

n n
d? (i —s;)*
i=1 i=1

there exists a conjugate set of pairs

(Lsn)v (27871*1); ceey (nvsl)
with

n n

Zn:d? =Y (i—sni1)? =) (n—i+1-s)
i=1

i=1 i=1

The sums of squares of the respective sum and difference of rank
differences are

n n n 9 -
Z(di+d;)2=2(n+1_2si)2:4z<si_n+1) _n(n*-1)
i=1 i=1 — 2 3
Z(di_d;)z:Z(2i—n—1)2=42(i—n;1> :n(n3 1)
i=1 i=1 i=1

Substituting these results in the relation

S I(di+ ) + (di — )

i=1

:4zn:d-2:zn:(di+d;>2+znj(di —d;)2+22nj(di2 —dp?)
i=1

i=1 =1 =1
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we obtain

4zn:d? szrzzn:d? —2zn:d;2
i=1 i=1 i=1

or

2+ d? = L = constant

Further, R cannot equal zero unless n is even, since Y ., d? is always
even because Y ! ;d; = 0, an even number.

The direct approach to determining u, is by enumeration, which
is probably least tedious for R in the form of (3.6). Because of the
symmetry property, only n!/2 cases need be considered. For n = 3, for
example, we list the following sets (s1, 2, s3) which may be paired with
(1,2,3), and the resulting values of R.

(s1,82,83) s r

1,2,3 14 1.0
1,3,2 13 05
2,1,3 13 0.5

The complete probability distribution then is

r -1.0 -05 0.5 1.0
fr(r) 1/6 2/6 2/6 1/6

This method of generating the distribution is time consuming,
even for moderate n. Of course, there are more efficient methods of
enumeration (see, for example, Kendall and Gibbons, 1990, pp. 97-98).
The probability distribution of R is given in Table M of the Appendix as
tail probabilities for n < 10 and as critical values for 11 < n < 30. More
extensive tables of the exact null distribution of R or }_ D? are given in
Glasser and Winter (1961), Owen (1962), De Jonge and Van Montfort
(1972), Zar (1972), Otten (1973a,b) Dunstan, Nix, and Reynolds (1979),
Neave (1981), Nelson (1986), Franklin (1988b), Ramsay (1989), and
Kendall and Gibbons (1990).

Although the general null probability distribution of R requires
enumeration, the marginal and joint distributions of any number of
the individual ranks of a single random sample of size n are easily
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determined from combinatorial theory. For example, for the Y sample,
we have

fals) =7  s=12.. (3.8)

,h

1
nn—-1)

Thus, using (3.2) and (3.3),

fS,;,Sj(Sivsj) = 8i,8j = 1,2,...,n75i #S] (39)

n+1 n2-1
2 12

For the covariance, we have for all i #j,

cov(S;,S;) = E(S;S;) — E(S;)E(S;)

n—1 ZZ]

LlJ

2
L)
1A

' 2 N\
:nQ(n—l) n<;z) -n ':ll —(n—l)(Z}z) ]

E(S;) =

var(S;) =

=

1 [rPe+D@En+l) 2P(n+1)?|] n+l
- n2(n-1) 6 4 12
(3.10)

The same results hold for the ranks R; of the X sample. Under the null
hypothesis that the X and Y samples are independent, the ranks R;
and S; are independent for all i, j, and the null mean and variance of R
easily found as follows:

n(n+1)>°
(ZRS>_nE DE(Si) ==

(3.11)

var (ZRiSi> = nvar(R;) var(S;) + n(n — 1) cov(R;, R;) cov(S;,S;)

n(n?—-1>%+n(n—1)(n+1)>

n?(n-1)(n+1)°
- 144 N

144
(3.12)
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Then using the form of R in (3.6)

E(R|Ho) =0  var(R|Ho) = n—il (3.13)

ASYMPTOTIC NULL DISTRIBUTION OF R

Considering R in the form of (3.6), and as before assuming S; denotes
the rank of the Y observation paired with the ith smallest X observa-
tion, we see that the distribution of R depends only on the random
variables Y7 ;iS;. This quantity is a linear combination of random
variables, which can be shown to be asymptotically normally dis-
tributed (see, for example, Fraser, 1957, pp. 247-248). The mean and
variance are given in (3.11) and (3.12). The standardized normal
variable used for an approximate test of independence then is

n
Z= (122 iS; — 3n3>n5/2
=1
or, equivalently,

Z=RVn—1 (3.14)

There is some disagreement in the literature about the accuracy of this
approximation for moderate n. Some authors claim that the statistic

Rvn —2
1 - R?

which has approximately Student’s t distribution with n—2 degrees of
freedom, gives more accurate results for moderate n.

‘e (3.15)

TESTING THE NULL HYPOTHESIS

Since R has mean zero for independent random variables, the appro-
priate rejection region of size o is large absolute values of R for a
general alternative of nonindependence and large positive values of R
for alternatives of positive dependence. As in the case of Kendall’s
coefficient, if the null hypothesis of independence is accepted, we can
infer that p(X,Y) equals zero, but dependence between the variables
does not necessarily imply that p(X,Y) # 0. Besides, the coefficient of
rank correlation is measuring association between ranks, not variate
values. Since the distribution of R was derived only under the
assumption of independence, these results cannot be used to construct
confidence-interval estimates of p(X,Y) or E(R).
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TIED OBSERVATIONS

In all of the foregoing discussion we assumed that the data to be
analyzed consisted of n sets of paired integer ranks. These integer
ranks may be obtained by ordering observations from two continuous
population, but the theory is also equally applicable to any two sets of
n pairs which can be placed separately in a unique preferential order.
In the first case, ties can still occur within either or both sets of sample
measurements, and in the second case it is possible that no preference
can be made between two or more of the individuals in either group.
Thus, for practical purposes, the problem of ties within a set of ranks
must be considered.

If within each set of tied observations the ranks they would have
if distinguishable are assigned at random, nothing is changed since
we still have the requisite type of data to be analyzed. However, such
an approach has little intuitive appeal, and besides an additional
element of chance is introduced. The most common practice for deal-
ing with tied observations here, as in most other nonparametric pro-
cedures, is to assign equal ranks to indistinguishable observations. If
that rank is the midrank in every case, the sum of the ranks for each
sample is still n(n +1)/2, but the sum of squares of the ranks is
changed, and the expressions in (3.4) to (3.7) are no longer equivalent
to (3.1). Assuming that the spirit of the rank correlation coefficient is
unchanged, the expressions in (3.1) can be calculated directly from the
ranks assigned. However, a form analogous to (3.7) which is equiva-
lent to (3.1) can still be found for use in the presence of ties.

We shall investigate what happens to the sum of squares

fj(si—sfzfjs?—n(nTH)z

=1 =1

when there are one or more groups of u tied observations within the Y
sample and each is assigned the appropriate midrank. In each group of
u tied observations which, if not tied, would be assigned the ranks
pr+1.pr+2,...,pr +u, the rank assigned to all is

zn:kari_ +u+1
o =Dk 2

The sum of squares for these tied ranks then is

( LH—l)2
u{pp+—5—) =u

1 2
pr+pe(u+1) +% (3.16)
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and the corresponding sum in the absence of ties would be

- 1)(2 1
> (o i) = upf + prartu + 1) D2
i=1

(3.17)

This particular group of u tied observations then decreases the sum of
squares by the difference between (3.17) and (3.16) or

uw+1)2u+1) ww+1)? uw@®-1)
6 4 N 12
Since this is true for each group of u tied observations, the sum of
squares in the presence of ties is

lzn;(si —5)% = Lliz_ U_v (3.18)

where v’ = u(u? — 1)/12 and the summation is extended over all
sets of u tied ranks in the Y sample. Letting ¢’ denote the corresponding
sum for the X sample, we obtain the alternative forms of (3.1) as

123" RiS; — n(n +1)2/4]

Bt _ 1) — 120)n(n2 — 1) — 1207}

(3.19)

or
P nn?—-1)—-6%" D?—6(+u) (3.20)
{n(n2 = 1) — 12¢)[n(n? — 1) — 120/]}? '

analogous to (3.5) and (3.7), respectively, since here

n 2 n _ _
Soop=" N w2y R RS- 8)
-1 =1

Assuming this to be our definition of the sample coefficient of
rank correlation in the presence of ties, its probability distribution
under the null hypothesis of independence is clearly not the same as
the null distribution discussed before for n distinct ranks. For small n,
it is possible again to obtain by enumeration the exact null distribu-
tion conditional upon a given set of ties. This of course is very tedious.
The asymptotic distribution of our R as modified for ties is also normal
since it is still a linear combination of the S; random variables. Since
the total sum of ranks is unchanged when tied ranks are assigned by
the midrank method, E(S;) is unchanged and E(R |Hj) is obviously
still zero. The fact that the variance of modified R is also unchanged in
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the presence of ties is not so obvious. The marginal and joint dis-
tributions of the ranks of the Y sample in the presence of ties can still
be written in the forms (3.8) and (3.9) except that that domain is now n
numbers, not all distinct, which we can write as s},s5,...,s),. Then
using (3.18),

n Y 2 _ /
var(S;) = (s; —5) _ n(n®—1)—12u

— n 12n

For the covariance, proceeding as in the steps leading to (3.10),

1 n n ~
cov(S;,S;) = mz ngsj’- — 52

i—1 j=1
i
_ > i (8 — 5)” B _n(n2 -1) - 12
N nn-1) 12n(n — 1)

Similar results hold for the X ranks. Now using R in the form of (3.19),
we have

144[nvar(R;) var(S;) + n(n — 1) cov(R;,R;) cov(S;,S;)]

var(R[Ho) = [n(n%—1)—12¢[n(n%—1) - 12u/]

and substitution of the appropriate variances and covariances gives as
before

1

var(R |Hy) = —1

Thus for large samples with ties, a modified Rvn — 1 with R
calculated from (3.19) or (3.20) can still be treated as a standard
normal variable for testing a hypothesis of independence. However,
unless the ties are extremely extensive, they will have little effect on
the value of R. In practice, the common expression given in (3.7) is
often used without corrections for ties. It should be noted that the
effect of the correction factors is to decrease the value of R. This means
that a negative R is closer to —1, not to zero.

USE OF SPEARMAN’S R TO TEST AGAINST TREND

As with Kendall’s T), R can be considered a measure of trend in a single
sequence of time-ordered observations and used to test a null
hypothesis of no trend. This application is called Daniels’ test.
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11.4 THE RELATIONS BETWEEN R AND T; E(R), 7, AND p

In Section 11.1 we defined the parameters t and p as two different
measures of association in a bivariate population, one in terms of
concordances and the other as a function of covariance, but noted that
concordance and covariance measure relationship in the same spirit at
least. The sample estimate of t was found to have exactly the same
numerical value and theoretical properties whether calculated in
terms of actual variate values or ranks, since the parameter t and its
estimate are both invariant under all order-preserving transforma-
tions. However, this is not true for the parameter p or for a sample
estimate calculated from (3.1) with variate values. The Pearson pro-
duct-moment correlation coefficient is invariant under linear trans-
formations only, and ranks usually cannot be generated using only
linear transformations.

The coefficient of rank correlation is certainly a measure of as-
sociation between ranks. It has a certain intuitive appeal as an esti-
mate of p, but it is not a direct sample analog of this parameter. Nor
can it be considered a direct sample analog of a “population coefficient
of rank correlation” if the marginal distributions of our random vari-
ables are continuous, since theoretically continuous random variables
cannot be ranked. If an infinite number of values can be assumed by a
random variable, the values cannot be enumerated and therefore
cannot be ordered. However, we still would like some conception,
however nebulous, of a population parameter which is the analog of
the Spearman coefficient of rank correlation in a random sample
of pairs from a continuous bivariate population. Since probabilities of
order properties are population parameters and these probabilities are
the same for either ranks or variate values, if R can be defined in
terms of sample proportions of types of concordance, as T'was, we shall
be able to define a population parameter other than p for which the
coefficient of rank correlation is an unbiased estimate.

For this purpose, we first investigate the relationship between R
and T for samples with no ties from any continuous bivariate popu-
lation. In (2.20), T was written in a form resembling R as

Ny UV
T*;Zn(n—l) (4.1)
i=1 j=1
where
Uj=sgnX; - X) and Vi=sgn(Y; -Y);) (4.2)
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To complete the similarity, we must determine the general relation

between U;; and R;, V;;, and S;. A functional definition of R; was given

in (5.5.1) as
R =1+> SX -X)) (4.3)
j=1
J#
where
_Jo ifu<O
S(”)_{l if u>0

In general, then the relation is

sgn(X; —X;) =1-25(X; —-X;) foralll<i#j<n

(4.4)
sgn(Xi —Xi) =0

Substituting this form back in (4.3), we have
or

Using R in the form (3.4), by substitution we have

n(n® -~ 1R _1221?, ~R)(S; - 8) _3Z<ZUUZVZ;€>
:3ZZUUVU+3ZZZUUVLk

i=1 j= i=1 j=1 k=1
k#]
or from (4.1)
3 6 n n n
= T+ UiV (4.5)
n+1" nn?-1)545H Y
i<j kA

Before, we defined two pairs (X;,Y;) and (X;,Y;) as being con-
cordant if U;;V;; > 0, with p, denoting the probability of concordance
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and p. the corresponding sample estimate, the number of concordant
sample pairs divided by n(n — 1), the number of distinguishable pairs,
and found 7 = 2p. — 1. To complete a definition of R in terms of con-
cordances, because of the last term in (4.5), we must now define an-
other type of concordance, this time involving three pairs. We shall say
that the three pairs (X;,Y;), (Xj,Y;) and (X}, Y}) exhibit a concordance
of the second order if

X; < X; whenever Y; <Y}
or
X; > X; whenever Y; > Y,
or, equivalently, if
(‘XJ —Xi)(Yk — YL) = UijVik >0

The probability of a second-order concordance is

Pe, = P[(X; = X;)(Yr — Yi) > 0]

and the corresponding sample estimate p., is the number of sets of
three pairs with the product U;;Vy >0 for i <j, k #j, divided by
(;) (n — 2), the number of distinguishable sets of three pairs. The triple
sum in (4.5) is the totality of all these products, whether positive or
negative, and therefore equals

n . . nn—1)(n —2)(2p., — 1
()t =2)pe — (1 oy = =SB =D
In terms of sample concordances, then, (4.5) can be written as
. . 3n—-2) ..
R = — 1 (2p. — 1)+ —1 (2D¢, — 1) (4.6)

and the population parameter for which R is an unbiased esti-
mator is

3[t+ (n —2)(2p., — 1)]

ER) = n+1

(4.7)

We shall now express p., for any continuous bivariate population
Fxy(x,y) in a form analogous to (2.17) for p.:
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Pe, =P[(X; <X))N(Y; <Yp)|+P[(X; > X)) N(Yi > Y})]
— /_ ” /_ h {PI(X; <x))N(Yi<yr)]
+P((Xi>x)N(Yi>yr) ] }x, v, (%790 dxidyp,

= /_oo /_00 [Fxy(x.y)+1-Fx(x)—Fy(y)+Fxy(x.y)|dFx (x)dFy(y)
~1+2 /_ N /_ " Fxy(v.y)dFx(x)dFy(y) 2 /_ " Fy(x)dFx (x)

2 / Z / :Fx,y<x,y>dFX<x>dFy<y> (4.8)

A similar development yields another equivalent form

Doy =2 / ) / " Fx(0)Fy(y) dFyy(x.y) (4.9)

If X and Y are independent, of course, a comparison of these ex-
pressions with (2.17) shows that p., = p. = 1/2. Unlike p., however,
which ranges between 0 and 1, p., ranges only between 1/3 and 2/3,
with the extreme values obtained for perfect indirect and direct linear
relationships, respectively. This result can be shown easily. For the
upper limit, since for all x, y,

2Fx (x)Fy(y) < Fx(x) + F3(y)

we have from (4.9)
De; S 2/ / F2(x)dFxy(x,y) =2/3

Similarly, for all x, y,

2Fx (x)Fy(y) = [Fx(x) + Fy(y)* — Fx(x) — F3(y)
so that from (4.9)

po= [ IFx)+ FrO)P dFxr ()~ 2/3

2

> { / Z / z[FX(x) § Py dFyy(ey)| —2/8=1/3

Now if X and Y have a perfect direct linear relationship, we can
assume without loss of generality that X =Y, so that
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[ Fx(x) if x <y
FX,Y(xJ’) = {Fx(y) if x>y

Then from (4.8)

=22 [ " Fr(ofe@)fxy) dedy = 2/3

For a perfect indirect relationship, we assume X = —Y, so that
_ [ Fx(x) —Fx(-y) ifx>-y
FX,Y(xyy)_ {0 ifx<—y
and

po=2 [ [ W) - Fx(-ofx@f(-y) dxdy
= [ (1= By — 201 - Fx(y)Fx(-9)i( ) dy

- / [1 - Fx(~y)Pfx(-—y)dy =1/3

Substitution of these extreme values in (4.7) shows that for any con-
tinuous population p, t, and E(R) all have the same value for the fol-
lowing cases:

X,Y relation p=1=E(R)
Indirect linear dependence -1
Independence 0
Direct linear dependence 1

Although strictly speaking we cannot talk about a parameter for
a bivariate distribution which is a coefficient of rank correlation, it
seems natural to define the pseudo rank-correlation parameter, say p,
as that constant for which R is an unbiased estimator in large samples.
Then from (4.7), we have the definition

py = lim E(R) = 3(2pe, — 1) (4.10)

and for a sample of size n, the relation between E(R), py, and t is

_3T+(n—2)p2

ER) n+1

(4.11)

The relation between p, (for ranks) and p (for variate values) depends
on the relation between p,., and covariance. From (4.9), we see that
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Pe, = 2E[Fx(X)Fy(Y)] = 2 cov[Fx(X),Fy(Y)] + 2E[Fx(X)|E[Fy(Y)]
=2cov[Fx(X),Fy(Y)] +1/2
Since
var[Fx (X)] = var[Fy(Y)] = 1/12
we have
6pc, = pFx(X),Fy(Y)] +3
and we see from (4.10) that

pe = pIFx(X),Fy(Y)]

Therefore p, is sometimes called the grade correlation coefficient, since
the grade of a number x is usually defined as the cumulative prob-
ability Fx(x).

11.5 ANOTHER MEASURE OF ASSOCIATION

Another nonparametric type of measure of association for paired
samples which is related to the Pearson product-moment correlation
coefficient has been investigated by Fieller, Hartley, Pearson, and
others. This is the ordinary Pearson sample correlation coefficient of
(3.1) calculated using expected normal scores in place of ranks or
variate values. That is, if ¢, = E(Uy;)), where Uj;) is the ith order sta-
tistic in a sample of n from the standard normal population and S;
denotes the rank of the Y observation which is paired with the ith
smallest X observation, the random sample of pairs of ranks

(1381)7 (2382)a ceey (n,sn)

is replaced by the derived sample of pairs

(&laésl)7 (2227{332)7 ey (énaés,,)

and the correlation coefficient for these pairs is

RF’ — Zi:nl E-Jiazsi
> i1 G
This coefficient is discussed in Fieller, Hartley, and Pearson (1957) and
Fieller and Pearson (1961). The authors show that the transformed
random variable
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Zp = tanhflRF

is approximately normally distributed with moments

E(Zp) =tanh™* [p<1 - nofsﬂ

1
Zp) =——
var(Zp) 3
where p is the correlation coefficient in the bivariate population from
which the sample is drawn.
The authors also show that analogous transformations on R
and T,

ZR = tanh_lR
Zp=tanh 1T

produce approximately normally distributed random variables, but in
the nonnull case the approximation for Zy is best.

11.6 APPLICATIONS

Kendall’s sample tau coefficient (Section 11.2) is one descriptive
measure of association in a bivariate sample. The statistic is calcu-
lated as

28 2(C-Q)

nin—1) nnh-1)

where C is the number of concordant pairs and @ is the number of
discordant pairs among (X;,Y;) and (X},Y;), for alli < jin a sample of n
observations. T ranges between —1 and 1, with —1 describing perfect
disagreement, 1 describing perfect agreement, and 0 describing no
agreement. The easiest way to calculate C and @ is to first arrange one
set of observations in an array, while keeping the pairs intact. A pair
in which there is a tie in either the X observations or the Y observa-
tions is not counted as part of either C or @, and therefore with ties it
may be necessary to list all possible pairs to find the correct values for
C and Q. The modified 7T is then calculated from (2.37) and called tau,,.

The null hypothesis of independence between X and Y can be
tested using T. The appropriate rejection regions and P values for an
observed value ¢ are as follows:
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Alternative Rejection region P value
Positive dependence T>t, P(T>1¢)

Negative dependence T< —t, P(T <1y)
Nonindependence T>tysorT< —ty 2 (smaller of above)

The exact cumulative null distribution of 7'is given in Table L of the
Appendix as right-tail probabilities for n < 10. Quantiles of T are also
given for 11 < n < 30. For n > 30, the normal approximation to the null
distribution of 7" indicates the following rejection regions and P values:

Alternative Rejection region P value

Positive T >z,\/2@2n+5)/3\/n(n—1) P(z>3t/n(n—-1)/1/2(2n+5)
dependence

Negative T< —2,1/2(2n+5)/3\/n(n—1) P(z<3t/n(n—1)/1/2(2n+5)
dependence

Nonindependence Both above with z,/; 2 (smaller of above)

This test of the null hypothesis of independence can also be used
for the alternative of a trend in a time-ordered sequence of observa-
tions Y if time is regarded as X. The alternative of an upward trend
corresponds to the alternative of positive dependence. This use of
Kendalls’s tau is frequently called the Mann test for trend.

The Spearman coefficient of rank correlation (Section 11.3) is an
alternative descriptive measure of association in a bivariate sample.
Each set of observations is independently ranked from 1 to n, but the
pairs are kept intact. The coefficient is given in (3.7) as

_ 83D
R=1- n(n? —1)

where D; is the difference of the ranks of X; and Y;. If ties are present
we use (3.19). Interpretation of the value of R is exactly the same as for
T and the appropriate rejection regions are also in the same direction.
For small samples the null distribution of R is given in Table M in a
form similar to Table L. For large samples the rejection regions are
simply R > z,/2vn — 1 for positive dependence and R< —z,2vn — 1
for negative dependence. When R is used as a test for trend, it is
frequently called the Daniels’ test for trend. Applications of both of
these statistics are illustrated in Example 6.1.
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Alternative Rejection region P value
Positive dependence R>z,vn—-1 PZ>r/vn-1)
Negative dependence R< —z,vn-—-1 P(Z<r/vn-1)
Nonindependence Both above with z,» 2 (smaller of above)

Example 6.1 Two judges ranked nine teas on the basis of taste and
full-bodied properties, with 1 indicating the highest ranking. Calcu-
late the Kendall and Spearman measures of association, test the null
hypothesis of independence, and find the appropriate one-tailed P
value in each case, for the data shown below.

Tea A B C D E F G H 1

Judge 1 1 5 9 7 4 6 8 2 3
Judge 2 4 3 6 8 2 7 9 1 5

Solution The first step in calculating Kendall’s tau is to rearrange
the data for Judge 1 in an array, keeping track of the corresponding
rank of Judge 2 as shown below. Then the number of concordant pairs
is counted as the number of Y ranks that are below and larger than
each Y rank and then summed over all Y’s; the number of discordant
pairs is counted in the same manner but for ranks below and smaller.

Judge 1 Judge 2 C Q D D?
1 4 5 3 -3 9
2 1 7 0 1 1
3 5 4 2 -2 4
4 2 5 0 2 4
5 3 4 0 2 4
6 7 2 1 -1 1
7 8 1 1 -1 1
8 9 0 1 -1 1
9 6 3 9

28 8 0 34

We then calculate T' = 2(20)/9(8) = 0.556. For the null hypothesis of
independence the right-tailed P value from Table L is 0.022.

The last two columns above show that Y~ D? = 34 and we com-
pute R =1 —6(34)/9(80) = 0.717, which is larger than T as expected.
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The right-tailed P value from Table M is P = 0.018 for the alternative
of positive dependence.

At the time of this writing, MINITAB has no command for either
Kendall’s tau or Spearman’s rho. However, we can use MINITAB to
calculate Spearman’s rho by using the rank command on the data (for
Judges 1 and 2, respectively) and then calculating the Pearson
product-moment correlation coefficient on these ranks. The result
R = 0.717 agrees with ours. The MINITAB P value is for a Pearson
correlation and does not apply for Spearman’s rho.

The STATXACT solution gives the coefficients and the exact P
values for a test of independence using both tau and rho, and all of
these agree with ours. Note that the printout shows calculation of both
1, and 1. These are equal because there are no ties in this example. The
solution also shows 1. and Somers’ d, which apply for data in a con-
tingency table and are not covered in this book. For Kendall’s tau,
STATXACT shows the asymptotic P-value based on the normal ap-
proximation P(Z > 2.09) calculated from (2.30). For Spearman’s rho, it
shows the asymptotic P value based on the approximation given in
(3.15) using Student’s ¢ distribution, P(¢ > 2.72) with 7 degrees of
freedom. The expressions they use for calculating the asymptotic
standard errors and confidence interval estimates are not clear. The
reader may verify, however, that they did not use our (2.36) because
this gives an estimate of the variance of T which is negative in this
example. As explained earlier, the estimate can be negative for n small,
even though the exact value of the variance must be positive.

ik kkhkkhhkddkdkdh bk bk f ok kb dh kb h ok ehd

MINITAB SCLUTION TO EXAMPLE 6.1

ik kkkkhkhdhdkdd bkt bbbk b bh bk b

wNmO\bﬂ\Dml—'E
G o~ B0y L )
wl\)ma\hqwml—-a
N N e W

Correlations: C3, C4

Paarson correlation of C3 and €4 = 0.717
P-value = 0.030
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Fkde bk ki e koo Wk ok ok ko e b ek ek

STARTYACT SOLUTION TC EXAMPLE 6.1

Ak kh ok h kAN Rk kR RNk hh ok kAR

KENDALL'S TAU AND SOMER'S D RANK-ORDER CORRELATION COEFFICIENTS

Correlation Coefficient estimates based on 9 observations.

Coefficient Estimate ARSEL 95.00% Confidence Interval
Kendall's Tau 3.55%586 0.1308 ¢.2989, 0.8122)
Kepdall's Tau_b 0.5556 0.1309 | 0.2589, 0.8122)
Kendall's Tau_c 0.5556 p.o1309 ¢ 0.2989, 0.5122)
Somers' D|row 0.5556 0.1309 ¢ 0.2989, 0.8122)
Somers' D|col .5556 £.1309 0.2%89, 0.8122)
Somers' D symm. 0.5556 0.1309 0.2989, 0.8122}

Asymptotic p-values for testing no association (Using Normal approximation):
One-sided: Pr { Statistic .GE. Ubserwved } o= 0.000%
Pwo-sided: 2 * One-sided = 0.0000

Exact p-values for testing no association:

One-sided: Pr { Statistic .(GE. Chserved 1 = 0.0223
Pr { Statistic .EQ. Chserved |} = 0.00%99
Two-sided: Pr | {3tatistic| .GE. [Cbhserved| ! = 0.044¢6

SPEARMAN'S CORRELATION TEST

Correlation Coefficient estimates based on 9 observations.

Coetficient Fstimate ASEL 95.00% Confidence Interval
Spearman's CC 3.7167 0.1061 [ 00,5088, 0.3246)
Asymptotic p-values for testing ne association {t-distribution with 7 df}:
One-sided: Pr | Statistic .GE. Observed b= 0.0149
Two-sided: 2 * One-sided = 0.0298
Exact p-values:
one-sided: Pr { Statistic .GE. Chserved } = 0.0184
pr { Statistie .EQ. Observed } = 0.0029

0.0369

Two-sided: Pr { |Statistici .GE. |0Observed|

We use the data in Example 6.1 to illustrate how T can be in-
terpreted as a coefficient of disarray, where @, the number of dis-
cordant pairs, is the minimum number of interchanges in the Y ranks,
one pair at a time, needed to convert them to the natural order. The X
and Y ranks in this example are as follows.

In the Y ranks, we first interchange the 4 and 1 to put 1 in the correct
position. Then we interchange 2 and 5 to make 2 closer to its correct
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position. Then we interchange 2 and 4. We keep proceeding in this
way, working to get 3 in the correct position, and then 4, etc. The
complete set of changes is as follows:

Y

o e
MM N DN DA
Lo W oA I DD Wt
[N NG N NG UG S (T )
OOl 0T O OT 0 W W
O =1 -3 -31-3-31-3-3
-3 00 00 00 0O 00 O QO
00 O © WO W W W© ©
OO D

The total number of interchanges required to transform the Y ranks
into the natural order by this systematic procedure is 8, and this is the
value of @, the total number of discordant pairs. We could make the
transformation using more interchanges, of course, but more are not
needed. It can be shown that @ =8 is the minimum number of
interchanges.

11.7 SUMMARY

In this chapter we have studied in detail the nonparametric coeffi-
cients that were proposed by Kendall and Spearman to measure
association. Both coefficients can be computed for a sample from a
bivariate distribution, a sample of pairs, when the data are numerical
measurements or ranks indicating relative magnitudes. The absolute
values of both coefficients range between zero and one, with increasing
values indicating increasing degrees of association. The sign of the
coefficient indicates the direction of the association, direct or inverse.
The values of the coefficients are not directly comparable, however. We
know that |R| = |T| for any set of data, and in fact |R| can be as much
as 50 percent greater than |T.

Both coefficients can be used to test the null hypothesis of in-
dependence between the variables. Even though the magnitudes of R
and T are not directly comparable, the magnitudes of the P values
based on them should be about the same, allowing for the fact that
they are measuring association in different ways. The interpretation
of T is easier than for R. T is the proportion of concordant pairs in the
sample minus the proportion of discordant pairs. 7' can also be inter-
preted as a coefficient of disarray. The easiest interpretation of R is as
the sample value of the Pearson product-moment correlation coeffi-
cient calculated using the ranks of the sample data.
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An exact test of the null hypothesis of independence can be
carried out using either T or R for small sample sizes. Generation of
tables for exact P values was difficult initially, but now computers
have the capacity for doing this for even moderate n. For inter-
mediate and large sample sizes, the tests can be performed using
large sample approximations. The distribution of T approaches the
normal distribution much more rapidly than the distribution of R
and hence approximate P values based on R are less reliable than
those based on T.

Both T and R can be used when ties are present in either or both
samples, and both have a correction for ties that improves the normal
approximation. The correction with T always increases the value of T
while the R correction always decreases the value of R, making the
coefficients closer in magnitude.

If we reject the null hypothesis of independence by either T or R,
we can conclude that there is some kind of dependence or “association”
between the variables. But the kind of relationship or association that
exists defies any verbal description in general. The existence of a re-
lationship or significant association does not mean that the relation-
ship is causal. The relationship may be due to several other factors, or
to no factor at all. Care should always be taken in stating the results of
an experiment that no causality is implied, either directly or indirectly.

Kendall’s T is an unbiased estimator of a parameter 1 in the bi-
variate population; t represents the probability of concordance minus
the probability of discordance. Concordance is not the same as corre-
lation, although both represent a kind of association. Spearman’s R is
not an unbiased estimator of the population correlation p. It is an
unbiased estimator of a parameter which is a function of t and the
grade correlation.

The tests of independence based on T and R can be considered
nonparametric counterparts of the test that the Pearson product-
moment correlation coefficient p is equal to zero in the bivariate nor-
mal distribution or that the regression coefficient B equals zero. The
asymptotic relative efficiency of these tests relative to the parametric
test based on the sample Pearson product-moment correlation coeffi-
cient is 9/1*=0.912 for normal distributions and one for the con-
tinuous uniform distribution.

Both T'and R can be used to test for the existence of trend in a set
of time-ordered observations. The test based on T is called the Mann
test, and the test based on R is called the Daniels’ test. Both of these
tests are alternatives to the tests for randomness presented in
Chapter 3.
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PROBLEMS

11.1. A beauty contest has eight contestants. The two judges are each asked to rank
the contestants in a preferential order of pulchritude. The results are shown in the table.
Answer parts (a) and (b) using (i) the Kendall tau-coefficient procedures and (ii) the
Spearman rank-correlation-coefficient procedures:

Contestant

Judge A B C D E F G H

1 2 1 3 5 4 8 7 6
2 1 2 4 5 7 6 8 3

(@) Calculate the measure of association.

(b) Test the null hypothesis that the judges ranked the contestants indepen-
dently (use tables).

(¢) Find a 95 percent confidence-interval estimate of t.
11.2. Verify the result given in (4.9).

11.3. Two independent random samples of sizes m and n contain no ties. A set of m +n
paired observations can be derived from these data by arranging the combined samples
in ascending order of magnitude and (a) assigning ranks, (b) assigning sample indi-
cators. Show that Kendall’s tau, calculated for these pairs without a correction for ties, is
linearly related to the Mann-Whitney U statistic for these data, and find the relation if
the sample indicators are (i) sample numbers 1 and 2, (ii) 1 for the first sample and 0 for
the second sample as in the Z vector of Chapter 7.

11.4. Show that for the standardized bivariate normal distribution
®(0,0)= % + % arcsin p

11.5. The Census Bureau reported that Hispanics are expected to overtake blacks as
the largest minority in the United States by the year 2030. Use two different tests to see
whether there is a direct relationship between number of Hispanics and percent of state
population for the nine states below.

Percent of state

State Hispanics (millions) population
California 6.6 23
Texas 4.1 24
New York 2.1 12
Florida 1.5 12
Illinois 0.8 7
Arizona 0.6 18
New Jersey 0.6 8
New Mexico 0.5 35
Colorado 0.4 11
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11.6. Company-financed expenditures in manufacturing on research and develop-
ment (R&D) are currently about 2.7 percent of sales in Japan and 2.8 percent of
sales in the United States. However, when these figures are looked at separately
according to industry, the following data from Mansfield (1989) show some large
differences.

Industry Japan United States
Food 0.8 0.4
Textiles 1.2 0.5
Paper 0.7 1.3
Chemicals 3.8 4.7
Petroleum 0.4 0.7
Rubber 2.9 2.2
Ferrous metals 1.9 0.5
Nonferrous metals 1.9 14
Metal products 1.6 1.3
Machinery 2.7 5.8
Electrical equipment 5.1 4.8
Motor vehicles 3.0 3.2
Other transport equipment 2.6 1.2
Instruments 4.5 9.0

(@) Use the signed-rank test to determine whether Japan spends a larger per-
centage than the United States on R&D.

(b) Determine whether there is a significant positive relationship between
percentages spent by Japan and the United States (two different methods).

11.7. The World Almanac and Book of Facts published the following divorce rates per
1000 population in the United States. Determine whether these data show a positive
trend using four different methods.

Year Divorce rate
1945 3.5
1950 2.6
1955 2.3
1960 2.2
1965 2.5
1970 3.5
1975 4.8
1980 5.2
1985 5.0

11.8. For the time series data in Example 4.1 of Chapter 3, use the Mann test based on
Spearman’s rank correlation coefficient to see if the data show a positive trend.
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11.9. Do Problem 11.8 using the Daniels’ test based on Kendall’s tau.

11.10. The rainfall measured by each of 12 gauges was recorded for 20 successive days.
The average results for each day are as follows:

Day Rainfall Day Rainfall
April 1 0.00 April 11 2.10
April 2 0.03 April 12 2.25
April 3 0.05 April 13 2.50
April 4 1.11 April 14 2.50
April 5 0.00 April 15 2.51
April 6 0.00 April 16 2.60
April 7 0.02 April 17 2.50
April 8 0.06 April 18 2.45
April 9 1.15 April 19 0.02

April 10 2.00 April 20 0.00

Use an appropriate test to determine whether these data exhibit some sort of pattern.
Find the P value:

(a) Using tests based on runs with both the exact distribution and the normal
approximation.

(b) Using other tests that you may think are appropriate.

(¢) Compare and interpret the results of (a) and (b).

11.11 A company has administered a screening aptitude test to 20 new employees over
a two-year period. The record of scores and date on which the person was hired are
shown below.

1/4/01 75 9/21/01 72 12/9/01 81 5/10/02 91
3/9/01 174 10/4/01 7