
Chapter 1: A reminder of the Schrödinger equation

1.1 Introduction
Quantum chemistry takes into account the electronic structure of a system and is 

based on Schrödinger's equation.
The use of theoretical methods to obtain models that can predict and understand 

molecular structures, properties and interactions is known as "Molecular Modeling". 
Molecular modeling can provide information that is not available through experiment, 
and thus plays a complementary role to that of experimental chemistry. Molecular 
modeling can, for example, provide a precise idea of the structure of the transition state 
for a given reaction, which is difficult - or impossible - to obtain with experimental 
chemistry.

Quantum chemistry involves the use of methods based on solving the time-
independent Schrödinger equation. By solving the equation with eigenvalues and 
eigenvectors  M , where // is a Hamiltonian operator, E the total 
energy and 'P the wave function of the system. it will then be possible to determine all 
the information of the system under study.

However, it is not possible to solve such an equation rigorously, except for single-
electron systems, and so approximations had to be introduced into the quantum theory 
proposed in the 1920s in order to solve this equation approximately.

1.2 Atomic units
For a system of units specific to the electron, we apply the following system of 

atomic units:
R The unit of length is no - 0, 53A0 , Bohr radius R The 
unit of mass is +e99 11, 10*''-
R The  unit of charge is e = 1.6. 10 " c.
D The unit of energy is called Hartree and is I H -- 2ñp - 27, 2e. v -- 4, 36. 10 "y R 
The unit of angular momentum is /i = 1, 05. 103 4'.slrad

1.3 Schrödinger equation
Quantum mechanics postulates the wave-particle duality of matter and defines a 

particle (electron) as a wave. I.e. distributed throughout space rather than having a well-
defined trajectory.

Classical mechanics ri Trajectory

Quantum mechanics m Wave functions
In 1926, the Austrian physicist Schrödinger proposed an equation to find the wave 

function of a system.
The evolution over time t of the state of a system of atoms consisting of N nuclei 

and n electrons is described by a wave function satisfying the following Schrödinger 
equation:

ii+(I I. I "J, lii) -- -'h( ( S.1)

where the vectors {r} = r , ..., r' and (R) = R , ...,Rp, represent the system's electronic 
and nuclear coordinates respectively.
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The latter equation is called a time-dependent Schrödinger equation, with a 
Hamiltonian operator H of the system.

For an isolated system, Schrödinger's equation depends only on the coordinates of the
particles and are time-independent

Where E is the energy associated with the wave function p, obtained by solving the 
time-independent Schrödinger equation, we have:

where
2
--A + F
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(S.3)

(S.4)

where A is the Laplacian, E is the total energy of the system and U is the energy of the system.
potential.

Solving equation (S.3), which is nothing other than the eigenvalue and vector equation
of the Hamiltonian.

1.4 Standard interpretation of the wave function
1' wave function means nothing; mathematical function such that |'P° | represents a 

particle probability density. You can't measure 'P, but you can calculate it.
The 'P functions, solutions to Schrödinger's equation, are called states.

of the system associated with energies 6,
The +0 state associated with the lowest energy +0 is called the ground state of the 
system. Here are a few conditions that define this eigenfunction:
1/ The probability of finding (observing) the particle in a volume d Y is given by

by

dP(fr j, {R}) -- |'P2 ((r}, fR}) . dV
dV(x, y, z) = dx.dy. Hz, in Cartesian coordinates
dV(r, 8,q) = r. sin 8. d8. d'p. dr, in spherical coordinates 

and |T*| T.'î'" is like a probability density.

2/ The 'P function is said to have a summable square, i.e.ö:

3/ 'P must be regular at all points.

1.5 Hamiltonian operator of a molecule
The total H Hamiltonian of a molecule with N nuclei and n electrons is defined by 

the sum of five terms (electron kinetic term, nucleus kinetic term, electron-electron 
repulsion term, nucleus-nucleus repulsion term and electron-nucleus attraction term).

II''(fr}, {R j) = M((r}, (fi})
Where:
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We can simplify the last equation in u.a. as follows:
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Exact solution of equation (S.3) is only possible for the hydrogen atom and 
hydrogenoid systems. For poly-electronic systems, it is necessary to use approximation 
methods to solve Schrödinger's equation in an approximate way.

Born-Oppenheimer approximation
One of the first approximations that can be used to solve the Schrodinger equation of 

a complex molecular system is the Born-Oppenheimer approximation. It is based on the 
fact that the mass of nuclei is much greater than that of electrons. The kinetic energy of 
the nuclei can then be neglected, which is equivalent to considering that electrons move 
in a field of spatially fixed nuclei.

The system's electronic Hamiltonian operator is defined by:

2
i i y>i

and the shape of the wave function as 
follows:

n N

(S 8)
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Where 'P (r) is an electronic wave function and a nuclear wave function
N(R)

R it is then a matter of solving the following equation:

Hel e (r) -- E (R)'fe (r)

Where He -- Te + Vee+ V ,s and H z= H, + Z k'Z,>k

(S.10)

R Born-Oppenheimer energy EQo(R) is the sum of the electronic energy and the repulsive 
interaction term between the nuclei.
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Orbital approximation and Slater determinant :
The orbital approximation consists in expressing the wave function 'P, solution of 

the Schrodinger equation limited to the electronic Hamiltonian H described above, by a 
product of functions each dependent on the coordinates of a single electron:

'P( l , 2, .....; ) 'P( l ).'P(2).....'P( ) (S.12)



Monoelectronic 'P' functions are called orbitals.
R consequences on IÏ

H h1 + 2 +-- - • +hn -- (S.13)

R each 'P' orbital is the solution of an eigenvalue equation :

h,'P, -- c,'P, or , M

R consequences on E

(S.14)

(S.15)

with s, does not depend on spin.
Unfortunately, this 'P' wave function does not satisfy Pauli's principle, which states 

that the wave function describing a
multi-electron system must change sign when the coordinates of any two electrons 

are swapped. In
In the orbital approximation, the wave function that satisfies this principle takes the 

form of a Slater determinant:

(S.16)

Zi°1'°-1"<

The normalization factor for the function is where o is the number of electrons
with ,(r,) = 'p(r, ). o or ,(r ) = 'p(r, ). Q are the spinorbitals
Typically, orbitals are developed as a finite linear combination of atomic orbitals. This 

approach is called LCAO: Linear Combination of Atomic Orbitals.

(S.17)


