UniversityMohamed Khider Biskra

Faculty of Exact Sciences, Nature and Life Sciences

Department of Mathematics

First Year (MI+Mathematics) Module of Algebra 2 2022/2023

Series No. 01 (Vector Spaces)

Exercise 1: We define on \mathbb{R}^* an internal law \oplus and an external law \otimes as follows:

$$\bigoplus: \mathbb{R}^* \times \mathbb{R}^* \to \mathbb{R}^*$$
$$(x, y) \mapsto x \oplus y = xy$$

$$\bigotimes: \mathbb{R} \times \mathbb{R}^* \to \mathbb{R}^*$$
$$(\lambda, x) \mapsto \lambda \otimes x = x^{\lambda}$$

Shows that $(\mathbb{R}^*, \bigoplus, \bigotimes)$ is a vector space on the field $(\mathbb{R}, +, .)$.

Exercise 2: We define on $E = \mathbb{R}^2$ the two operations:

$$\forall (x, y), (x', y') \in E$$
:

$$\forall (x,y), (x',y') \in E:$$
 $(x,y) + (x',y') = (x+x',y+y')$

$$\forall \alpha = \alpha + ib \in \mathbb{C}$$

$$\forall \alpha = a + ib \in \mathbb{C}, \qquad (a + ib).(x, y) = (ax - by, ay + bx)$$

Shows that (E, +, ...) is a vector space on the field \mathbb{C} .

Exercise 3: In each of the following cases, is $(\mathbb{R}^2, +, ...)$ a vector space on the field \mathbb{R} ?

1)
$$(x, y) + (x', y') = (y + y', x + x');$$

$$\alpha.(x,y) = (\alpha x, y)$$

2)
$$(x,y) + (x',y') = (x + x', y + y');$$

$$\alpha.(x,y) = (\alpha x, -\alpha y)$$

3)
$$(x,y) + (x',y') = (x + x', y + y');$$

$$\alpha.(x,y) = (\alpha^2 x, \alpha^2 y)$$

Exercise 4: In each of the following cases, check whether the subsets F_i form a vector subspace of the vector space E

$$E=\mathbb{R}^2$$

$$F_1 = \{(x, y) \in E / 3x - y = 0\}$$

$$F_2 = \{(x, y) \in E / e^x e^y = 0\}$$

$$F_3 = \{(x, y) \in E / xy = 0\}$$

$$E = \mathbb{R}^3$$

$$F_4 = \{(x, y, z) \in E / x + y + 3z = 0\}$$

$$F_5 = \{(x, y, z) \in E / x + y + 3z = 2\}$$

$$F_6 = \{(x, y, z) \in E / z(x^2 + y^2) = 0\}$$

$$E = \mathbb{P}_1[X]$$

$$F_7 = \{ P \in E, P'(0) = 3 \}$$

$$F_8 = \{ P \in E, P(2) = P'(2) \}$$

$$F_9 = \{ P \in E, P(-1) = P(2) \}$$

$$E = \mathcal{F}(\mathbb{R}, \mathbb{R})$$

$$F_{10} = \{ f \in E / feven \}$$

$$F_{11} = \{ f \in E / f \text{ increasing} \}$$

$$F_{12} = \{ f \in E / \forall x \in \mathbb{R} : f(1 - x) = f(x) \}$$

Exercise 05: Let \mathbb{R}^3 be a vector space on \mathbb{R} and let U=(1,-3,2), V=(2,-1,1)

- 1. Write the vector X = (1,7,-4) as a linear combination of U and V.
- 2. Is the vector Y = (2, -5, 4) a linear combination of U and V?
- 3. Find *m* such that $Z = (3,1,m) \in [\{U,V\}]$

Exercise 06:

- 1. Which of the following families generates the vector space *E*?
- a) $\underline{E} = \mathbb{R}^2$:

$$\mathcal{F}_1 = \{(3, -1), (1, 1)\}, \mathcal{F}_2 = \{(-1, 1), (3, -3)\}, \mathcal{F}_3 = \{(3, -1), (1, 1), (1, -2)\}$$

b) $E = \mathbb{P}_2[X]$:

$$\mathcal{F}_1 = \{X^2, 3X, -1\}, \mathcal{F}_2 = \{X^2 + X, X - 1\}, \mathcal{F}_3 = \{2X^2 - 5, 7X, 3X^2 + 4\}$$

c) $\underline{E} = \mathbb{R}^3$:

$$\mathcal{F}_1 = \{(1,0,1), (-1,1,0)\}, \mathcal{F}_2 = \{(1,0,-1), (2,0,3), (3,1,-1)\}$$

- 2. Which of the following families are linearly independent in E?
- a) $E = \mathbb{R}^2$:

$$\mathcal{F}_1 = \{(-1,3), (0,1)\}, \mathcal{F}_2 = \{(1,2), (-1,1), (-1,2)\}$$

b) $E = \mathbb{P}_2[X]$:

$$\mathcal{F}_1 = \{X^2 + 1, X - 2\}, \mathcal{F}_2 = \{X, X + 1, X - 1\}, \mathcal{F}_3 = \{X^2 - 1, X^2 + 1, 2X\}$$

c) $E = \mathbb{R}^3$:

$$\mathcal{F}_1 = \{(1,0,1), (0,2,2), (3,7,1)\}, \mathcal{F}_2 = \{(1,0,0), (0,1,1), (1,1,1)\}$$

d) $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$:

$$\mathcal{F}_1 = \{e^x, xe^x\}, \mathcal{F}_2 = \{\cos x, \sin x\}, \mathcal{F}_3 = \{x, \sin x\}$$

Exercise 07: Let $\mathbb{P}_2[X]$ the vector space of polynomials with a degree less than or equal to 2. Let the set $\mathcal{F} = \{P_1, P_2, P_3\}$ such that:

$$P_1(X) = \frac{1}{2}(X-1)(X-2)$$
, $P_2(X) = -X(X-2)$, $P_3(X) = \frac{1}{2}X(X-1)$

- 1) Show that \mathcal{F} is a basis of $\mathbb{P}_2[X]$.
- 2) Let $Q(X) = aX^2 + bX + c \in \mathbb{P}_2[X]$, write Q(X) in base \mathcal{F} .

Exercise 08: \mathbb{R}^3 is a vector space on field \mathbb{R} , and $G = [\{(1,1,0), (0,0,1), (1,1,1)\}]$ a vector subspace and the set F defined as follows: $F = \{(x,y,z) \in \mathbb{R}^3 / 2 \ x + y - z = 0\}$

- 1. Show that F is a vector subspace of \mathbb{R}^3 .
- 2. Find a basis for: $F \cap G$, F + G, G, F (if it exists), specifying their dimensions.
- 3. Is $\mathbb{R}^3 = F \oplus G$?