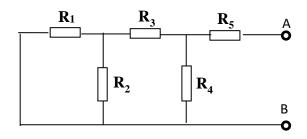
Université Mohamed KHider Faculté des sciences et de la technologie

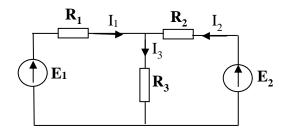
Département : Génie Electrique

2eme année ST


Matière : Electronique fondamentale 1

Année universitaire 2023-2024

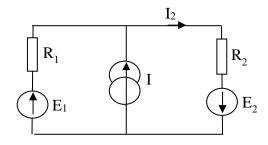
Série N 1 (3 semaines)


Exercice 1

Donner l'expression de la résistance équivalente vue des points A et B pour le réseau suivant.

Exercice 2

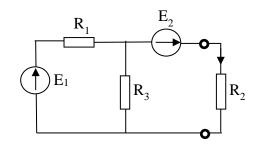
Soit le montage suivant



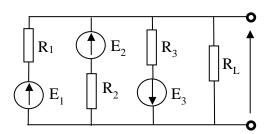
Utiliser les lois de Kirchhoff pour déterminer les intensités I_1 , I_2 et I_3 dans chaque branche du réseau.

Application numérique : $R_1{=}R_2{=}R_3{=}\ 1k\Omega$, $\ E_1{=}\ 6V$ et $E_2{=}\ 12V$

Exercice 3

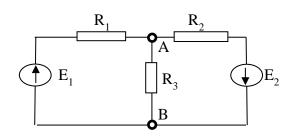

Dans le montage représenté sur la figure ci-dessous, déterminer le courant I₂ circulant dans la résistance R₂ en appliquant le principe de superposition.

Exercice 4


Déterminer l'intensité du courant I_2 circulant à travers la résistance R_2 , en utilisant le théorème de Thévenin.

Application numérique : E_1 =18 V ; E_2 = 9 V; R_1 = R_2 = 100 Ω ; R_3 = 220 Ω .

Exercice 5:


Déterminer la tension V_{out} aux bornes de la résistance R_L du circuit suivant en utilisant le théorème de Millman.

Exercice 6

Calculer la tension V_{AB} du circuit suivant en utilisant les théorèmes de :

- -Superposition
- -Thévenin
- -Norton

