Engineering Mechanics Brief Introduction and Overview

Engineering Mechanics Brief Introduction and Overview

- Statics
- Dynamics
- Mechanics of Materials (Deformable Solids)

Prerequisites: Calculus I, University Physics I

Objectives:

- To provide a brief overview of engineering mechanics.
- To introduce the basic sub-disciplines of mechanics.
- To explain the scopes and relations of three common engineering mechanics courses: statics, dynamics and mechanics of materials.

Question 1: What is Mechanics?

Dr. Yiheng Wang

What is *Mechanics*?

- 1. A branch of **Physics**.
- 2. Engineering mechanics has a focus on the applications.
- 3. Calculates, describes and predicts the effects of **forces** on a **system**.

Question 2: What are some examples of what force can do?

Dr. Yiheng Wang

Make things MOVE

Keep an object STATIC

Force can **DEFORM** an object

Dr. Yiheng Wang

Make things ROTATE

Dr. Djedoui . Dr. Khechai

Newton's second law

$$F \longrightarrow \underbrace{a}$$
Accelerated motion
$$A = \frac{F}{m}$$

The acceleration of the movement of an object is proportional to the resultant force, and is also in the same direction of the resultant force.

Newton's first law

An object will remain its original state of motion (rest or moving at constant velocity in a straight line) if there is no unbalanced force acting on it.

Newton's third law

Action and reaction

The forces of action and reaction between two objects are of the *equal*, *collinear* and *opposite*.

Newton's law of gravitation

G: universal constant of gravitation, 66.73×10⁻¹² m³/(kg·s²)

The gravitational attraction forces between any two objects are equal and opposite.

Newton's law of gravitation

$$W = G \frac{mM_e}{R^2}$$

R: radius of the earth M_e : mass of the earth

Let
$$g = G \frac{M_e}{R^2}$$

 $\therefore W = mg$

g: constant of gravitation of the earth, 9.81 m/s² or 32.2 ft/s².

Solid System

Status

Rigid Body (Particle)

Equilibrium

$$\mathbf{F}_{R} = \mathbf{0}$$

Deformable Solid

Accelerated Motion

$$\mathbf{F}_{R} = m\mathbf{a}$$

We want to know how forces cause stress, deformation and even failure in

It is important in many fields such as construction or

Fundamental Concepts: Basic quantities and idealization

Objectives:

- To introduce the basic quantities of mechanics.
- To introduce the concept of idealization commonly used in mechanics.

Basic quantities length time mass force

Question 1: In your own words, explain what *length*, *time*, *mass* and *force* are respectively.

Length

can be used to describe the position is space, the size of a physical system, and the geometric properties of a body.

Length

Coordintes are the 3 lengths measured from the origin along x, y and z direction respectively in an established rectangular coordinate system.

Unit: [m] or [ft]

Time

describes the succession of events.

Example: Speed describes the position of an object with respect to time.

Time is a very important concept in the subject of Dynamics, but in Statics, we mainly deal with objects that are motionless.

Unit: [s]

statics: time-independent

dynamics: time-dependent

Question 2: A person who weighs 143 pounds is about 65 kilograms, correct? Is *weight* the same as *mass*?

Mass

is a measure of quantity of matters.

Mass is a physical property that characterizes the extent of force and object experiences in a gravitational field.

$$F = G \frac{m_1 m_2}{r^2}$$

Mass characterizes also the resistance of an object to changes in its state of motion.

$$\mathbf{a} = \frac{\mathbf{F}}{m}$$

Mass is NOT the same as weight since weight is a force

Unit: [kg] or [slug]

Force

The concept of force characterizes the action and reaction between two bodies.

They could be **CONTACT** between the two bodies.

There could be NO CONTACT.

Force is a vector and it is fully described by:

magnitude direction point of application

Unit: [N] or [lb]

Dr. Yiheng Wang

Idealizations

means to use scientific models to represent phenomena, so that they can be simplified to an extent.

particle

An object can be modeled as a particle when it's geometry and dimension are negligible for the interest of the study

A particle is considered to only occupy a single point in space with NO shape or size and it has NO properties except its MASS.

rigid body

not only has mass but also has dimensions and geometry.

Unlike real world objects a rigid body does NOT have any other material properties such as ELASTICITY, therefore it will not deform.

concentrated force

assumes that a force only acts on a point, although in realty, forces are applied to an AREA or a VOLUME.

Example:

The weight of an object is distributed
throughout its body, but in our analysis, we
often use a concentrated force that is placed
at the CENTER of GRAVITY in the object to replace the distributed
gravitational force.

