# **Dynamics**

**Prerequisites: Statics** 

Dr. Djedoui . Dr. Khechai

The study of how *rigid* bodies react to forces acting on them.

Statics: The study of bodies in equilibrium.

**Newton's first law** 

$$F_R=0$$

**Dynamics:** The study of motion.

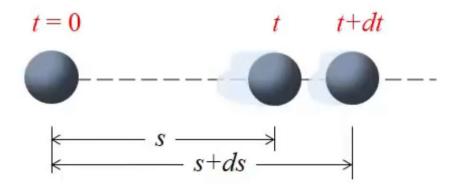
 Kinematics – concerned with the geometric aspects of motion, s, v, a and t.

**S** displacement

**V** velocity

*a* acceleration *t* time

**Kinematics:** concerned with the geometric aspects of motion s, v, a and t



$$v = \frac{ds}{dt} \qquad \qquad a = \frac{dv}{dt} = \frac{d^2s}{dt}$$

The study of how *rigid* bodies react to forces acting on them.

Statics: The study of bodies in equilibrium.

**Dynamics:** The study of motion.

- Kinematics concerned with the geometric aspects of motion, s, v, a and t.
- Kinetics concerned with how forces causing the motion.

Newton's second law  $F_R = ma$ 

#### **Course structure:**

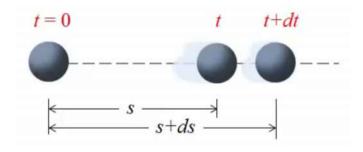
- 1. Particle kinematics
- 2. Particle kinetics:
  - a- force and acceleration
  - b-work and energy
  - c-impulse and momentum
- 3. Rigid body planar (2D) kinematics
- 4. Rigid body planar (2D) kinetics:
  - a-force and acceleration
  - b-work and energy
  - c-impulse and momentum

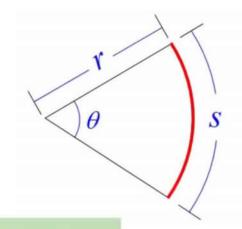
$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$F = ma$$

$$s = r\theta$$





Note: only **scalar** equations are shown from here on for simplification purpose.

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$dt = \frac{ds}{v} = \frac{dv}{a}$$

$$ads = vdv$$

$$F = ma$$

$$s = r\theta$$

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$a = mudv$$

$$fds = muds = mvdv$$

$$\int_{s_1}^{s_2} Fds = m \int_{s_1}^{s_2} vdv$$

$$F = ma$$

$$\int_{s_1}^{s_2} Fds = \frac{1}{2}mv_2^2 \quad \frac{1}{2}mv_1^2$$

Principle of work and energy

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$F = ma$$

$$\int_{t_1}^{t_2} F dt = m \int_{t_1}^{t_2} dv$$

$$S = r\theta$$

$$\int_{t_1}^{t_2} F dt = mv_2 \quad mv_1$$

Principle of linear impulse and momentum

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$F = ma$$

$$s = r\theta$$

$$v = \frac{ds}{dt}$$
  $\omega = \frac{d\theta}{dt} = \frac{v}{r}$   $\alpha = \frac{d\omega}{dt} = \frac{a_t}{r}$   $\alpha = \frac{dv}{dt}$   $\alpha = \frac{d\theta}{dt}$   $\alpha = \frac{d\theta}{dt}$   $\alpha = \frac{d\theta}{dt}$   $\alpha = \frac{d\omega}{dt}$   $\alpha = \frac{$ 

$$M_G = I_G lpha$$
  $U_M = \int_{ heta_1}^{ heta_2} M d heta$  Work of

$$I_G \omega_1 + I_G \omega_1 \sum_{1}^{n} \int_{t_1}^{t_2} M_G \, dt = I_G \omega_2$$
 Angular impulse and momentum

## Particle kinematic

Rectilinear, continuous motion

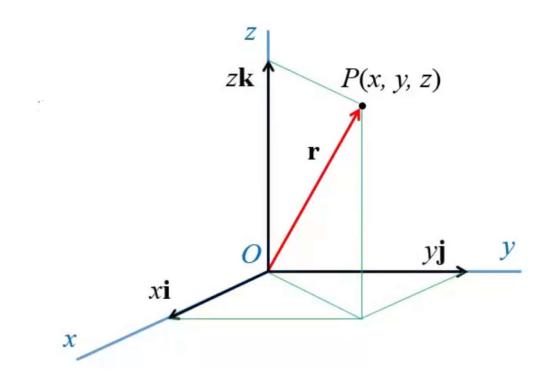
- To revisit position vector as learned in Statics.
- To define the important vector quantities: displacement, velocity and acceleration.
- To distinguish between displacement and distance travelled, velocity and speed, instantaneous velocity and average velocity.
- To study particle motion along a straight line and the representation of motion using position-time graph and velocity-time graph.

#### We have seen:

#### **Position vector:**

$$r = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

r(t) is a function of time



$$r = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

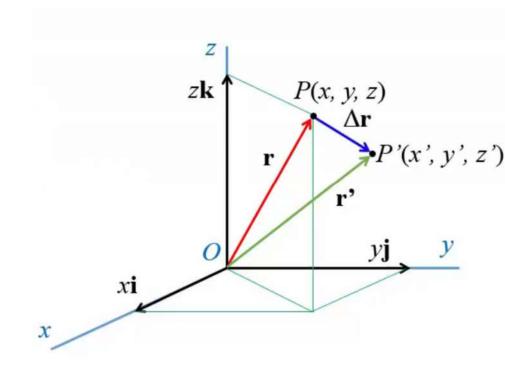
$$r' = x'\mathbf{i} + y'\mathbf{j} + z'\mathbf{k}$$

$$\Delta \mathbf{r} = \mathbf{r}' \quad \mathbf{r}$$

### △ r Displacement

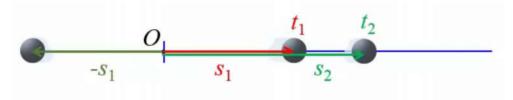
$$v = \frac{dr}{dt}$$
 velocity

$$a = \frac{dv}{dt}$$
 acceleration



Dr. Djedoui . Dr. Khechai

#### **Rectilinear, Continuous motion**



#### $\mathbf{s}(t)$ is a function of time

Continuous, means that s(t) consists only of one equation.

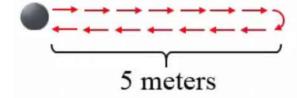
Average velocity: 
$$v_{avg} = rac{\Delta \ s}{\Delta \ t} = rac{s_2}{t_2} rac{s_1}{t_1}$$

Instantaneous velocity: 
$$v = \frac{d}{d}$$

#### **Rectilinear, Continuous motion**

#### Distance travelled: $S_T$

$$\triangle s = 0$$

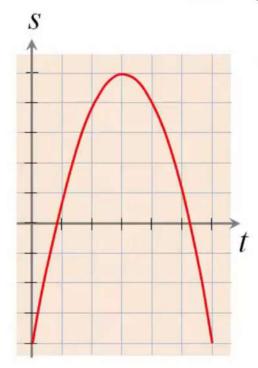


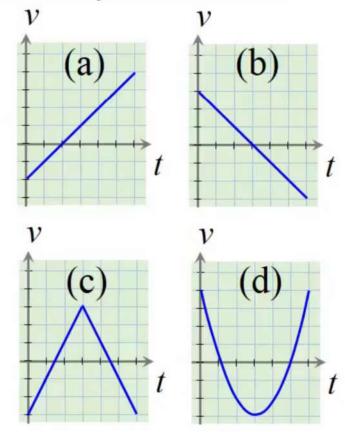
$$v_{avg} = \frac{\Delta s}{st} = 0$$

$$S_T = 10m$$

$$(v_{sp})_{avg} = \frac{S_T}{\Delta t} = \frac{10m}{5s} = 2 m/s$$

Question 3: For the given position-time function, which graph could represent its velocity-time function?





Dr. Djedoui . Dr. Khechai

### Particle kinematic

Instantaneous acceleration, average acceleration and kinematic equations

#### **Rectilinear, Continuous motion**

#### **Average velocity**



$$v_{avg} = \frac{\Delta s}{\Delta t} = \frac{s_2}{t_2} \frac{s_1}{t_1}$$

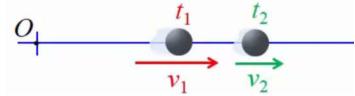
#### $\Delta t \rightarrow 0$ Instantaneous velocity

$$v = \frac{ds}{dt}$$

#### **Rectilinear, Continuous motion**

#### **Average acceleration**

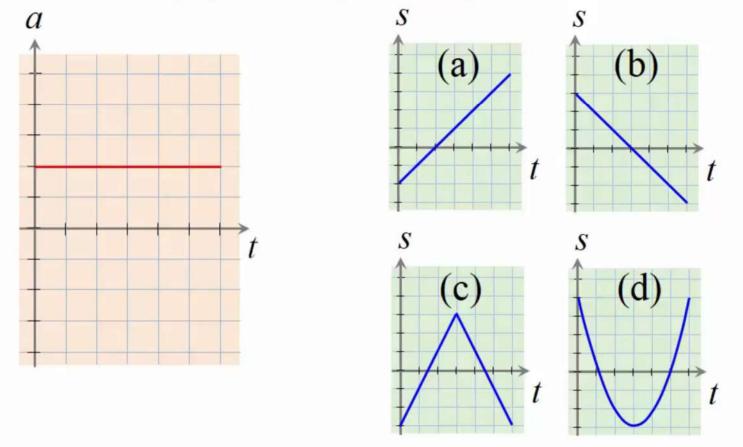
$$a_{avg} = \frac{\Delta v}{\Delta t} = \frac{v_2}{t_2} \frac{v_1}{t_1}$$



#### $\Delta t \rightarrow 0$ Instantaneous acceleration

$$a = \frac{dv}{dt} = \frac{d^2s}{dt}$$

Question 1: For the given acceleration-time function, which graph could represent its position-time function?



Dr. Djedoui . Dr. Khechai

#### **Rectilinear, Continuous motion**

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$dt = \frac{ds}{v} = \frac{dv}{a} \longrightarrow ads = vdv$$

The Three kinematic equations

Example 1: The velocity of a particle moving along a straight line is  $v = (t^2+2t)$  m/s, where t is in seconds. If its position s = 0 when t = 0, determine its acceleration and **position** when t = 4 s.

$$v = \frac{ds}{dt} \quad a = \frac{dv}{dt}$$
$$ads = vdv$$

$$v = \frac{ds}{dt} \longrightarrow (t^2 + 2)dt = ds$$

$$\int_{t=0}^{t} \left(t^2+2\right)dt = \int_{s=0}^{s} ds$$

$$\longrightarrow \frac{1}{3}t^3 + 2t = s = s(t)$$

$$s(4) = 37.3m$$

Example 2: The acceleration of a particle moving along a straight line is  $a = \sqrt{s} \text{ m/s}^2$ , where s is in meters. If its position s = 0 and velocity v = 0 when t = 0, determine its velocity when s = 16 m. What time is that?

$$v = \frac{ds}{dt} \ a = \frac{dv}{dt}$$
$$ads = vdv$$

$$ads = vdv \longrightarrow \sqrt{s}ds = vdv$$

$$\longrightarrow \int_{s=0}^{s} \sqrt{s} ds = \int_{v=0}^{v} v dv \longrightarrow \frac{2}{3} s^{3/2} = \frac{1}{2} v^2$$

$$v(16) = 9.24 \, m/s$$

## Particle kinematic

**Rectilinear motion with constant acceleration** 

#### Objectives:

- To derive the three equations for rectilinear motion with constant acceleration from the three basic kinematic equations.
- To explain the problem-solving strategy for problems involving rectilinear motion with constant acceleration.

#### The three basic kinetic equations:

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$ads = vdv$$

#### **Constant acceleration:**

$$a = a_c, v_0, s_0$$

$$a = a_c, v_0, s_0$$
 
$$a = \frac{dv}{dt} \rightarrow adt = dv \rightarrow a_c dt = dv$$

$$\rightarrow a_c t = v \quad v_0$$

$$v = v_0 + a_c t$$

#### The three basic kinetic equations:

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$ads = vdv$$

#### **Constant acceleration:**

$$a = a_c, v_0, s_0$$

$$v = \frac{ds}{dt} \rightarrow vdt = ds \rightarrow (v_0 + a_c)dt = ds$$

$$\rightarrow \int_0^t (v_0 + a_c t)dt = \int_{s_0}^s ds$$

$$\rightarrow v_0 t + \frac{1}{2}a_c t^2 = s \quad s_0$$

$$\rightarrow s = \frac{1}{2}a_c t^2 + v_0 t + s_0$$

#### The three basic kinetic equations:

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$ads = vdv$$

#### **Constant acceleration:**

$$a = a_c, v_0, s_0$$

$$ads = vdv \rightarrow a_c ds = vdv$$

$$\rightarrow \int_{s_0}^{s} a_c ds = \int_{v_0}^{v} v dv$$

$$\rightarrow a_c(s \quad s_0) = \frac{1}{2} (v^2 \quad v_0^2)$$

$$\rightarrow v^2 = v_0^2 + 2a_c(s \quad s_0)$$

### Particle kinematic

Rectilinear, erratic motion with motion graph

#### The three basic kinetic equations:

$$v = \frac{ds}{dt}$$

$$a = \frac{dv}{dt}$$

$$ads = vdv$$

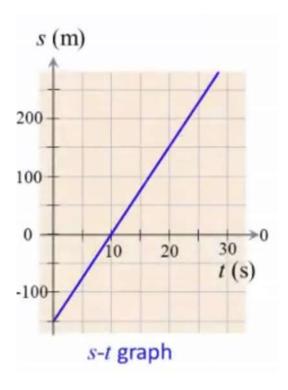
$$s = f(t)$$

$$v = f'(t)$$

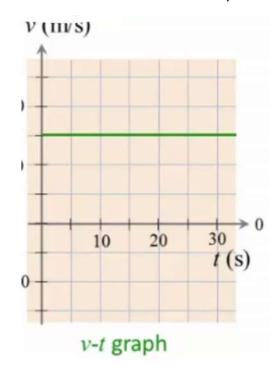
$$a = f''(t)$$

#### Continuous motion: s consists of only one equation

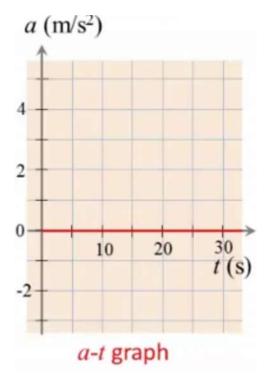
$$s = 15t \quad 150(m)$$



$$v = \frac{ds}{dt} = 15(m/s)$$

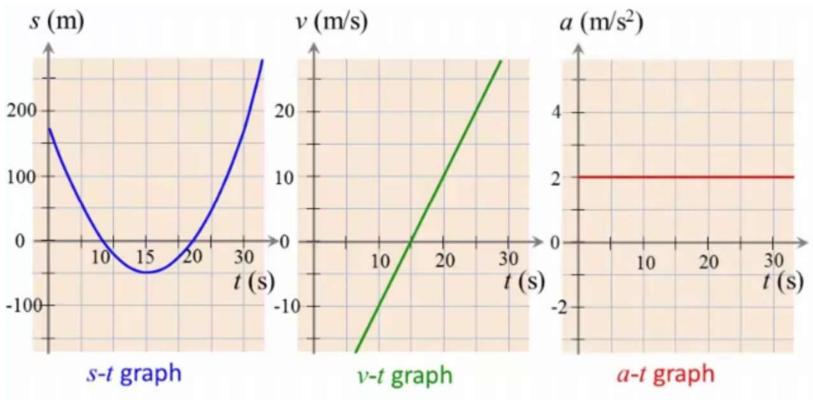


$$a=\frac{dv}{dt}=0$$



#### Continuous motion: s consists of only one equation

$$s = t^2$$
  $30t + 175(m)$   $v = 2t$   $30(m/s)$   $a = 2(m/s^2)$ 



Dr. Djedoui . Dr. Khechai

#### **Erratic motion: non-continuous motion**

$$s = \begin{cases} \text{Equation } \textcircled{1} \\ \text{Equation } \textcircled{2} \\ \text{Equation } \textcircled{3} \\ \dots \end{cases} \qquad v = \begin{cases} \text{Equation } \textcircled{1} \\ \text{Equation } \textcircled{2} \\ \text{Equation } \textcircled{3} \\ \dots \end{cases} \qquad a = \begin{cases} \text{Equation } \textcircled{1} \\ \text{Equation } \textcircled{2} \\ \text{Equation } \textcircled{3} \\ \dots \end{cases}$$

Attention: Watch out for the beginning and the end of each time period

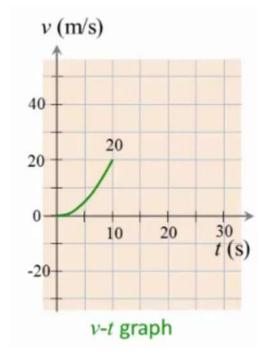
Example 1: An object travels along a straight path.  $s_0 = 0$  and  $v_0 = 0$ . Its acceleration (in m/s<sup>2</sup>) as a function of time is given. Construct its s-t, v-t and a-t motion graphs.

$$a = \begin{cases} 0.4t & 0 \le t < 10 \text{ s} & \text{①} \\ 2.4 & 10 \le t < 20 \text{ s} & \text{②} \\ 0 & 20 \le t < 30 \text{ s} & \text{③} \end{cases}$$

① 
$$0 \le t < 10 \text{ s}$$
:

$$adt = \int_0^t 0.4t dt = \int_0^v dv$$

$$\rightarrow v = 0.2t^2$$



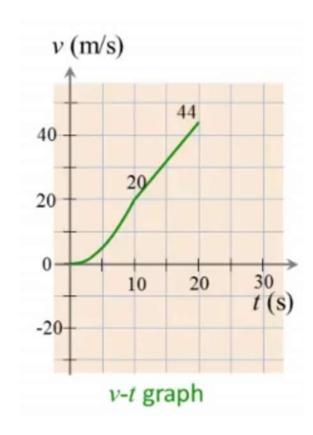
$$a = \begin{cases} 0.4t & 0 \le t < 10 \text{ s} & \text{①} \\ 2.4 & 10 \le t < 20 \text{ s} & \text{②} \\ 0 & 20 \le t < 30 \text{ s} & \text{③} \end{cases}$$

② 
$$10 \le t < 20 \text{ s}$$
:

$$adt = \int_{10}^{t} 2.4dt = \int_{20}^{v} dv$$

$$\rightarrow v$$
 20 = 2.4 $t$  24

$$\rightarrow v = 2.4t$$
 4



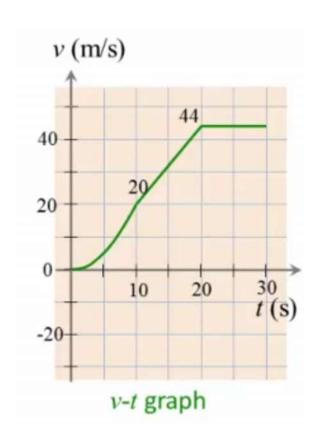
$$a = \begin{cases} 0.4t & 0 \le t < 10 \text{ s} & \text{①} \\ 2.4 & 10 \le t < 20 \text{ s} & \text{②} \\ 0 & 20 \le t < 30 \text{ s} & \text{③} \end{cases}$$

## 3 $20 \le t < 30 \text{ s}$ :

$$adt = \int_{20}^{t} 0dt = \int_{44}^{v} dv$$

$$\rightarrow v$$
 44 = 0

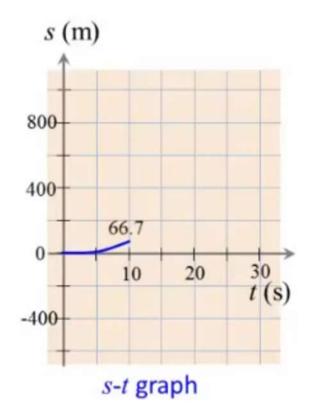
$$\rightarrow v = 44$$



$$v = \begin{cases} 0.2t^2 & 0 \le t < 10 \text{ s} & \text{1} \\ 2.4t - 4 & 10 \le t < 20 \text{ s} & \text{2} \\ 44 & 20 \le t < 30 \text{ s} & \text{3} \end{cases} \quad v = \frac{ds}{dt}$$

①  $0 \le t < 10 \text{ s}$ :

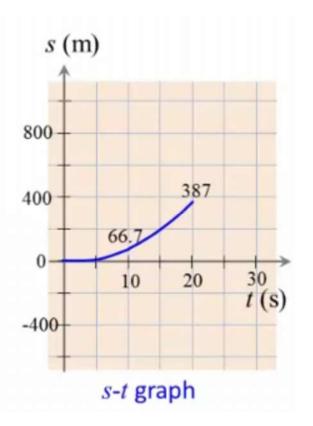
$$vdt = ds \Rightarrow \int_0^t 0.2t^2 dt = \int_0^s ds$$
$$\Rightarrow s = 0.067t^3$$



$$v = \begin{cases} 0.2t^2 & 0 \le t < 10 \text{ s} & \text{1} \\ 2.4t - 4 & 10 \le t < 20 \text{ s} & \text{2} \end{cases} \quad v = \frac{ds}{dt}$$

## ② $10 \le t < 20 \text{ s}$ :

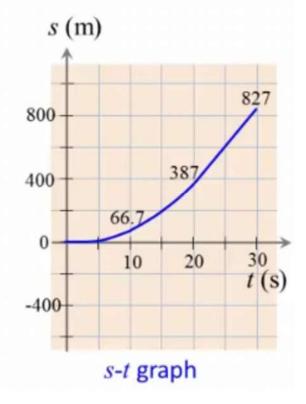
$$vdt = ds \Rightarrow \int_{10}^{t} (2.4t - 4)dt = \int_{66.7}^{s} ds$$
$$\Rightarrow (1.2t^{2} - 4t)_{10}^{t} = s - 66.7$$
$$\Rightarrow s = 1.2t^{2} - 4t - 13.3$$

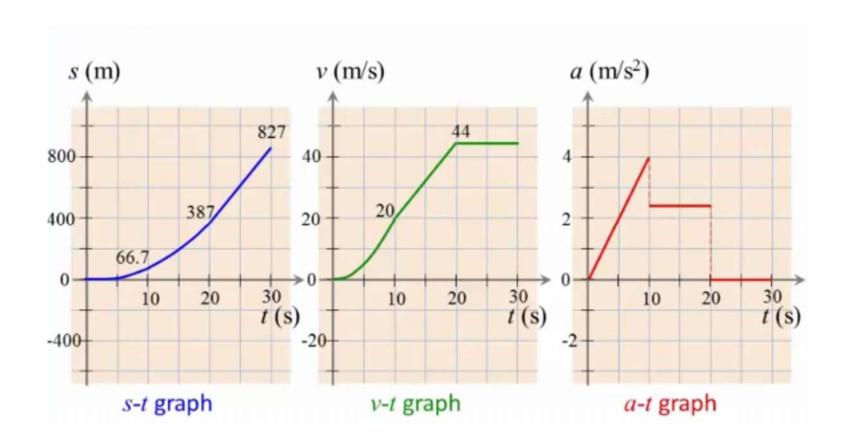


$$v = \begin{cases} 0.2t^2 & 0 \le t < 10 \text{ s} & \text{①} \\ 2.4t - 4 & 10 \le t < 20 \text{ s} & \text{②} \\ 44 & 20 \le t < 30 \text{ s} & \text{③} \end{cases} \quad v = \frac{ds}{dt}$$

3  $20 \le t < 30 \text{ s}$ :

$$vdt = ds \Rightarrow \int_{20}^{t} 44dt = \int_{387}^{s} ds$$
$$\Rightarrow 44(t - 20) = s - 387$$
$$\Rightarrow s = 44t - 493$$





# Particle kinematic

**Curvilinear motion** 

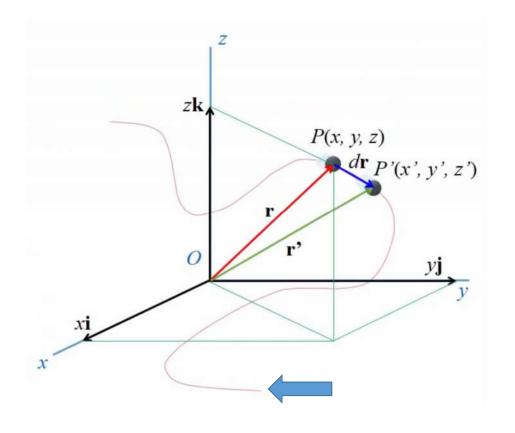
$$r = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$v = \frac{dr}{dt}$$
 velocity

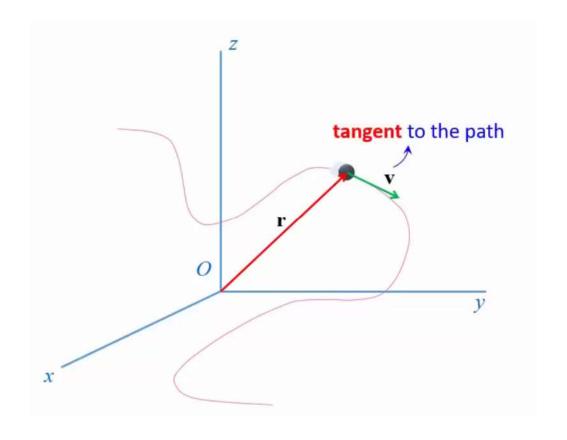
$$= xi + yj + zk$$

$$a=\frac{dv}{dt}=\frac{d^2r}{dt}$$

$$= xi + yj + zk$$

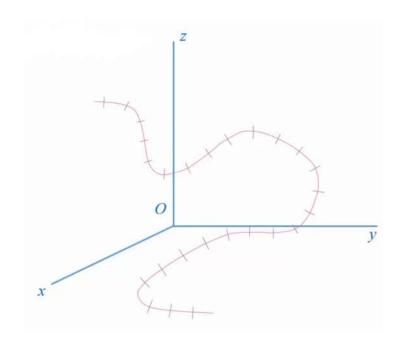


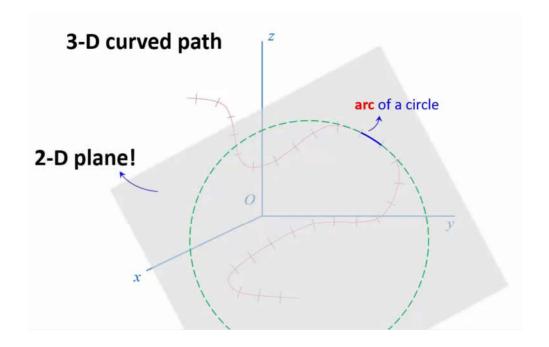
Dr. Djedoui . Dr. Khechai



Dr. Djedoui . Dr. Khechai

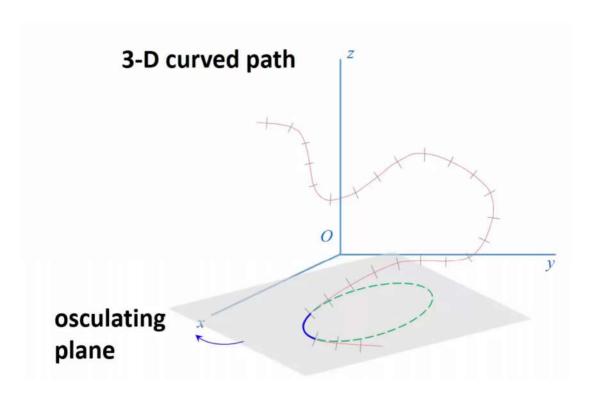
# **3D-curved path**

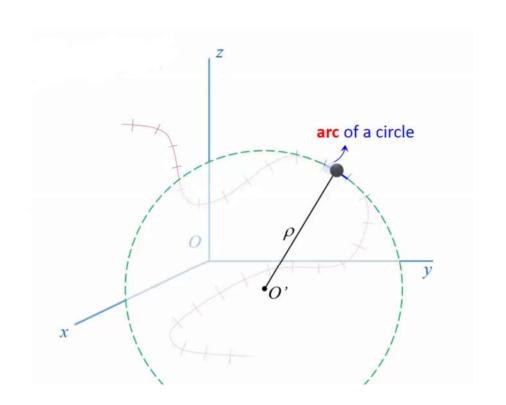


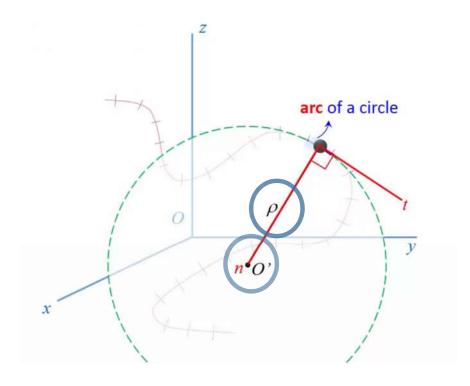


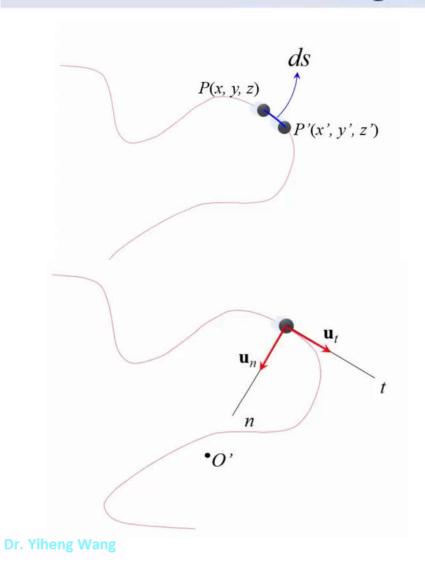
## **3D-curved path**

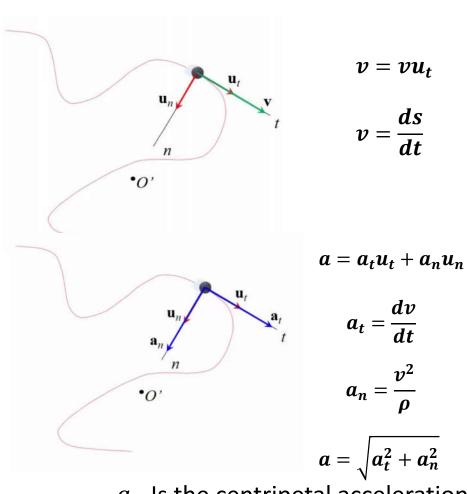
The 3D motion is now considered as a sequence of 2D motions











Dr. Djedoui . Dr. Khechai

 $a_n$  Is the centripetal acceleration

$$s = s_0 + v_0 t + \frac{1}{2} (a_t)_c t^2$$

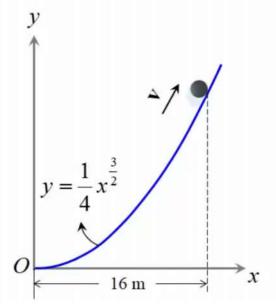
$$v = v_0 + (a_t)_c t^2$$

$$v^2 = v_0^2 + 2(a_t)_c(s - s_0)$$

If the path is known as y=f(x) then the curvature radius is:

$$\rho = \frac{\frac{d^2y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}$$

Example: An object travels along a curved path as shown. If at the point shown its speed is 28.8 m/s and the speed is increasing at 8 m/s<sup>2</sup>, determine the direction of its velocity, and the magnitude and direction of its acceleration at this point.



slope = 
$$\frac{dy}{dx} = \frac{3}{8}x^{\frac{1}{2}}$$

(a) x = 16 m

slope 
$$=\frac{3}{8} \cdot 16^{\frac{1}{2}} = 1.5 = \tan \theta$$

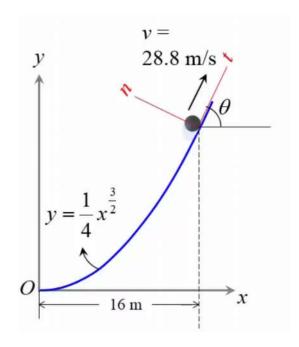
$$\theta = \tan^{-1} 1.5 = 56.3^{\circ}$$

$$\mathbf{a} = a_t \mathbf{u}_t + a_n \mathbf{u}_n$$

$$a_t = \frac{dv}{dt} = 8 \text{ m/s}^2$$

$$a_n = \frac{v^2}{\rho}$$

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|}$$



$$\rho = \frac{\left[1 + (dy/dx)^{2}\right]^{3/2}}{\left|d^{2}y/dx^{2}\right|}$$

$$a_{t} = \frac{dv}{dt} = 8 \text{ m/s}^{2}$$

$$\frac{dy}{dx} = \frac{3}{8}x^{\frac{1}{2}} \quad \frac{d^{2}y}{dx^{2}} = \frac{3}{16}x^{-\frac{1}{2}}$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a_{n} = \frac{v^{2}}{1$$

$$a_{t} = \frac{av}{dt} = 8 \text{ m/s}^{2}$$

$$a_{n} = \frac{v^{2}}{\rho} = \frac{28.8^{2}}{125} = 6.64 \text{ (m/s}^{2})$$

$$a = \sqrt{a_{t}^{2} + a_{n}^{2}} = 10.4 \text{ m/s}^{2}$$

$$\phi = 56.3^{\circ} + \tan^{-1} \frac{6.64}{8} = 96.0^{\circ}$$

