
UNIVERSITE Mohamed Khider BISKRA 1ère année Master. Département d'informatique

Matière : Systèmes distribués

Série d'exercices n° 3

Exercice N°1:

Considérant le schéma ci-dessous. Soient cinq états locaux : el_i , el_j , el_{k1} , el_{k2} , el_{k3} et trois états globaux : el_i , el_i , el_i , el_{k1} , el_{k2} , el_{k3} et trois états globaux : el_i , el_i

- 1) Construire les ensembles des états locaux des sites (el_i, el_j, el_{k2}) et ainsi des canaux associés ec_{pq} pour tout paires des sites (p,q).
- 2) Identifier les états globaux cohérents. Justifier.

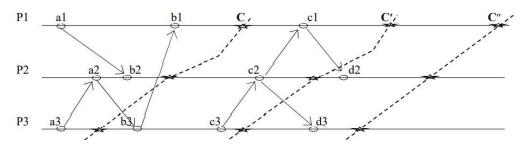
Exercice N°2:

On considère le système de processus P1, P2 et P3 qui, parmi toutes les exécutions possibles a eu l'exécution suivante :

P1		P2		P3	
1.	X := 1;	1.	Y := 2;	1.	Z := 3;
2.	Envoyer(X , P2);	2.	Envoyer $(Y, P3)$;	2.	Recevoir(M, P1);
3.	Envoyer(X, P3);	3.	Recevoir(M,P1);	3.	Z := Z + M;
4.	Recevoir(M, P2);	4.	Y := Y + M;	4.	Recevoir(M, P2);
5.	X := X + M ;	5.	Envoyer(Y, P1);	5.	Envoyer(Z , P2);
6.	Envoyer(X, P3);	6.	Recevoir(M, P3);	6.	Z := Z + M;
7.	Recevoir(M, P2);	7.	Y := Y + M;	7.	Recevoir(M, P1);
8.	Recevoir(Q, P3);	8.	Envoyer(Y, P1);	8.	Z := Z + M;
9.	X := X + M + Q ;			9.	Envoyer(Z,P1);

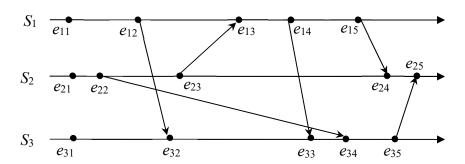
- 1. On suppose que le réseau de communication entre les processus assure la délivrance des messages dans l'ordre de leurs émissions : les messages émis par le processeur i en direction du processus j arrivent en j dans l'ordre d'émission par le processus i. Construire sur le schéma ci-joint la relation de causalité.
 - Quelles sont les valeurs de X, Y et Z à la fin de l'exécution?
- 2. En utilisant l'algorithme de Lamport, construire une horloge logique et donner les dates de chaque opération pour la relation de causalité du 1.
- 3. En utilisant le mécanisme des horloges vectorielles de Fidge et Mattern, construire une horloge logique et donner les dates de chaque opération pour chacune des relations de causalité du 1.
- 4. Est-ce que les évènements 4 de P1 et 3 de P2 sont indépendants au sens de la relation de causalité ? Est-ce que les évènements 7 de P1 et 7 de P3 sont indépendants au sens de la relation de causalité ? Justifier votre réponse.

Exercice N°3:


Un protocole d'ordre causal est un protocole qui assure que les messages reçus sur un *même* site sont délivrés en respectant les dépendances causales entre les événements d'émission de ces messages.

Pour un message m, on notera e_m son événement d'émission, r_m son événement de réception et d_m l'événement de délivrement du message, c'est-à-dire l'événement correspondant au moment où le message sera réellement délivré au processus récepteur (le délivrement peut être décalé dans le futur par rapport à la réception).

- 1. Mettre en évidence le non-respect des dépendances causales en émission pour le chronogramme ci-dessus (ce chronogramme ne correspond pas à celui du système décrit à la page précédente). Placer les événements de délivrement des messages sur le chronogramme en respectant ces dépendances causales.
- 2. Déterminer la relation générale entre les événements associés à 2 messages pour que l'ordre causal de leur émission soit respecté lors de leur délivrement.
- 3. Les horloges de Mattern ou de Lamport permettent-elles de détecter le non-respect des dépendances causales en émission et de bien ordonner les délivrances des messages ?
- 4. Proposer une nouvelle méthode de datation permettant d'assurer l'ordre causal.


Exercice N°4:

- 1. Calculer les estampilles de Lamport pour chacun de ces événements. Décrire le problème posé par ces estampilles.
- 2. Calculer les "horloges vectorielles" pour chacun de ces événements. Comment le problème précédent est résolu.
- 3. Commenter les valeurs des vecteurs estampillant les événements c3 et c1
- 4. Dire comment les événements b1 et c2 estampillés par les horloges de Lamport se comparent (sont-ils comparables selon la relation de causalité notée →) ? Puis, en considérant leur estampille vectorielle, dire comment ces événements se comparent.
- 5. Donner les états des coupes C , C ', C ". Sont-elles cohérentes ? Justifier votre réponse.

Exercice N°5:

Le dessin ci-dessous représente le déroulement du temps sur trois sites ; chaque ligne horizontale correspond à un site, le temps s'écoule de la gauche vers la droite. Chaque point noir correspond à un événement. Chaque flèche correspond à un message envoyé d'un site à l'autre.

- 1. Si les sites utilisent des horloges scalaires. Indiquer à côté de chaque événement la date de celui-ci et à côté de chaque flèche l'estampille du message correspondant.
- 2. Même question pour des horloges vectorielles.
- 3. Que peut-on déduire ?

Exercice N°6:

Considérons un système contenant 3 processus. Tous les processus possèdent des horloges logiques matricielles.

Supposons que l'horloge matricielle HM3 du processus 3 est HM3 =

6	2	2
1	6	1
1	2	7

1. A quoi correspond l'élément de l'horloge matricielle HM3 [3, 1], pour le processus 3 ? Même question pour les éléments HM3 [1, 3], HM3 [2, 3] pour le processus 3.

Le processus 3 reçoit le message m en provenance du processus 1.

L'estampille du message m est EMm =

8	2	3
2	9	2
1	1	3

- 2. Que peut déduire le processus 3 par rapport aux éléments EMm [1, 3], EMm [2, 3]?
- 3. Le processus 3 peut-il délivré le message m (délivrance causale) ? Justifier votre réponse.