If we solve this equation to figure out the value of y we get

$$y = \frac{x^3}{3} + C$$

حبث C ثابث كبفي. في الحل الذي نم الحصول عليه أعلاه ، نرى أن y داله في x. بالتعويض عن هذه الفيمه y في المعادلة النفاضلية المحددة ، بصبح كلا طرفي المعادلة النفاضلية منساوبين.

where C is an arbitrary constant. In the above-obtained solution, we see that y is a function of x. On substituting this value of y in the given differential equation, both the sides of the differential equation becomes equal.

3.5 سلسلة التمارين رقم 3 تعمارين رقم

تمرین رقم - 1 - Exercise N°- 1

حدد حل المعادلة النفاضلية

Determine the solution to the differential equation

$$3y' + 4y = 0$$

y(0) = 2 الذي بحفق الشرط الإبندائي

which satisfies the initial condition y(0) = 2.

الحسل

هذه المعادلة تكتب على الشكل التالي

This equation is written in the following form

$$y' = -\frac{4}{3}y$$

إذن الحل الذي يحقق الشرط الإبتدائي هو

So the solution that satisfies the initial condition is

$$y(x) = y(0) e^{-\frac{4}{3}x}$$

ithen ::i

$$y\left(x\right) = 2e^{-\frac{4}{3}x}.$$

Exercise N°-2 – تمرین رقم

لنكن المعادلة النفاضلية النالبة:

Let the differential equation be:

$$y' + 2xy = x. (E)$$

1) أوجد حلول المعادلة النفاضلية المنجانسة.

Find the solutions to the homogeneous differential equation.

y(0)=1 أوجد حلول المعادلة (E) الني نحفق (2

Find the solutions to the equation (E) which satisfies y(0) = 1.

الحسل

الدوال الأصلية للدالة a(x)=2x هي الدوال الدوال $a(x)=x^2/2+k$ هو ثابت كيفي. ومنه حلول المعادلة المتجانسة E هي كل الدوال المعرفة على $\mathbb R$ من الشكل:

The primitive functions of a(x) = 2x are the functions $A(x) = x^2/2 + k$ where $k \in \mathbb{R}$ is a arbitrary constant. Hence, the solutions to the homogeneous equation E are all functions defined on \mathbb{R} of the form:

$$y(x) = ce^{-x^2}$$

حيث $c \in \mathbb{R}$ ثابت كيفي.

where $c \in \mathbb{R}$ is an arbitrary constant.

نبحث الآن عن الحل الخاص لـ E من الشكل:

Now we look for the particular solution of E of the form:

$$y_p(x) = c(x)e^{-x^2}$$

بإستعمال طريقة تغيير الثوابت. لدينا:

using the variable constants method. We've got:

$$y_p'(x) + 2xy_p(x) = c'(x)e^{-x^2}$$
.

 $x\in\mathbb{R}$ و منه y_p هو حل لـ E إذا و فقطإذا كان $x\in\mathbb{R}$ عن أجل كل y_p

Of which y_p is a solution to E if and only if: $c'(x) = xe^{x^2}$ for each $x \in \mathbb{R}$.

: لتكن الدالة c(x) من بين الدوال الأصلية للدالة xe^{x^2} على سبيل المثال

Let the function c(x) be among the primitive functions of the function xe^{x^2} , for example:

$$c(x) = 1/2e^{x^2}.$$

then the function y_p where

ومنه الدالة y_p حيث

$$y_p(x) = 1/2e^{x^2}e^{-x^2} = 1/2$$

 $oldsymbol{:}$ هي حل لـ E وعليه، حلول المعادلة E هي كل الدوال من الشكل

is a solution to E. Therefore, the solutions to the equation E are all functions of the form:

$$y(x) = ce^{-x^2} + \frac{1}{2} c \in \mathbb{R}.$$

c=1/2: يكافئ y(0)=1 حيث y حل للمعادلة E_1 هنا الشرط y

where y is a solution to equation E_1 , here the condition y(0) = 1 is equivalent to: c = 1/2.

Exercise N°- 3 - تمرین رقم

نفئرح النَّلَامل على أكبر مجال مملَّن في $0, \infty[$ للمعادلة النفاضلية:

We propose to integrate over the largest possible interval in $]0,\infty[$ of the differential equation:

$$y'(x) - \frac{y(x)}{x} - y(x)^2 = -9x^2 \qquad (E).$$

y(x)=ax خبث x=0 حل خاص y=0 للمعادلة x=0

Find $a \in]0, \infty[$ where y(x) = ax is a particular solution y_0 of equation (E).

: بحول المعادلة النفاضلية $y(x)=y_0(x)-\frac{1}{z(x)}$ الْبَتْ أَن تَغْبِيرِ الدالة $y(x)=y_0(x)-\frac{1}{z(x)}$ المعادلة النفاضلية (2 Prove that changing the function: $y(x)=y_0(x)-\frac{1}{z(x)}$. Converts the equation (E) to the differential equation:

$$z'(x) + \left(6x + \frac{1}{x}\right)z(x) = 1.$$
 (E₁)

 $.]0,\infty[$ على (E_1) على (3

Solve (E_1) by $]0, \infty[$.

$$[0,\infty[$$
 على المعادلة (E) المعرفة على $[0,\infty[$

Find all solutions to the equation (E) defined on $]0, \infty[$.

الحسل

لنحل المعادلة التفاضلية التالية

Let's solve the following differential equation

$$y'(x) - \frac{y(x)}{x} - y(x)^2 = -9x^2.$$

نبحث على
$$a\in]0,\infty[$$
 حيث $a\in]0,\infty[$ يكون حل خاص للمعادلة، والأن (1

We are looking for $a \in [0, \infty[$ where $y_0(x) = ax$ is a special solution to the equation, and because

$$y_0'(x) - \frac{y_0(x)}{x} - y_0(x)^2 = -a^2x^2,$$

$$a=3$$
 و ليكن $a=\pm3$ هو حل إذا و فقط إذا كان y_0

 y_0 is a solution if and only if $a = \pm 3$, we take a = 3.

إذا كانت z دالة من الصنف \mathcal{C}^1 و لا تنعدم، نضع (2

If z is a function of class C^1 and does not null, we set

$$y(x) = 3x - 1/z(x).$$

: و منه y حل إذا و فقط إذا كان

of which y is a solution if and only if:

$$\frac{z'(x)}{z(x)^2} + \frac{1}{xz(x)} - \frac{1}{z(x)^2} + \frac{6x}{z(x)} = 0.$$

بالضرب في $z(x)^2$ نحصل على y حل للمعادلة السابقة إذا وفقط إذا كان z يحقق

Multiplying by $z(x)^2$ we get y is a solution to the previous equation if and only if z satisfies

$$z'(x) + \left(6x + \frac{1}{x}\right)z(x) = 1.$$
 (E₁)

لنحل المعادلة (E_1) على المجال $[0,\infty[$ نأخذ دالة أصلية للدالة $x\mapsto 6x+1/x$ الدالة $x\mapsto 3x^2+\ln(x)$

ومنه حلول المعادلة المتجانسة هي الدالة:

Let's solve the equation (E_1) over the interval $]0, \infty[$. We take a primitive function of $x \mapsto 6x + 1/x$ the function $x \mapsto 3x^2 + \ln(x)$. Then, the solutions of the homogeneous equation are the function:

$$x \mapsto Ae^{-3x^2 - \ln(x)}$$
.

لنبحث عن حل خاص للمعادلة
$$(E_1)$$
 من الشكل

Let's find a special solution to the equation (E_1) of the form

$$z_p(x) = \alpha(x)e^{-3x^2 - \ln(x)}$$

و منه z_p هو حل إذا كان

Hence, z_p is a solution if

$$\alpha'(x)e^{-3x^2-\ln(x)} = 1$$

$$lpha(x)=e^{3x^2}/6$$
 أي إذا كان $lpha'(x)=xe^{3x^2}$ على سبيل المثال إذا كان $lpha'(x)=xe^{3x^2}$ على حلول المعادلة $lpha(E_1)$ هي :

i.e. for example if $\alpha'(x) = xe^{3x^2}$ and $\alpha(x) = e^{3x^2}/6$. The solutions to the equation (E_1) are:

$$z(x) = \frac{1 + Ae^{-3x^2}}{6x}$$
, where $A \in \mathbb{R}$.

 $[0,\infty[$ المعرفة على المجال (E) المعرفة الآن حلول (E

We will now derive the solutions of (E) defined on the interval $]0, \infty[$.

ليكن
$$y$$
 حل من الصنف \mathcal{C}^1 معرف على المجال $]0,\infty[$ ولنفرض مبدئيا أن y على المجال المفتوح $I\subset]0,\infty[$ بأكبر قدر ممكن. ومنه

Let y be a solution of class C^1 defined on the interval $]0, \infty[$. Let's assume that y(x) > 3x is on the open interval $I \subset [0, \infty[]$, as large as possible. Then

$$y(x) = 3x - 1/z_I(x)$$

من أجل بعض الدوال $z_I < 0$ من الصنف \mathcal{C}^1 على I حسب السؤال السابق ، لدينا بالضرورة أن:

For some functions $z_I < 0$ of class C^1 on I. According to the previous question, we necessarily have that:

$$z_I(x) = \frac{1 + A_I e^{-3x^2}}{6x}$$

من أجل الثابت $A_Ie^{-3x^2}$ ولأن $I\neq]0,+\infty[$ فإن $A_I<0$ فإن $z_I<0$ ولأن $A_I\in\mathbb{R}$ لأن $A_I\in\mathbb{R}$ اذا J على J

for the constant $A_I \in \mathbb{R}$, and because $z_I < 0$ then $A_I < 0$ but $I \neq]0, +\infty[$ because $1 > A_I e^{-3x^2}$ if x is big enough. Thus, there is an open interval J such that y(x) < 3x over J.

نفترض مرة أخرى أن J كبير بقدر الإمكان. و أن في J، J نفترض مرة أخرى أن J بعض الدوال و أن في $z_J>0$ من الصنف \mathcal{C}^1 . مرة أخرى من السؤال السابق،

We assume again that J is as large as possible and that in J, $y(x) = 3x - 1/z_J(x)$ for some functions $z_J > 0$ of class C^1 . Again from the previous question,

$$z_J(x) = \frac{1 + A_J e^{-3x^2}}{6x}$$

حبث A_J ثابت.

where A_J is a constant.

y المجال المفتوح J=]a,b[كان من المفترض أن يكون الحد الأقصى، ومنذ ذلك الحين J=]a,b[يفترض أن يتم تعريفه على المجال $J=[0,+\infty[$ إذا كان a>0 فإن a>0 و نفس الشيء إذا كان y(a)=3a أن يتم تعريفه على المجال إن لم يكن باستمرارية الدالة y يكون لدينا y(a)=3b أن y(a)=3b المجال كان y(a)=3b أن y(a)=3b أن أنه إن لم يكن باستمرارية الدالة y(a)=a عندما $z_J(a)=a$ صغير. هذا ممكن فقط على التوالي إذا كان $z_J(a)=a$ عندما $z_J(a)=a$ عندما $z_J(a)=a$ عندما أن $z_J(a)=a$ عندما أن $z_J(a)=a$

Because the open interval J =]a, b[was supposed to be the maximum, and since y is assumed to be defined on the interval $]0, +\infty[$ if a > 0 then y(a) = 3a and the same if $b < \infty$, y(b) = 3b, because if it weren't for the continuity of the function y we would have y(x) < 3x over $]a - \epsilon, b + \epsilon[$ for small $\epsilon > 0$. This is only possible respectively if $z_J(x) \to +\infty$ when $x \to a$ or $z_J(x) \to +\infty$ when $x \to b$. But we have said that:

$$z_J = \frac{1 + A_J e^{-3x^2}}{6x},$$

لذلك هذا غير ممكن على الإطلاق (باستثناء إذا كان على التوالي a=0 و b=0). So this is not possible at all (except if respectively a=0 and b=0).

ومنه ليكن y(x)=3x على المجال y(x)=3x ومنه ليكن y(x)=3x على المجال y(x)=3x على المجال y(x)=3x الحالة الأخيرة، z(x)=1/(3x-y(x)) معرف على المجال z(x)=1/(3x-y(x))

So, let y(x) = 3x over the interval $]0, +\infty[$ and let y(x) < 3x over $]0, +\infty[$ in this last case, z(x) = 1/(3x - y(x)) defined on the interval $]0, +\infty[$ and write

$$z(x) = [1 + Ae^{-3x^2}]/6x.$$

z>0 لأن z>0، بالضرورة z>0. ومنه إذا كان

Because z > 0, is necessarily that $A \ge -1$. Hence, if y is a solution, then:

y على المجال على المجال \mathcal{C}^1 على المجال y معرف و من الصنف \mathcal{C}^1 على المجال على المجال و يمكننا التحقق من أنه حل.

Conversely, if y is defined, then y is defined and of class \mathcal{C}^1 on the interval $]0,\infty[$, and we can verify that it is a solution.

تمرین رقم - 4 – Exercise N° – 4

لنكن المعادلة النفاضلبة النالبة

Let the following differential equation

$$y'' + 2y = 0$$

Solve this equation.

- 1) حل هذه المعادلة.
- $f\left(0
 ight)=1$ و الني نحفق حلا للمعادلة النفاضلية السابقة والني نحفق الشروط النالية: $f\left(0
 ight)=1$ و $f'\left(0
 ight)=-2$

 $Find\ the\ function\ f\ that\ solves\ the\ previous\ differential\ equation\ and\ that\ satisfies\ the$

following conditions: f(0) = 1 and f'(0) = -2.

الحسل

9

1) تكتب المعادلة من الشكل:

Write the equation in the form:

$$y'' + \left(\sqrt{2}\right)^2 y = 0$$

و منه حلولها هي الدوال المعرفة على $\mathbb R$ التي تأخذ الشكل:

and its solutions are the functions defined on \mathbb{R} that take the form:

$$\alpha\cos\sqrt{2}x + \beta\sin\sqrt{2}x, \alpha, \beta \in \mathbb{R}$$

و
$$f\left(0
ight)=1$$
 الدالة f التي تحقق حلا للمعادلة التفاضلية السابقة والتي تحقق الشروط التالية: $\alpha,\beta\in\mathbb{R}$ عيث: $f'\left(0
ight)=-2$

The function f that achieves a solution to the previous differential equation and that fulfills the following conditions: f(0) = 1 and f'(0) = -2, i.e. there is $alpha, \beta \in \mathbb{R}$ where:

$$f(x) = \alpha \cos \sqrt{2}x + \beta \sin \sqrt{2}x \Longrightarrow f(0) = \alpha = 1$$

 $f'(x) = \sqrt{2}\beta\cos\sqrt{2}x - \sqrt{2}\alpha\sin\sqrt{2}x \Longrightarrow \sqrt{2}\beta = -2 \Longrightarrow \beta = -\sqrt{2}$

أي الدالة التي تحقق الشرطين هي:

Which function satisfies both conditions is:

$$f(x) = \cos\sqrt{2}x - \sqrt{2}\sin\sqrt{2}x.$$

تمرین رقم - 5 – Exercise N° – 5

أوجد حلول المعادلات الثفاضلية النالية:

Find the solutions to the following differential equations:

1)
$$y'' - 3y' + 2y = e^x$$
.

2)
$$y'' - y = -6\cos x + 2x\sin x$$
.

3)
$$4y'' + 4y' + 5y = \sin xe^{-x/2}$$
.

الحسل

لتكن المعادلة:

Let the equation:

$$y'' - 3y' + 2y = e^x.$$

كثير الحدود المميز:

the characteristic polynomial is

$$f(r) = (r-1)(r-2)$$

وبالتالي فإن حلول المعادلة المتجانسة هي جميع الدوال:

So the solutions to the homogeneous equation are all functions:

$$y(x) = c_1 e^x + c_2 e^{2x}$$
 حيث $c_1, c_2 \in \mathbb{R}$.

: على P هو P(x) الشرط P(x) على P(x) هو P(x) على P(x)

We are looking for a special solution of the form $y_p(x) = P(x)e^x$. We are in the condition (n) (*) over P is : P'' - P' = 1 and P(x) = -x verifies:

لذلك فإن حلول المعادلة هي الدوال من الشكل:

Therefore, the solutions to the equation are functions of the form:

$$y(x) = (c_1 - x)e^x + c_2e^{2x}$$
 where $c_1, c_2 \in \mathbb{R}$.

منا .
$$y'' - y = -6\cos x + 2x\sin x$$

المعادلة المتجانسة لها حلول من الشكل:
$$0 = (r-1)(r+1)$$

Here 0 = (r-1)(r+1) the homogeneous equation has solutions of the form:

$$y(x) = c_1 e^x + c_2 e^{-x}$$
 where $c_1, c_2 \in \mathbb{R}$.

نلاحظ أن الدالة $3\cos x$ تحقق المعادلة : $y''-y=-6\cos x$ نلاحظ أن الدالة $3\cos x$ تحقق المعادلة : $y_p(x)=3\cos x+y_1(x)$ نلاحظ أن $y''-y=2x\sin x$. $y''-y=2xe^{ix}$ المعادلة المدروسة. لهذا، نلاحظ أن . $y''-y=2xe^{ix}$ ونستخدم الطريقة الموضحة أعلاه لإيجاد حل z_1 للمعادلة : z_1 للمعادلة : z_1 للمينا . z_2 على الشكل z_1 حيث z_2 هي كثيرة الحدود من الدرجة 1 لأن z_1 على الشكل z_2 على الشكل z_1 على z_2 على الشرط (*) على z_2 ومنه . z_1 ومنه . z_2

We note that the function $3\cos x$ satisfies the equation: $y'' - y = -6\cos x$, so we need to solve y_1 for the equation $y'' - y = 2x\sin x$ because $y_p(x) = 3\cos x + y_1(x)$ will be a solution to the studied equation. For this, we note that $2x\sin x = \text{Im}(2xe^{ix})$ and we use the above method to solve z_1 for the equation: $y'' - y = 2xe^{ix}$. We are looking for z_1 of the form $P(x)e^{ix}$ where P. It is a polynomial of degree 1 because $f(i) = -2 \neq 0$. we've got f'(i) = 2i condition (*) on P, from which: 2iP'(x) - 2P(x) = 2x which gives the definition dimension P(x) = -x - i. Then

$$y_1(x) = \text{Im}((-x+i)e^{ix}) = -x\sin x - \cos x.$$

وبالتالي فإن الحلول هي الدوال:

So the solutions are functions:

$$y(x) = c_1 e^x + c_2 e^{-x} + 2\cos x - x\sin x$$
 where $c_1, c_2 \in \mathbb{R}$.

 $y_1(x) = A(x) \sin x + B(x) \cos x$ طريقة أخرى لإيجاد حل لـ $y'' - y = 2x \sin x$: نبحث عن الحل من الشكل y_1'' ، y_1'' ، y_2'' نبحث y_1'' ، y_2'' و نطبق حيث y_1'' ، y_2'' المعادلة المميزة نحسب y_1'' ، نتحصل على الشرط :

$$(A'' - A - 2B')\sin x + (B'' - B - 2A') = 2x\sin x$$

الذي يتحقق إذا كان:

Another way to solve for $y'' - y = 2x \sin x$: We look for the solution from the form $y_1(x) = A(x) \sin x + B(x) \cos x$ where A, B are polynomials of degree 1 because i is not the root of the characteristic equation. We calculate y'_1, y''_1 and apply the studied equation to $y_1 \dots$ we get the condition:

$$(A'' - A - 2B')\sin x + (B'' - B - 2A') = 2x\sin x$$

which is achieved if:

$$\begin{cases} A'' - A - 2B' = 2x \\ B'' - B - 2A' = 0 \end{cases}.$$

 $.y_1$ يحدد b=c=0 ، a=d=-1 : بعد التحديد نحصل B(x)=cx+d ت A(x)=ax+b الذي يحدد

And we write: A(x) = ax + b et B(x) = cx + d, after defining we get: a = d = -1, b = c = 0 which defines y_1 .

$$.4y'' + 4y' + 5y = \sin xe^{-\frac{x}{2}}$$

المعادلة المميزة لها جذران مركبان
$$r_1=-rac{1}{2}+i$$
 و حلول المعادلة المتجانسة هي:

The characteristic equation has two complex roots $r_1 = -\frac{1}{2} + i$ and $r_2 = \overline{r_1}$. The solutions to the homogeneous equation are:

$$y(x) = e^{-x/2}(c_1 \cos x + c_2 \sin x)$$
 where $c_1, c_2 \in \mathbb{R}$

لدىنا

$$\sin x e^{-\frac{x}{2}} = \operatorname{Im}(e^{(-\frac{1}{2}+i)x}),$$

نبدأ بالبحث عن حل z_p من المعادلة مع الطرف الثاني الجديد $e^{(-1/2+i)x}$. لأن z_p من المعادلة مع الطرف الثاني المعديد z_p عن:

we've got

$$\sin x e^{-\frac{x}{2}} = \operatorname{Im}(e^{(-\frac{1}{2}+i)x}),$$

We start by finding the solution to the z_p of the equation with the new second side $e^{(-1/2+i)x}$. Because $-\frac{1}{2}+i$ is the root of the characteristic equation, we look for:

$$z_p(x) = P(x)e^{(-\frac{1}{2}+i)x}$$

: P على (*) على الشرط (*) على P

Where P is of degree 1. Hence the condition (*) on P:

$$4P'' + f'(-1/2 + i)P' + f(-1/2 + i)P = 1$$

Writes : يكتب

$$8iP' = 1(P'' = 0 \quad f(-\frac{1}{2} + i) = 0 \quad g \quad f'(-\frac{1}{2} + i) = 8i)$$

الناك يمكننا أن نأخذ
$$P(x) = -i/8x$$
 ومن هنا الجزء التخيلي: $P(x) = -i/8x$

So we can take P(x) = -i/8x and $z_p(x) = -\frac{i}{8}xe^{(-\frac{1}{2}+i)x}$ Hence the imaginary part is:

$$y_p(x) = \operatorname{Im}(-\frac{i}{8}xe^{(-\frac{1}{2}+i)x}) = \frac{1}{8}x\sin xe^{-\frac{x}{2}}$$

هو حل معادلتنا. لذلك فإن الحلول هي جميع الدوال من الشكل:

is the solution to our equation. So the solutions are all functions of the form:

$$y(x) = e^{-\frac{x}{2}}(c_1 \cos x + (c_2 + \frac{1}{8}x)\sin x)$$
 where $c_1, c_2 \in \mathbb{R}$.