Exercice 6

Un transformateur monophasé a les caractéristiques suivantes :

- -tension primaire nominale: U_{1N} = 5375 V, 50 Hz
- -rapport du nombre de spires : $N_2/N_1 = 0.044$
- -résistance de l'enroulement primaire : $r_1 = 12 \Omega$
- -résistance de l'enroulement secondaire: $r_2 = 25 \text{ m}\Omega$
- -inductance de fuite du primaire : L₁= 50 mH
- -inductance de fuite du secondaire: L₂= 100μH
 - 1- Calculer la tension à vide au secondaire?
 - 2- Calculer la résistance des enroulements ramenée au secondaire r_s?
 - 3- Calculer l'inductance de fuite ramenée au secondaire L_S . En déduire la réactance de fuite X_S . ?
 - Le transformateur débite dans une charge résistive R = 1Ω
 - 4- Calculer le courant qui circule dans la charge I_2 et la tension aux bornes du secondaire U_2 ?

Exercice 7

L'étude d'un transformateur monophasé a donné les résultats suivants :

Mesure en continu des résistances des enroulements à la température de

fonctionnement : r_1 = 0,2 Ω et r_2 = 0,007 Ω .

Essai à vide : $U_1 = U_{1n} = 2300 \text{ V}$; $U_{20} = 240 \text{ V}$; $I_{10} = 1,0 \text{ A et P}_{10} = 275 \text{ W}$.

Essai en court-circuit : $U_{1CC} = 40 \text{ V}$; $I_{2CC} = 200$.

- 1- Calculer le rapport de transformation m.
- 2- Montrer que dans l'essai à vide les pertes joule sont négligeables devant P₁₀
 - 3- Déterminer la valeur de la résistance ramenée au secondaire rs.
- 4- Calculer la valeur de P_{1CC}.
- 5- Déterminer X_S.
- 6- Déterminer la tension aux bornes du secondaire lorsqu'il débite un courant d'intensité I_2 = 180 A dans une charge capacitive de facteur de puissance 0,9.
- 7- Quel est alors le rendement?

Les transformateurs 2022/2023 Pr. AC. Megherbi 3/4