Chapitre II Transformateurs électriques

II.1.Introduction

Les transformateurs sont des machines statiques qui possèdent un bon rendement. Leur utilisation est primordiale dans les réseaux électriques pour le transport d'énergie électrique. Ils assurent l'élévation de la tension entre les alternateurs (source) et le réseau de transport, puis ils abaissent la tension du réseau pour l'exploiter par les utilisateurs.

II.2. Schéma et constitution d'un transformateur

Un transformateur est constitué d'un circuit magnétique fermé, de grande perméabilité sur lequel sont enroulés deux circuits électriques; l'un est appelé primaire de N₁ spires qui reçoit l'énergie électrique, l'autre secondaire de N₂ spires qui fournie cette énergie à la charge.

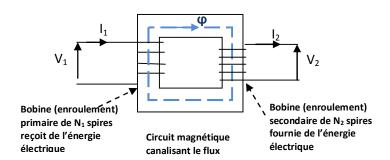


Fig.2.1 Schéma de constitution d'un transformateur

V1, V2, I1 et I2 sont les tensions et courants respectivement au primaire et au secondaire. Les enroulements sont isolés électriquement et sont couplés par le flux magnétique φ.

II.3. Principe de fonctionnement

Le principe de fonctionnement est basé sur la loi de faraday qui s'énonce qu'une variation de flux à travers la surface d'une spire crée une force électromotrice f.e.m e (t) :

$$e(t) = -\frac{d\varphi}{dt}$$

En effet, la tension alternative au primaire va créer un flux magnétique alternatif qui traversant l'enroulement secondaire produira une f.e.m induite : donc au niveau des bornes du secondaire, apparaît

alors une tension sinusoïdale dont la fréquence est la même que celle de la tension appliquée au primaire, mais dont l'amplitude est différente.

II.4.Convention générateur et récepteur dans un transformateur

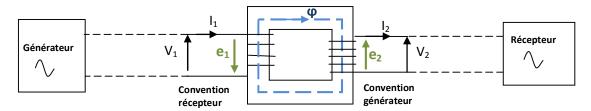


Fig. 2.2 convention dans un transformateur

L'enroulement primaire absorbe l'énergie du générateur, il se comporte comme un récepteur : V_1 et I_1 sont donc liés par la convention des récepteurs et leurs sens positifs sont pris en opposition.

$$V_1(t) = -e_1(t)$$

L'enroulement secondaire se comporte comme un générateur et fournit de l'énergie au récepteur, ils sont reliés par la convention des générateurs et le sens positif de V_2 est pris dans le même sens que celui de I_2 .

$$V_2(t) = e_2(t)$$

II.5. Symboles électriques du transformateur

Le transformateur peut être représenté par l'un des deux symboles de la figure 2.3

Fig. 2.3 Symboles électriques du transformateur

II.6. Transformateur parfait (idéal):

Un transformateur parfait ne présente aucune perte de puissance (de point de vue puissance $\sum pertes \ dans \ le \ transformateur = 0$), cela se traduit par l'établissement des hypothèses suivantes:

- Résistances des enroulements primaires et secondaires sont nulles (pas d'effet Joule).
- Les enroulements primaire et secondaire parfaitement couplés.
- Le circuit magnétique idéal (la perméabilité relative du matériau ferromagnétique μ_r est infinie et les pertes fer nulles).

II.7. Le rapport de transformation

Le rapport de transformation d'un transformateur est défini par la relation suivante :

$$m = \frac{V_2}{V_1} = \frac{N_2}{N_1} = \frac{I_1}{I_2}$$

Selon la valeur qui prend m, on peut distinguer :

Si $m > 1 \Rightarrow V_2 > V_1$ le transformateur est dit **Transformateur élévateur de tension, abaisseur de courant**.

Si m $< 1 \Rightarrow V_2 < V_1$ le transformateur est dit **Transformateur abaisseur de tension, élévateur de courant.**

Si $m = 1 \Rightarrow V_2 = V_1$ le transformateur est dit **Transformateur d'isolement**.

II.8. Equations de fonctionnement

II.8.1. Expression des f.é.m. dans le transformateur parfait :

Selon la loi de faraday, les f.é.m. $e_1(t)$ et $e_2(t)$ dépends de la variation du flux $\varphi(t)$:

$$e_1(t) = -N_1 \frac{d\varphi}{dt}$$

$$e_2(t) = -N_2 \frac{d\varphi}{dt}$$

II.8.2. Relation entre les tensions dans le cas parfait

Selon les relations (5.1), dans le cas du transformateur idéal la tension primaire et celle du secondaire vérifie les relations suivantes :

$$v_1 = -e_1(t) = N_1 \frac{d\varphi}{dt}$$

$$v_2 = e_2(t) = -N_2 \frac{d\varphi}{dt}$$
(5.*)

Le rapport des équations ()et () donne :

$$\frac{v_2}{v_1} = -\frac{N_2}{N_1} = -m$$

On peut écrire aussi : $v_2 = -m v_1$

Les tensions v_1 et v_2 sont en opposition de phase

II.8.3. Relation sur les courants

Selon la loi de Hopkinson on a :

$$N_1 i_1 + N_2 i_2 = \mathcal{R} \varphi$$

D'après les hypothèses d'un transformateur parfait, le circuit magnétique étant idéal (µ_r tend vers l'infini) doc la reluctance du circuit magnétique est nulle ($\mathcal{R}=0$)

L'équation précédente s'écrit sous la forme :

$$N_1 i_1 + N_2 i_2 = 0$$

Ce qui implique : $\frac{i_1}{i_2} = -\frac{N_2}{N_1} = -m$ $N_1 i_1 + N_2 i_2 = 0$

Remarque:

Pour le calcul du rapport de transformation, est l'inverse de celui des tensions

En valeur efficace des courants le rapport de transformation s'écrit :

$$m = \frac{I_1}{I_2}$$

II.9. Diagramme de Fresnel

On va représenter Les tensions v_1 et v_2 dans un diagramme vectoriel la relation mathématiques on prenant comme grandeurs de référence les tensions v

Ce diagramme de Fresnel représente donc les différentes grandeurs électriques dans le cas du transformateur idéal à travers leurs valeurs efficaces et leurs déphasages.

D'après les équations sus-citées, les vecteurs V₁ et V₂ sont alignées et il en va de même pour les vecteurs courants I_1 et I_2 .

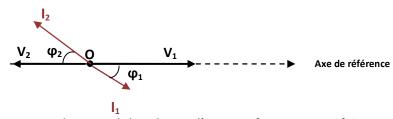


Fig. 2.4. Diagramme de Fresnel dans le cas d'un transformateur parfait

Par conséquent, les déphasages φ_1 et φ_2 sont nécessairement les mêmes : $\varphi_1 = \varphi_2$

II.10. Relation de Boucherot

La tension d'alimentation appliquée au primaire du transformateur est sinusoïdale, alors le flux magnétique est aussi sinusoïdal (de même pour l'induction magnétique B).

On considère le flux magnétique comme référence donc : $b(t) = B_{max} \sin(\omega t)$

De l'équation (5.*) : $v_1 = -e_1(t) = N_1 \frac{d\varphi}{dt}$

 $\varphi(t) = b(t) S$ où S est la section du circuit magnétique

$$\varphi(t) = B_{max} S \sin(\omega t)$$

La tension au primaire vaut :

$$v_{1} = N_{1} \frac{d(B_{max} S \sin(\omega t))}{dt}$$

$$v_{1} = N_{1} B_{max} S \frac{d(\sin(\omega t))}{dt}$$

$$v_{1} = N_{1} B_{max} S \omega \cos(\omega t)$$

$$v_{1} = N_{1} B_{max} S \omega \sin(\omega t + \frac{\pi}{2})$$

$$(5.**)$$

La tension $v_l(t)$ est en avance de 90° par rapport au flux magnétique.

Le terme $(N_1 B_{max} S \omega)$ de l'expression de la tension $V_1(t)$ représente la tension Maximale V_{1max}

$$V_{1max} = V_1 \sqrt{2} = (N_1 B_{max} S \omega)$$

 V_I la valeur efficace de la tension instantanée $v_1(t), \omega = 2\pi f$

Donc:
$$V_1 = \frac{2\pi f N_1 B_{max} S}{\sqrt{2}}$$

On obtient l'expression de la valeur efficace V_I :

$$V_1 = 4.44 N_1 f B_{max} S$$

C'est la formule de Boucherot

Le flux maximal φ_{max} , le champ magnétique maximal B_{max} et la section droite S du circuit magnétique sont reliés par la relation $\varphi_{max} = B_{max} S$

La relation de Boucherot peut s'écrire aussi:

$$V_1 = 4.44 N_1 f \varphi_{max}$$

II.11. Bilan de puissance (lois de conservation)

Le transformateur parfait conserve les puissances actives, réactives et apparentes (tous les pertes sont négligées). Il conserve aussi le déphasage, cela ce traduit par les relations suivantes :

La puissance apparente :

$$S_1 = S_2 \quad \Leftrightarrow \quad V_1 I_1 = V_2 I_2$$

La puissance active

$$P_1 = P_2$$

La puissance réactive

$$Q_1 = Q_2$$

Les puissances active et réactive absorbées par le primaire seront totalement transmises à la charge connectée au secondaire (pas des pertes). Le rendement d'un transformateur parfait est égal à 1.

II.12. Le transformateur réel

Dans un transformateur réel on tient compte des pertes de puissance ($\sum pertes \neq 0$)

II.13.Bilan énergétique (puissance) dans un transformateur réel

La puissance demandée par le transformateur au primaire va être en partie dissipée sous forme de chaleur dans le transfo (pertes cuivre et pertes fer) et fournie à la charge depuis le secondaire comme le montre le bilan de puissance dans la figure ci-dessous

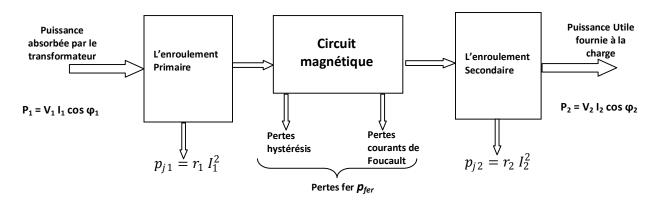


Fig.2.5. Bilan de puissance dans un transformateur réel

 p_{i1} les pertes joules dans l'enroulement primaire de résistance r

 p_{j2} les pertes joules dans l'enroulement secondaire de résistance r_2 ,

Les pertes cuivre est la somme des pertes joules dans les enroulements primaire et secondaire : $p_{cuivre} = p_{j1} + p_{j2}$

Les pertes fer dans le circuit magnétique : $p_{fer} = p_{hyste\,\acute{e}resis} + p_{courant\,de\,foucault}$

Le bilan de puissance d'un transformateur réel qui alimente une charge s'écrit :

$$P_1 = P_2 + \sum pertes$$

 $P_1 = P_2 + p_{j1} + p_{j2} + p_{fer}$

II.14. Le rendement d'un transformateur réel

Le rendement η est le rapport entre la puissance utile fournie à la charge au secondaire P_2 et la puissance absorbée par le transformateur P_1 au primaire :

$$\eta = \frac{P_2}{P_1}$$

Si on connait la valeur des pertes et la puissance mesurée au primaire P₁, le rendement s'écrit selon la relation suivante :

$$\eta = \frac{P_1 - p_{j1} - p_{j2} - p_{fer}}{P_1}$$

Si on connaît la puissance mesurée au secondaire \bar{P}_2 , le rendement vaut :

$$\eta = \frac{P_2}{P_2 + p_{i1} + p_{i2} + p_{fer}}$$

Remarque:

1-Le rendement généralement est exprimé en pourcentage %, dans un transformateur réel $P_2 < P_1$, le rendement $\eta < 1$.

2-Le rendement varie selon les conditions de fonctionnement de transformateur, le bon rendement est obtenu pour les valeurs nominales indiquées sur la plaque signalétique du transformateur.

II.15. Evaluation du rendement d'un transformateur

Le calcul du rendement peut s'effectuer par deux méthodes :

II.15.1 -Méthode de mesure directe :

Dans cette méthode on mesure la puissance absorbée et la puissance et la puissance fournie à la charge en utilisant deux wattmètres comme il est illustré sur la figure suivante:

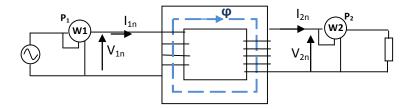


Fig .2.6. Evaluation du rendement par mesure directe

Après mesure le rendement se calcule selon la relation : $\eta = \frac{P_2}{P_1}$

II.15.2.- Mesure par la méthode des pertes séparée:

La méthode des pertes séparées s'appuie sur l'observation que les pertes d'un transformateur ont deux origines :

- Les pertes cuivre les pertes par effet Joules dans les enroulements.
- Les pertes fer les pertes magnétiques dans le circuit magnétique.

Deux essais particuliers du transformateur permettent de mesurer séparément ces pertes dans les conditions nominales :

II.15.2.1. Essai à vide d'un transformateur:

Le primaire du transformateur est sous une tension nominale $V_{I0}=V_{In}$, (indice 0 indique l'essai à vide), Le secondaire n'alimente aucune charge (transformateur à vide) on place un voltmètre pour mesurer la tension V_{20} dans ces conditions comme le montre la figure

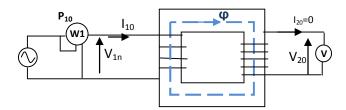


Fig. 2.7. Montage d'un essai à vide d'un transformateur

Dans l'essai à vide (le transformateur n'alimente aucune charge) $I_{20} = 0$ donc $p_{j2} = 0$ et la puissance fournie $P_2 = 0$

Le bilan de puissance du transfo lors d'un essai à vide est :

$$P_{10} = p_{i1} + p_{fer}$$

à vide le courant I_{10} est faible par conséquent :

$$P_{10} \approx p_{fer}$$

La lecture du wattmètre 1 dans l'essai à vide indique les pertes fer.

II.15.2.2. Essaie en court circuit d'un transformateur:

Le secondaire du transformateur est court-circuité, un ampèremètre est placé pour mesuré le courant I_{2cc} , l'alimentation du primaire doit être sous tension réduite $V_{1cc} \ll V_{1n}$ (ne dépasse pas les 10% de la tension nominale) le montage est bien illustré dans la figure