République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITÉ MOHAMED KHIDER, BISKRA

FACULTÉ des SCIENCES EXACTES et des SCIENCES de la NATURE et de la VIE ${\bf D\acute{E}PARTEMENT~DE~Biologie}$

Correction TD 02:

 $\begin{array}{c} \operatorname{Par} \\ \operatorname{\mathbf{Prof}} : \operatorname{\mathbf{CHALA}} \operatorname{\mathbf{ADEL}} \end{array}$

BioStatistiques

Je dédie ce travail.....

A mes parents ils m'ont tous, avec leurs moyens, soutenu et donné la force d'aller toujours plus loin.

Table des matières

Ta	able des Matière	i
1	Questions	1
2	Réponse:	4

Prof: CHALA Adel Biostatistique-TD02

Chapitre 1

Questions

TD N:02 Introduction aux probabilités

Exercice 01:

Soient A et B deux événements tels que la probabilité d'obtenir l'évènement A ou B c'est 60% et la probabilité de réussite l'événement A uniquement c'est 25%..

- 1. Supposons que A et B soient disjoints. Calculer la probabilité de réussite l'évènement B.
- 2. Supposons que A et B soient indépendants. Calculer la probabilité de réussite l'évènement B.

Exercice 02:

On lance trois pièces de monnaies équilibrées simultanément et une seule fois.

- 1/ Déterminer l'ensemble des évènements totale Ω .
- 2/ On note par A l'évènement suivante $A=\{$ Obtenir deux fois Pile $\}$.
- a) Déterminer l'évènement A.
- b) Calculer la probabilité pour que l'évènement A est vraie.
- c) Calculer la probabilité pour que l'évènement \overline{A} est vraie.
- d) Déduire que $P(A) + P(\overline{A}) = 1$.

Exercice 03:

On lance une pièce de dé deux fois. On note par A l'évènement (obtenir une produit compris entre 2 et 12).

- 1/ Déterminer l'ensemble des évènement totale Ω .
- 2/ Calculer le cardinal de Ω .

- 3/ Déterminer l'évènement A, et calculer le cardinal de A.
- 4/ Calculer la probabilité de réussite l'évènement A.
- 5/ On note par B l'évènement (obtenir une somme < à 6).
- a) / Déterminer l'évènement B.
- b) Calculer la probabilité de réussite l'évènement B.
- 6/ On note par X la variable aléatoire qui représente le produit des résultats obtenues.
 - a) Déterminer la loi de probabilité de la variable aléatoire X.
 - b) Calculer la probabilité d'avoir $(X \ge 9)$, et la probabilité que (X < 5).
- c) Calculer l'espérance de X, ainsi que l'écart-type de la variable aléatoire X.

Exercice 04:

Le temps T nécessaire à un rat pour parcourir un labyrinthe est une variable aléatoire dont la distribution de probabilité est donnée par :

T (en secondes)	2	3	4	5	6	7
$P\left(T=k\right)$	0,09	0,08	0,03	p_5	0,2	p_7

- 1/ Compléter le tableau en calculant $p_5 = P(T=5)$, sachant que l'espérance de la variable T égale à 4,94.
 - 2/ Calculer la variance, l'écart-type.

Exercice 05:

Dans une bibliothèque comportant 100 ouvrages, il y en a 40 qui sont écrits en anglais dont 8 portent sur la biologie cellulaire, et les autre sont écrits en français dont 40 parmi eux portent sur la biologie cellulaire Considérons les événements suivants :

 $A = \{ le livre est écrit en anglais \}, B = \{ le livre porte sur la biologie cellulaire \}.$

F={ le livre est écrit en français}.

- 1/ Déterminer la probabilité de tiré un livre écrit en Anglais dans la bibliothèque.
- 2/ Déterminer la probabilité de tiré un livre écrit en Français dans la bibliothèque.
- 3/ Déterminer la probabilité de tiré un livre porte sur la biologie cellulaire sachant qu'il est écrit en anglais dans la bibliothèque.
- 4/ Déterminer la probabilité de trouver un livre porte sur la biologie cellulaire sachant qu'il est écrit en Français dans la bibliothèque.

- 5/ On tire au hasard un livre on le trouve qu'il est porte sur la biologie cellulaire.
- a) Calculer la probabilité que le livre tiré est provignement de la partie anglais.
- b) Calculer la probabilité que le livre tiré est provignement de la partie Français.
- c) Calculer la probabilité que le livre tiré est provignement de la partie anglais ou la partie Français.

Exercice 06:

On sait que dans la population 5 hommes sur 100 sont daltoniens, contre 25 femmes sur 10 000. Un daltonien est choisi au hasard dans la population; quelle est la probabilité que ce soit un homme? (on admettra qu'il y a autant d'hommes que de femmes dans la population).

Exercice 07:

On considère quatre groupes A, B, C et D. Dans chaque groupe, les proportions de personnes ayant fait des études supérieures sont respectivement de 5%, 10%, 25% et 40%. On choisit au hasard l'un des groupes et dans le groupe choisi une personne.

- 1. Quelle est la probabilité que la personne choisie au hasard ait fait des études supérieures?
- 2. La personne choisie ayant fait des études supérieures, quelle est la probabilité qu'elle appartienne au groupe D?

Exercice 08:

Des études statistiques sur une population constituée de 60% de femmes et 40% d'hommes permettent de considérer qu'il y a 50% d'hommes et 30% de femmes qui fument. On choisit au hasard un individu de la population et on constate qu'il fume.

Quelle est la probabilité pour qu'il soit un homme?

Prof: CHALA Adel Biostatistique-TD02

Chapitre 2

Réponse:

Exercice 01:

Soient A et B deux événements tels que P(A) = 25%, et $P(A \cup B) = 60\%$ 1. Supposons que A et B soient disjoints.

Alors $A \cap B = \emptyset$, d'où $P(A \cap B) = P(\emptyset) = 0$, il vient que

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= P(A) + P(B) - 0.$$

Alors

$$P(B) = P(A \cup B) - P(A) = 0, 6 - 0, 25 = 0, 35 \in [0, 1].$$

2/. Supposons que A et B soient indépendantes. Alors $P(A \cap B) = P(A) \times P(B)$, d'où

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $P(A) + P(B) - P(A) \times P(B)$
= $P(B) \{1 - P(A)\} + P(A)$.

Alors

$$P(B) = \frac{P(A \cup B) - P(A)}{\{1 - P(A)\}} = \frac{0,60 - 0,25}{1 - 0,25} = \frac{\frac{35}{100}}{\frac{75}{100}} = \frac{7}{15} \in [0,1].$$

Exercice 02:

On note par P=Pile, et par F=Face.

1/ Ensemble des évènements totales : $\Omega=\Omega_1\times\Omega_2\times\Omega_3=\{P,F\}\times\{P,F\}\times\{P,F\}$

$$\Omega = \{PPP, PPF, PFP, PFF, FPP, FPF, FFP, FFF\}$$

, avec $|\Omega| = 8$

2/a) Soit A l'évènement suivant (deux fois Piles), alors $A=\{PPF,PFP,FPP\}$, avec |A|=3.

b) La probabilité pour que A est vrai

$$P(A) = \frac{\text{Nombre des cas convenables}}{\text{Nombre des cas possibles}} = \frac{|A|}{|\Omega|} = \frac{3}{8} \in [0, 1]$$

c) La probabilité pour que \overline{A} est vrai, tout d'abord on cherche $\overline{A}=\Omega-A=\{PPP,PFF,FPF,FFP,FFF\}$, avec avec $|\overline{A}|=5$.

La probabilité pour que \overline{A} est vrai

$$P(\overline{A}) = \frac{\text{Nombre des cas convenables}}{\text{Nombre des cas possibles}} = \frac{|\overline{A}|}{|\Omega|} = \frac{5}{8} \in [0, 1].$$

d) Il est facile de voir que

$$P(A) + P(\overline{A}) = \frac{3}{8} + \frac{5}{8} = 1.$$

Exercice 03:

On lance deux pièces de dés simultanument. On note par A l'évènement (obtenir une produit compris entre 2 et 12).

1/

$$\Omega = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

$$= \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}.$$

On note que les couples (1,1) , (1,2) , ... s'appelent l'évènements élémentaires. $2/|\Omega|=6^2=36$. 3/

$$A = \{(1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (5,1), (5,2), (6,1), (6,2)\}.$$

Alors |A| = 22.

4/ La probabilité de réussite l'évènement A c'est

$$P\left(A\right) = \frac{\text{Nombre des cas convenables}}{\text{Nombre des cas possibles}} = \frac{|A|}{|\Omega|} = \frac{22}{36} = \frac{11}{18} \in [0, 1]$$

5/a) Soit $B = \{ Obtenir la somme < 6 \}, alors$

$$B = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1)\}.$$

b) La probabilité de réussite l'évènement B c'est

$$P(B) = \frac{\text{Nombre des cas convenables}}{\text{Nombre des cas possibles}} = \frac{|B|}{|\Omega|} = \frac{10}{36} = \frac{5}{18} \in [0, 1].$$

- 6/ On note par X c'est la variable aléatoire qui represente la somme des résultats obtenues.
- a) La loi de probabilité de la variable aléatoire X, ici il suffit de calculer la probabilité suivante P(X = k) avec $k \in \{2, 12\}$.

$$P(X = 2) = P((1,1)) = \frac{1}{36} \in [0,1].$$

$$P(X = 3) = P((1,2), (2,1)) = \frac{2}{36} \in [0,1].$$

$$P(X = 4) = P((1,3), (2,2), (3,1)) = \frac{3}{36} \in [0,1]$$

$$P(X = 5) = P((1,4), (2,3), (3,2), (4,1)) = \frac{4}{36} \in [0,1]$$

$$P(X = 6) = P((1,5), (2,4), (3,3), (4,2), (5,1)) = \frac{5}{36} \in [0,1]$$

$$P(X = 7) = P((1,6), (2,5), (3,4), (4,3), (5,2), (6,1))$$

$$= \frac{6}{36} \in [0,1]$$

$$P(X = 8) = P((2,6), (3,5), (4,4), (5,3), (6,2)) = \frac{5}{36} \in [0,1]$$

$$P(X = 9) = P((3,6), (4,5), (5,4), (6,3)) = \frac{4}{36} \in [0,1]$$

$$P(X = 10) = P((4,6), (5,5), (6,4)) = \frac{3}{36} \in [0,1]$$

$$P(X = 11) = P((5,6), (6,5)) = \frac{2}{36} \in [0,1]$$

$$P(X = 12) = P((6,6)) = \frac{1}{36} \in [0,1]$$

b) Comme l'évènements (X=9), (X=10), (X=11) et (X=12) sont indépendantes, alors il vient que

$$P(X \ge 9) = P(X = 9, \text{ ou } X = 10, \text{ ou } X = 11, \text{ ou } X = 12)$$

= $P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12)$
= $\frac{4}{36} + \frac{3}{36} + \frac{2}{36} + \frac{1}{36} = \frac{10}{36} = \frac{5}{18} \in [0, 1]$.

c)

$$E(X) = \sum_{i=1}^{12} x_i p_i = \sum_{i=2}^{12} x_i P(X=i)$$

$$= 2 \times \frac{1}{36} + 3\frac{2}{36} + 4\frac{3}{36} + 5\frac{4}{36} + 6\frac{5}{36}$$

$$+ 7\frac{6}{36} + 8\frac{5}{36} + 9\frac{4}{36} + 10\frac{3}{36} + 11\frac{2}{36}$$

$$+ 12\frac{1}{36}$$

$$= \frac{257}{36}.$$

De plus pour la variance, on utilise cette formule

$$Var(X) = E(X^{2}) - E^{2}(X).$$

Alors

$$E(X^{2}) = \sum_{i=2}^{12} x_{i}^{2} p_{i} = \sum_{i=2}^{12} x_{i}^{2} P(X = i) x_{k} p_{k} x^{2}$$

$$= (2)^{2} \times \frac{1}{36} + (3)^{2} \frac{2}{36} + (4)^{2} \frac{3}{36} + (5)^{2} \frac{4}{36} + (6)^{2} \frac{5}{36}$$

$$+ (7)^{2} \frac{6}{36} + (8)^{2} \frac{5}{36} + (9)^{2} \frac{4}{36} + (10)^{2} \frac{3}{36} + (11)^{2} \frac{2}{36}$$

$$+ (12)^{2} \frac{1}{36}$$

$$= \frac{1974}{36}.$$

Alors

$$Var(X) = E(X^{2}) - E^{2}(X)$$

$$= \frac{1974}{36} - \left(\frac{257}{36}\right)^{2}$$

$$= \frac{5015}{1296}.$$

Exercice 04:

Le temps T nécessaire à un rat pour parcourir un labyrinthe est une variable aléatoire dont la distribution de probabilité est donnée par :

T (en secondes)	2	3	4	5	6	7
$P\left(T=k\right)$	0,09	0,08	0,03	p_5	0,2	p_7

1/ Compléter le tableau en calculant $p_5 = P(T=5)$, sachant que l'espérance de la variable T égale à 4,94.

Alors on sait que $\sum_{i=2}^{7} p_i = 1$, donc il vient que

$$\begin{cases} p_2 + p_3 + p_4 + p_5 + p_6 + p_7 = 1, \\ E(T) = 4,94. \end{cases}$$

c'est à dire que

$$\begin{cases} P(T=2) + P(T=3) + P(T=4) + P(T=5) + P(T=6) + P(T=7) = 1, \\ 2P(T=2) + 3P(T=3) + 4P(T=4) + 5P(T=5) + 6P(T=6) + 7P(T=7) = 4, 94. \end{cases}$$

Alors

$$\begin{cases}
p_5 + p_7 = P(T=5) + P(T=7) = 1 - \{P(T=2) + P(T=3) + P(T=4) + P(T=6)\}, \\
5p_5 + 7p_7 = 4,94 - \{2P(T=2) + 3P(T=3) + 4P(T=4) + 6P(T=6)\}.
\end{cases}$$

Alors

$$\begin{cases} p_5 + p_7 = P(T=5) + P(T=7) = 1 - 0, 40 = 0, 60, \\ 5p_5 + 7p_7 = 4, 94 - 1, 74 = 3, 2. \end{cases}$$

Alors

$$\begin{cases} p_5 = 0,60 - p_7, \\ 5(0,60 - p_7) + 7p_7 = 3,00 - 5p_7 + 7p_7 = 3,2. \end{cases}$$

Alors

$$\begin{cases} p_5 = 0,60 - p_7, \\ 2p_7 = 3,2 - 3,00 = 0,2. \end{cases}$$

Alors

$$\begin{cases} p_5 = 0, 6 - p_7, \\ p_7 = \frac{0.2}{2} = 0, 1. \end{cases}$$

Alors

$$p_5 = 0, 6 - p_7 = 0, 6 - 0, 1 = 0, 5.$$

2/ La variance.

On sait aussi que

$$Var(T) = E(T^2) - E^2(T)$$
.

On calcul tout d'abord $E\left(T^{2}\right)$

$$E(T^{2}) = \sum_{i=2}^{7} x_{i}^{2} p_{i}$$

$$= x_{2}^{2} p_{2} + x_{3}^{2} p_{3} + x_{4}^{2} p_{4} + x_{5}^{2} p_{5} + x_{6}^{2} p_{6} + x_{7}^{2} p_{7}$$

$$= 2^{2} (0,09) + 3^{2} (0,08) + 4^{2} (0,03) + 5^{2} (0,5) + 6^{2} (0,2) + 7^{2} (0,1)$$

$$= 26,16$$

Alors

$$Var(T) = E(T^{2}) - E^{2}(T)$$

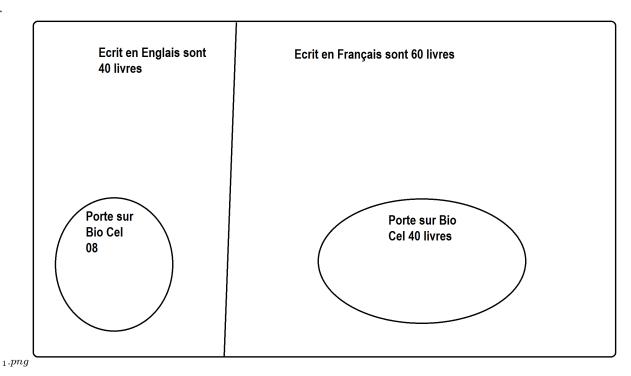
= $26, 16 - (4, 94)^{2}$
= $1,756$

Alors Ecart-type

$$\sigma = \sqrt{Var(T)}$$
$$= \sqrt{1,756} = 1,325.$$

Exercice 05:

1cor



On note par

 $A = \{ \text{Livre \'ecrit en Anglais} \},$ $F = \{ \text{Livre \'ecrit en Français} \},$

 $B = \{ \text{ Porte sur la biologie Cellulaire} \}.$

1/ La probabilité de trouver un livre écrit en Englais c'est

$$P(E) = \frac{|E|}{|\Omega|} = \frac{40}{100} = \frac{2}{5} = 0, 4 \in [0, 1].$$

2/ La probabilité de trouver un livre écrit en Français c'est

$$P(F) = \frac{|F|}{|\Omega|} = \frac{60}{100} = \frac{3}{5} = 0, 6 \in [0, 1].$$

3/ L'évenement (B|E) signer que le livre porte sur la biologie celullairesachant qu'il est écrit en englais, avec $B \subset E$, alors la proba de verifier cette évenements c'est

$$P(B|E) = \frac{|B|}{|E|} = \frac{8}{40} = \frac{1}{5} \in [0, 1].$$

4/ L'évenement (B|F) signer que le livre porte sur la biologie celullaire sachant qu'il est écrit en Français, avec $B \subset F$, alors la proba de verifier cette évenements c'est

 $P(B|F) = \frac{|B|}{|F|} = \frac{40}{60} = \frac{2}{3} \in [0,1].$

5/ a) On choisit au hazard un livre porté sur la biologie cellulaire, on calcul qu'il est écrit en Englais : c'est évènement { (E | B) évenement à postérioré}, alors d'aprés la formule de Bayes on trouve

$$P(E|B) = \frac{P(B|E)P(E)}{P(B|E)P(E) + P(B|F)P(F)}$$

$$= \frac{\frac{\frac{1}{5}\frac{2}{5}}{\frac{1}{5}\frac{2}{5} + \frac{2}{3}\frac{3}{5}} = \frac{\frac{2}{5}(\frac{1}{5})}{\frac{2}{5}(\frac{1}{5} + 1)} = \frac{\frac{1}{5}}{\frac{6}{5}}$$

$$= \frac{1}{6} = 16,66\%.$$

b) On choisit au hazard un livre porté sur la biologie cellulaire, on calcul qu'il est écrit en Français : c'est évènement $\{ (F|B) \text{ évenement à postérioré} \}$, alors d'aprés la formule de Bayes on trouve

$$P(F|B) = \frac{P(B|F)P(F)}{P(B|F)P(F) + P(B|E)P(E)}$$

$$= \frac{\frac{2\frac{3}{3}}{5}}{\frac{1}{5}\frac{2}{5} + \frac{2}{3}\frac{3}{5}} = \frac{\frac{2}{5}}{\frac{2}{5}(\frac{1}{5} + 1)}$$

$$= \frac{1}{\frac{6}{5}} = \frac{5}{6} = 83,33\%.$$

c) On sait que

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Alors même formule pour la loi de Bayes

$$P(E \cup F | B) = P(E | B) + P(F | B) - P(E \cap F | B)$$

$$= P(E | B) + P(F | B) - P(\emptyset)$$

$$= P(E | B) + P(F | B) - 0$$

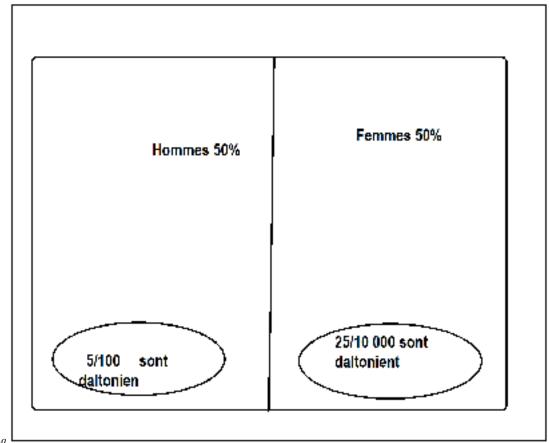
$$= P(E | B) + P(F | B)$$

$$= \frac{1}{6} + \frac{5}{6} = 1.$$

Car on ne peut pas trouver un livre écrit en Français et en Englais en même temps, c'est pour ca $P(E \cap F | B) = 0$.

Exercice 06:

02



 $_2.png$

On note par $H=\{$ avoir un homme $\}$, $F=\{$ avoir une Femme $\}$, et $D=\{$ est Daltonien $\}$

La probabilté d'avoir un homme sur cette population c'est 50%. La probabilté d'avoir une Femme sur cette population c'est 50%.

L'évenement $\{ (D|H) \}$ un daltonien sachant qu'il est homme. (avec $D \subset H$) L'évenement $\{ (D|F) \}$ un daltonien sachant qu'elle est Femme (avec $D \subset F$) Alors

$$P((D|H)) = 5/100.$$

 $P((D|H)) = 25/10000.$

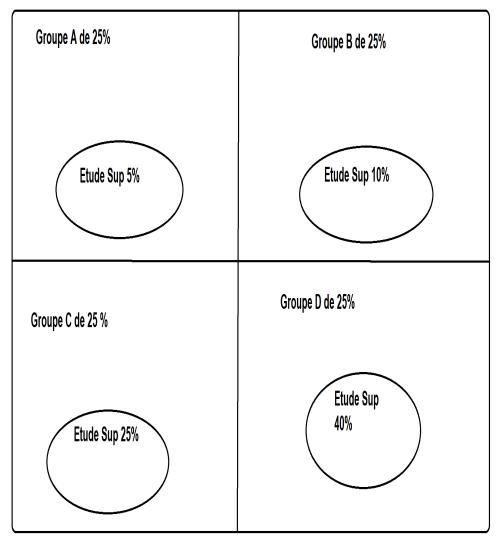
Alors l'évenement à postérioré (H|D), pour cela on applique la formule de

Bayes

$$P(H|D) = \frac{P(D|H)P(H)}{P(D|H)P(H) + P(D|F)P(F)}$$
$$= \frac{\frac{5}{100}\frac{50}{100}}{\frac{5}{100}\frac{50}{100} + \frac{25}{100000}\frac{50}{100}} = 0,952 = 95,238\%.$$

Exercice 7:

03



 $_{3}.png$

On note par A, B, C, et D les goupes, et par S l'évènement "personne fait son étude superieure", alors

$$P(A) = P(B) = P(C) = P(D) = \frac{1}{4}$$

= 25% = 0,25 \in [0,1].

1/ La probabilié qu'une personne fait l'étude sup sachant qu'elle est dans le groupe $\,A$ c'est

$$\begin{array}{lll} P\left(S\,|A\right) & = & 5\% = 0,05 \in [0,1]\,, \; (avec \; S \subset A) \\ P\left(S\,|B\right) & = & 10\% = 0,10 \in [0,1]\,, \; (avec \; S \subset B) \\ P\left(S\,|C\right) & = & 25\% = 0,25 \in [0,1]\,, \; (avec \; S \subset C) \\ P\left(S\,|D\right) & = & 40\% = 0,40 \in [0,1]\,. \; (avec \; S \subset D) \end{array}$$

Alors, la probabilité pour qu'une personne choisit au hazard ait fait l'études superieurs c'est la quantité suivante

$$P(S) = P(S|A) P(A) + P(S|B) P(B) + P(S|C) P(C) + P(S|D) P(D)$$

$$= 0,25 (0,05+0,10+0,25+0,40)$$

$$= 0,20 \in [0,1].$$

2/ La probabilité à postréoré

$$P(D|S) = \frac{P(S|D) P(D)}{P(S)}$$

$$= \frac{P(S|D) P(D)}{P(S|A) P(A) + P(S|B) P(B) + P(S|C) P(C) + P(S|D) P(D)}$$

$$= \frac{0,25 \times 0,40}{0,20} = 0,5 \in [0,1].$$