Mohamed Khider University of Biskra

Faculty of Exact Sciences and Natural and Life Sciences

Department of Mathematics / Computer science

Module: Machine Structure 1 Level / Year: L1 (2023/2024)

Assignment N° 1 Introduction and numeral systems

Questions: Explain the following concepts: computer science, information, computer, Bit, Byte, weight of bits, Hertz, bandwidth (broadband speed) Bit p/second, bps, binary number, the most significant bit and the least significant bit of a number, numeration system, octal and hexadecimal number, microprocessor, ALU, control unit, central memory, operating system.

Exercise 1:

- 1. How many bytes are 32 bits?
- 2. In the following byte: (10001101)₂, what is the most significant bit and the least significant bit?
- 3. How many values can we represent using 1 Byte, and in 10 bits?
- 4. What is the minimum number of bits required to represent numbers between 0 and 4096?
- 5. Complete the following table. The decimal numbers are unsigned:

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Octal																
Hexadecimal																
Binary																

Exercise 2 :

- 1. Convert the following numbers to base 10: (562)₈, (110111)₂, (3EB8)₁₆, (3213.13)₄, (1101.1101)₂
- 2. Convert the decimal number X = 327 to base 2, 7, 8, and 16.
- 3. Convert the decimal numbers X=54.8125 and Y=15.210 to binary system.
- 4. Consider the number $Y = (11010110101)_2$, Convert the number Y directly to base 4, 8, 16 without passing by the base 10.
- 5. Convert directly to base 2 (do not use the division procedure) the numbers: $X = (1323)_4$, $Y = (3765)_8$, $Z = (AB1F9)_{16}$.

Exercise 3 :

- 1. Perform (carry out) the following arithmetic operations:
 - base 8 : 132 + 134 ; 132 + 316 ; 337-155
 - base 16 : F2C + 4C3 ; F2C 45E
 - base 2 : 100101+101 ; 11011 + 1011 ; 1011101 10111
- 2. Perform the following binary arithmetic operations (base 2) :
 - 10101101 * 1000 ; 101011110 * 101 ; 10111011 * 1101
 - $10101101 \div 10$; $101011110 \div 110$; $10111011 \div 101$

Exercice 4 :

- 1. Achieve the following conversions:
 - 64 bytes =bits
 - 2 Terabyte = Gigabyte=..... Megabyte

 - 512 Kbit/s =byte/s =byte/s.
 - 2,4 GHz = Hz
- 2. What is the necessary time to download a file of 1 Megabyte using a network of 1 Mbit/s ?

Exercise 5:

Given the numbers A, B et C : A= (7365)₈, B=(2DB,5)₁₆, C=(101110100110,1001)₂

- 3. Convert A to base 16 and convert B to base 8 without using the base 10?
- 4. Convert C to base 8 without passing by the base 10?
- 5. Perform the operation B+C, in base 2?
- 6. Compute the following operation A+C, in base 8?
- 7. Calculate the number B+C et A+C in base 10 ?
- 8. carry the following operation A+B, in base 16, and in base 8?

Exercise 6:

- 1. Represent the decimal numbers X, Y, Z in base a (a is an integer: a>1) X= a, Y= a^2 , Z= a^3 .
- 2. Consider the decimal number $D = 4a^5 + 2a^3 + a + 5$, such as: a is an integer (a>5). Represent D in base a.
- 3. Give the 5 integer numbers following $(7FC)_{16}$

Exercise 7 : Carry the following transformations:

- 1- $(2019)_{10} = (?)_2$; $(269)_{10} = (?)_2$;
- 2- $(1011001111101)_2 = (?)_8 = (?)_{10} = (?)_{16}$
- 3- $A = (2AE62)_{16} = (?)_8$; $B = (6571)_8 = (?)_{16}$
- 4- Realize the following operation A+B, A-B, in base 16, in base 8 and in base 2?

Exercise 8 : Do the following conversions:

- 1. Base 10 to base X : $(69)_{10} = (\ldots)_7$ $(145)_{10} = (\ldots)_2$ $(251)_{10} = (\ldots)_{16}$
- 2. Base X to base $10: (243)_6 = (\dots)_{10}$ $(1453)_8 = (\dots)_{10}$ $(324)_5 = (\dots)_{10}$
- 3. Base 2 to base 8 : 110100 , 10011101 , 11010100
- 4. Base 8 to base 2 : 26 , 150 , 1734
- 5. Base 2 to Base 16 : 11011000 , 100101011100 , 101010101
- 6. Base 16 to Base 2:4BF , 6C2 , A6E

Knowing is not enough; we must apply. Willing is not enough; we must do.

To appreciate the beauty of a snow flake, it is necessary to stand out in the cold. $T_{i} = \int_{-\infty}^{\infty} \int_{-$

Try and fail, but don't fail to try.