Module: Machine Structure 1 Level / Year: L1 (2023/2024)

Assignment N° 2

Coding and representation of data/information

Exercise 1:

- 1. How many values can be coded in 7 bits and 10 bits?
- 2. What is the least number of bits needed to represent: (65)₁₀, (120)₁₀ and the range 0 to 256
- 3. In 10 bits, what is the largest number and the smallest number representable using:
 - a) Signed magnitude
 - b) 1's complement
 - c) 2's complement
- 4. Give in 10 bits then in 16 bits the representations of the following decimal values:

$$(-127)_{10}$$
; $(+226)_{10}$; $(-1358)_{10}$; $(+512)_{10}$; $(-512)_{10}$; $(+1024)$, (-1024) .

- a) Using Signed magnitude
- b) Using 1's complement
- c) Using 2's complement

Exercise 2:

Let x=0x9AB be integer stored on a machine with a word size of 12 bits, Give the signed decimal value of this number:

- If this number is encoded using signed magnitude representation
- If this number is encoded using 1's complement representation
- If this number is encoded using 2's complement representation

Exercise 3: In fixed-point, perform the following transformations (conversions):

- 1- $(12,625)_{10} = (?)_2$; $(0,0269)_{10} = (?)_2$;
- 2- $(10110011,11101)_2 = (?)_8 = (?)_{10} = (?)_{16}$
- 3- $(100110,110101)_2 = (?)_{10}$
- 4- A= $(2AE,62)_{16} = (?)_2 = (?)_8$; B= $(65,71)_8 = (?)_2 = (?)_{16}$

Exercise 4:

The IEEE 754 half-precision standard defines a binary representation for floating point values using three fields.

- The significand or Mantissa (1 to the left of the binary point) is represented in $10 (0 \rightarrow 9)$
- Exponent in 5 bits $(10 \rightarrow 14)$
- Bit of the sign (bit 15)

1	5	10
sign	exponent	Mantissa/significand

1. Give in octal form the internal representation corresponding the following decimal numbers:

$$N1 = +13,75$$
 ; $N2 = -0,1875$

2. Write in the form of (+ or -) $\mathbf{a} * \mathbf{2}^{\mathbf{b}}$ (where a and b are decimal integer numbers); the two real numbers represented in the machine in the form of hexadecimal as follows:

$$X = 0xFC80$$
 ; $Y = 0x72D0$

Exercise 5:

- Using the table below of ASCII codes, give the binary representation of the following string: "A computer"
- What is the size (in bits and bytes) of the memory space required to store this string?
- Decode the following message using ASCII code:

	00101000	01000010	01101001	01110011	01101011	01110010	01100001	00101001
--	----------	----------	----------	----------	----------	----------	----------	----------

- Code the following numbers (384)₁₀ and (167)₁₀ in BCD and in EXCES3?
- Give the table of Gray code from 0 to 16?
- Code the decimal number (167)₁₀ in Gray code?

Exercise 6:

- a) Carry the following binary arithmetic operations: (1001 + 1011), (1100 1000), (1100×101) (100100 / 11)
- b) Carry out the following binary arithmetic operations in 8 bits:

The operations	Natural binary	Signed-	1's Complement	2's Complement
		Magnitude		
11011101+11001111				
10101010+01100111				
00011001-11011011				
01101011-00110000				

		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	N	UL	SOH	STH	ETH	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1	D	LE	DC1	CD2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	S	рс		II	#	\$	%	&	- 1	()	*	+	ı			- /
3)	1	2	3	4	5	6	7	8	9	:		<	=	>	?
4	(2)	Α	В	С	D	Е	F	G	Н		J	Κ	L	М	N	0
5		P	Q	R	S	Ţ	U	٧	₩	Χ	γ	Z		\]	Α	
6		١.	а	b	С	d	е	f	g	h	i	j	k		m	n	0
7		р	q	ľ	S	t	U	V	₩	χ	у	Z	{		}	~	DEL

The ASCII code table in hexadecimal of 128 characters