2

Module: Structure Machine 1 (SM1)

achine 1 (SM1) 1 L.M.D MI :(2021/2022) Série de TD 1: introduction et systèmes de numération Corrigé type

Questions : Expliquer les notions suivantes : Informatique, Une information, un ordinateur, un bit, un octet, Hertz, Débit (Bit/second, bps), poids fort et poids faible d'un nombre binaire, système de numération, nombre binaire, octal et hexadécimal, microprocesseur, UAL, Unité de commande, mémoire centrale, système d'exploitation.

Exercice 1:

1. Combien d'octet font 32 bits ?

8 bits : 1 octet \rightarrow 32 bits : 4 octets

2. Dans l'octet suivant : (10001101)₂, quel est le bit de poids fort, le bit de poids faible ?

(10001101)2

le bit de poids fort le bit de poids faible

3. Combien de valeurs différentes peut-on représenter sur 1 octet et sur 10 bits ?

Sur un octet on peut représenter $2^8 = 256$ valeurs différentes

Sur 10 bits on peut représenter $2^{10} = 1024$ valeurs différentes

4. Compléter le tableau de correspondance entre les systèmes de numération.

Décimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Hexadécimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
Binaire	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Exercice 2:

1. Exprimer les nombres suivants en base décimale :

$$(562)_8 = 8^2 \times 5 + 8^1 \times 6 + 8^0 \times 2 = (370)_{10}$$

$$(110111)_2 = 2^5 \times 1 + 2^4 \times 1 + 2^3 \times 0 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 1 = (55)_{10}$$

$$(3EB8)_{16} = 16^3 \times 3 + 16^2 \times E + 16^1 \times B + 16^0 \times 8 = (16056)_{10}$$

$$(3213)_4 = 4^3 \times 3 + 4^2 \times 2 + 4^1 \times 1 + 4^0 \times 3 = (231)_{10}$$

2. Exprimer le nombre décimal X= 327 en base 2, 7, 8, et 16.

On procède par divisions successives

$$(327)_{10} = (101000111)_2 = (645)_7 = (507)_8 = (147)_{16}$$

3. Soit le nombre Y = (11010110101)2, Exprimer directement et sans passer par la base 10 le nombre Y en base 4, 8, 16.

$$(01 \ 10 \ 10 \ 11 \ 01 \ 01)2 = (122311)_4$$

 $(011 \ 010 \ 110 \ 101)2 = (3265)_8$
 $(0110 \ 1011 \ 0101)2 = (6B5)_{16}$

5. Exprimer directement en base 2 et sans passer par la procédure de division les nombres :

$$X = (1323)_4 = (01 \ 11 \ 10 \ 11)_2$$

 $Y = (3765)_8 = (011 \ 111 \ 110 \ 101)_2$
 $Z = (AB1F9)_{16} = (1010 \ 1011 \ 0001 \ 1111 \ 1001)_2$

Exercice 3:

- 1. Effectuer les opérations arithmétiques suivantes :
- base 8:132+134=266; 132 + 316 = 450; 337-155 = 162
- base 16 : F2C + 4C3 = 13EF; F2C - 45E = ACE
- base 2 : 100101+101 = 101010 ; 11011 + 1011 = 100110; 1011101 - 10111=1000110
- 2. Effectuer les opérations arithmétiques binaires suivantes (en base 2) :
- 10101101 * 1000 = 10101101000; 101011110 * 101 = 11011010110;

10111011 * 1101 =1001011111111

• $10101101 \div 10 = 1010110$ le reste 1; $1010111110 \div 110 = 111010$; $10111011 \div 101 = 100101$

Exercice 4:

Voici donc les unités standardisées :

Un octet = 8 Bits

Un kilo octets (ko) = 2^{10} octets = 1024 octets Un Méga octets (Mo) = 2^{20} octets = 1024 ko = 1 048 576 octets Un Giga octets (Go) = 2^{30} octets = 1024 Mo = 1 073 741 824 octets

Un Téra octets (To) = 2^{40} octets = 1024 Go = 1 099 511 627 776 octets

- 1. Convertir les unités suivantes :
- 64 octets = 64*8=512 bits
- 2 To = 2* 1024= 2048 Go = 2*1024*1024= 2097152 Mo
- 4,7 Go = 4,7 *1024= 4812,8 Mo = 4,7 *1024*1024=4928307,2 Ko =4.7*1024*1024*1024 = 5046586572.8 octets
- 512 kb/s = 512 / 8 = 64 ko/s = 64*1024 = 65536 octets/s.
- 2,4 GHz = 2,4*1000=2400 MHz = 2,4*1000*1000 *1000= 2,4 * 10^9 Hz
- 2. Quel est le temps nécessaire pour télécharger un fichier de 1Mo avec une connexion ADSL de 1 Mb/s ?

1Mo = 8 Mb

1 Mb ----- 1 s

8Mb ----- X X = (8*1)/1 = 8s

Ou bien le temps= taille de fichier/débit= 8/1=8s

Exercice 5:

Soient les nombres A, B et C : $A = (7365)_8$, $B = (2DB, 5)_{16}$, $C = (101110100110, 1001)_2$

- 1. Convertir A en base 16 et convertir B en base 8 sans passer par la base 10 ?
- $A = (7365)_8 = (111\ 011\ 110\ 101)_2 = (EF5)_{16} = (3\ 829)_{10}$

 $B=(2DB,5)_{16} = (0010\ 1101\ 1011,\ 0101)_2 = (1333,\ 24)_8 = (731,3125)_{10}$

2. Convertir C en base 8 sans passer par la base 10 ?

 $C = (101\ 110\ 100\ 110,1001)_2 = (5646,44)_8 = (2982,5625)_{10}$

3. Réaliser l'opération suivante B+C, en base 2?

 $B+C=(0010\ 1101\ 1011,\ 0101)_2+(101\ 110\ 100\ 110,1001)_2=(1110\ 1000\ 0001,1110)_2$

4. Réaliser l'opération suivante A+C, en base 8 ?

$$A+C = (7365)_8 + (5646,44)_8 = (15233,44)_8$$

5. Calculer le nombre B+C et A+C en base 10 ?

B+C =
$$(731,3125)_{10}$$
 + $(2982,5625)_{10}$ = $(3713,875)_{10}$
A+C= $(3829)_{10}$ + $(2982,5625)_{10}$ = $(6811,5625)_{10}$

6. Réaliser l'opération suivante A+B, en base 16, et en base 8 ?

$$A+B = (EF5)_{16} + (2DB,5)_{16} = (11D0,5)_{16}$$

 $A+B = (7365)_8 + (1333, 24)_8 = (10720,24)_8$