
Chapitre 3

DIFFERENTIAL EQUATIONS

Di¤erential equation is an equation : whose unknown is a function (generally denoted

y(x) or simply y) and in which appear some of the derivatives of the function (�rst

derivative �y, or derivatives of higher orders ½y, y(3),...).

3.1 General information on 1st order di¤erential equations

Let�s move on to the complete de�nition of a di¤erential equation and especially a solution of a

di¤erential equation.

3.1.1 De�nition and Examples

De�nition 3.1.1 Given a function of three variables F , we call a 1st order di¤erential equation

any relation of the form :

F (x; y; �y) = 0; (3.1)

between the variable x, the function y(x) and its derivative �y(x). The function ', di¤erentiable,

is called the solution or integral of the di¤erential equation (3.1) on a set I of R if

8x 2 I; F (x; '(x); �'(x)) = 0:

Example 3.1.1 �y+ y = x admits on R the solution '(x) = x� 1. x�y� 1 = 0 admits on R� the

solution '(x)(x) = ln jxj.
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Integrating a di¤erential equation means determining all the solutions, specifying, if necessary,

the de�nition set of each.

3.1.2 Cauchy�s theorem

If f is continuous and has a continuous derivative with respect to y on an open set 
 de R2,

whatever the point (x0; y0) of 
, there exists a unique solution '(x) of the equation �y = f(x; y)

de�ned in the neighborhood of x0 and such that y(x0) = y0. For given x0 the solution depends

on y0. The set of solutions of a 1st order di¤erential equation depends on an arbitrary constant �,

y� = '(x; �). This set of solutions will be called General Integral. By giving particular values

for � we obtain particular solutions. The condition y(x0) = y0 is called initial condition.

Example 3.1.2 Integrate the di¤erential equation y� �y = 0, such that y(1) = 1. y� �y = 0 ()
dy

y
= dx hence y = �ex, or y(1) = 1 () 1 = �e which gives � =

1

e
. So the solution to the

general equation is given y = ex�1:

3.1.3 Geometric interpretation of the solution of a 1st order equation

1. Contact elements : Let y = f(x; y). If f veri�es Cauchy�s hypotheses it de�nes an

application of 
 in R which associates the �y derivative with each pair (x; y). M(x; y) 2


 �! (MT ) such that (MT ) is the leading coe¢ cient �y. (M;MT ) is a contact element.

The data of a 1st order equation thus de�nes a "�eld" of contact elements in the plane, a

curve (C) being an integral curve if all of its contact elements belong to the previous �eld.

Fig. 3.1 �Contact elements.

2. Graphical integration : The construction of neighboring contact elements reveals a po-

lygonal contour which allows an approximate drawing of the integral curves, this is the

principle of graphic integration. This plot is also facilitated by the preliminary construction
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of isoclines, the set of points of integral curves at which the tangent has a given direction

coe¢ cient m. The Cartesian equation of the curves is therefore written f(x; y) = m.

Example 3.1.3 Consider the di¤erential equation x�y = 2y. The isoclines with the equation

y =
m

2
x are lines passing through the origin.

dy

y
= 2

dx

x
() y = �x2. The integral curves are parabolas with vertex O and axis (oy).

Fig. 3.2 �Graphical integration

3.1.4 Di¤erential equation attached to a family of curves

We have seen that the integral curves of a 1st order di¤erential equation depend on a parameter.

Reciprocally a family of curves C� depending on a parameter � and de�ned by the equation

f(x; y; ) = 0 (3.2)

At any pointM(x; y) of a certain open 
 � R passes at least one curve C�. The leading coe¢ cient

�y of the tangent at M given by

�fx(x; y; �) + �fy(x; y; �)�y = 0 (3.3)

The improvement of � between equations (3.2) and (3.3) gives a relation which de�nes the contact

elements of the curves C�. F (x; y; �y) = 0, this relation represents the di¤erential equation of the

family of curves considered.

1. The discussion of the number of solutions �y = 0, of �y in F (x; y; �y) = 0 gives the number

of integral curves passing through a point and allows a regioning of the plane.
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2. The equation F (x; y; 0) corresponds to the isocline with zero direction coe¢ cient �y = 0,

represents the locus of points at tangent parallel to (ox) of integral curves.

3. The orthogonal trajectories of the curves C� are solution of the di¤erential equation

F (x; y;
�1
�y
) = 0 obtained by changing �y to

�1
�y
in the equation di¤erential of C�, the

tangent in M(x; y) of C� has slope m = �y = f(x; y), if there exists a curve � orthogonal in

M to C�, the tangent has slope �m =
�1
m
=
�1
�y
. The di¤erential equation of the � curves

is therefore written
�1
�y
= f(x; y) or F (x; y;

�1
�y
) = 0:

Example 3.1.4 Let the sheaf of circles with base points A and B of equation

x2 + y2 � 2�y = 1:

Di¤erentiating with respect to x, we obtain 2x + 2y�y � 2��y = 0 eliminating � gives (x2 + �y �

2y � 1)�y � 2x = 0 the beam di¤erential equation.

Example 3.1.5 Orthogonal trajectories of the family of hyperbolas H� of equations xy = �.

The hyperbola equation is written x�y + y = 0: The equation of the orthogonal trajectories is

therefore C such that : �x1
�y
+ y = 0 ou x� y�y = 0. This equation �ts directly into the form :

x� y�y = 0 =) x = y�y () x = y
dy

dx

xdx = ydy =) x2

2
=
y2

2
+ k

=) x2 � y2 = k

The orthogonal trajectories are therefore a family of hyperbolas with center 0 and axes (ox) and

(oy).

3.2 Integration of 1st order di¤erential equations

3.2.1 Equation with separable variables

A di¤erential equation with separable variables is a 1st order equation that can be written in

the form
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Fig. 3.3 �Orthogonal trajectories of the family of hyperbolas.

�y =
f(x)

g(x)
or g(y)dy = f(x)dx;

the functions f and g are assumed to be continuous, from where
R
g(y)dy =

R
f(x)dx + � we

obtain G(y) = F (x) + �

Example 3.2.1

�y + y = a; a 2 R
dy

dx
= a� y =) dy

a� y = �dx

ln jy � aj = x+ � we obtain y = a+ Ce�x

Example 3.2.2

y � 2x�y = 1;

�y =
y � 1
2x

=) dy

y + 1
=
1

2
dx

we obtain y � 1 = �
p
jxj

3.2.2 Homogeneous equation

We call a homogeneous di¤erential equation of the 1st order an equation of the form F (x; y; �y) =

0, in which the change of x into �x and y into �y leaves �y invariant.

Geometric interpretation : Let (M;MT ) be a contact element. The equation being homogeneous,
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the tangent in �M(�x; �y) is parallel to (MT ), that is to say that the set of integral curves is

globally invariant in all homothety of center o, �y therefore depends on
y

x
. We assume that

�y = f(
y

x
).

Fig. 3.4 �Geometric interpretation of homogeneous equation.

Integration method : We set
y

x
= t or y = tx, we obtain dy = tdx + xdt, from where

dy

dx
=

t + x
dt

dx
= f(t). By separating the variables, we obtain

dx

x
=

dt

f(t)� t for f(t) � t 6= 0. Then

lnx =
R dt

f(t)� t = '(t). We �nd a parametric representation of the integral curves in the form :8><>: x = �e'(t)

y = �te'(t)

Example 3.2.3 Let the di¤erential equation be �y =
y2 � x2
2xy

, We set
y

x
= t, then �y =

y2 � x2
2xy

therefore y = xt =) t+ x
dt

dx
= t2�1

2t hence x
dt

dx
=
�t2 + 1
2t

and
�2tdt
t2 + 1

=
dx

x
or
�d(t2 + 1)
t2 + 1

=

dx

x
. So 8><>:

x =
�

t2 + 1

y =
�t

t2 + 1

3.2.3 Linear equations

We call a linear di¤erential equation of the 1st order an equation in the form

a(x)�y + b(x) = f(x) (3.4)

in which the functions a; b and f are assumed to be continuous on the same subset I � R. a and

b are the coe¢ cients of the equation. We call an equation without an associated second member
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the equation

a(x)�y + b(x) = 0 (3.5)

Theorem 3.2.1 (Fundamental theorem) The general solution of the linear di¤erential equa-

tion of the 1st order (3.4) is obtained by adding to a particular solution of the complete equation

(3.4) the general solution of the equation without an associated second member(3.5).

Integration of the equation (3.5) : The equation a(x)�y + b(x)y = 0 has separable variables, we

can write :
dy

y
=
�b(x)
a(x)

dx from where ln y = �
R b(x)
a(x)

dx, i.e. y(x) = �y1(x) with y1(x) =

e
�
R b(x)
a(x)

dx
:

Example 3.2.4 Let the linear di¤erential equation be (1 + x2)�y � xy = 1. It is easy to verify

that y = x is a particular solution of the given equation. Solving the equation without a second

member, (1 + x2)�y � xy = 0. We have

dy

dx
=

xdx

1 + x2
=
1

2

�
d(1 + x2)

1 + x2

�
;

hence y =
p
1 + x2: The general solution is x+ �

p
1 + x2:

3.2.4 Method of variation of the constant

In the case where we do not know the particular solution of the linear di¤erential equation we use

the method of variation of the constant. Let y = �y1(x) be the general solution of the equation

without a second member, we propose to seek if there exist solutions of the equation of the form

y = �(x)y1(x), �(x) now represents a function di¤erentiable from the variable x, and we have

�y = ��(x)y1(x) + (x)�y1(x)

a(x)�y + b(x)y = a(x)[��(x)y1(x) + �(x)�y1(x)] + b(x)�(x)y1(x) = f(x)

�(x)a(x)�y1(x) + �(x)[a(x)�y1(x) + b(x)y1(x)] = f(x)

Or a(x)�y1(x) + b(x)y1(x) = 0 puis donc ��(x) =
f(x)

a(x)y1(x)
d�où �(x) = '(x) + C avec '(x) =R f(x)

a(x)y1(x)
dx. C�est-à-dire y = '(x)y1(x) + Cy1(x):

Example 3.2.5 Integrate the equation : �y cosx + y sinx = x. The equation without a second

member : �y cosx+y sinx = 0 admits as a general solution y = � cosx. We put y(x) = �(x) cosx,
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then �y = ��(x) cosx��(x) sinx = x therefore [��(x) cosx��(x) sinx] cosx+�(x) cosx sinx = x,

therefore ��(x) =
x

cos2 x
from where �(x) =

R x

cos2 x
dx after integration by parts we obtain

�(x) = x tanx�
R
tanxdx = x tanx+ ln j cosxj+ C. Eventually

y = C cosx+ x sinx+ cosx ln j cosxj:

3.2.5 Equation reducing to a linear equation

1. Bernoulli equation : Bernoulli equation is a 1st order di¤erential equation of the form

a(x)�y + b(x)y = f(x)y�

- If � = 1 the equation is linear.

- If � 6= 1, by dividing both sides of the equation by y�, we obtain a(x)�yy��+ b(x)y1�� =

f(x). We set z = y� then �z = (1��)y���y, hence the linear equation a(x)

1� � �z+b(x)z = f(x).

Example 3.2.6 Either

y � x�y = 2xy2 (3.6)

By dividing by y2 we obtain,
1

y
� x �y

y2
= 2x, we set z =

1

y
soit �z = � �y

y2
, the equation

becomes :

z + x�z = 2x (3.7)

we notice that z = x is a particular solution of (3.6), the equation without a second member

gives
dz

z
= �dx

x
, we obtain z =

�

x
. Then z = x +

�

x
is the general solution of (3.7), and

consequently the general solution of (3.6) is
1

x+ �
x

:

2. Riccati equation :We call Riccati equation a di¤erential equation of the 1st order of the

form

�y = a(x)y2 + b(x)y + c(x)

We can only integrate this equation when we know a particular solution. Suppose y1 is a

particular solution, then

�y1 = a(x)y
2
1 + b(x)y1 + c(x)

�y � �y1 = a(x)
�
y2 � y21

�
+ b(x)(y � y1):
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By setting y � y1 = z we obtain

�z = a(x)z(2y1 + z) + b(x)z

�z = a(x)z2 + [2a(x) + y1 + b(x)]z;

we have led to a Bernoulli equation.

Example 3.2.7 Integrate �y = y2 � 2xy + x2 + 1: We notice that y = x is a particular

solution, we put y = x+ z, then 1 + �z = (x+ z)2 � 2x(x+ z) + x2 + 1, we obtain �z = z2.

We integrate this equation, We write
�z

z2
= 1 i.e.

�
1

z

�0

= �1 hence 1
z
= �x + �, �nally

y = x+
1

�� x:

3.3 Second order di¤erential equations

3.3.1 De�nition and Examples

De�nition 3.3.1 We call a 2nd order di¤erential equation any relation of the form : F (x; y; �y;½y) =

0 between the variable x, the function y(x) and its �rst and second derivatives. The func-

tion ', twice di¤erentiable, is then called solution or integral over I subset of R if 8x 2

I; F (x; '(x); �'(x); '(x)) = 0

Example 3.3.1 The equation ½y+!2y = 0, admits for solution on R, '1(x) = cosx and '2(x) =

sinx

Example 3.3.2 The equation ½y= 0, admits for solution on R, any polynomial of the 1er degree

'(x) = ax+ b with (a; b) arbitrary.

We will admit without demonstration that, under certain hypotheses, a di¤erential equation

of the 2nd order admits an in�nity of solutions depending on two arbitrary constants �1 and

�2 : y = '(x; �1; �2), all of these solutions constitutes the general integral and represents the

equation of a family of curves of two parameters C�1;�2 called integral curves.

3.3.2 Equation reducing to 1st order

1. Equation not containing y : Consider a di¤erential equation of 2nd order F (x; y; �y; ½y) =

0. By setting z = �y the equation becomes F (x; z; �z) = 0:
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Example 3.3.3 Let the equation ½y+�y2 = 0, by setting z = �y we obtain �z + z2 = 0,

then �dz
z2

= dx =) 1

z
= x � x0 (x0 constant), therefore z =

dy

dx
=

1

x� x0
, hence

dy =
dx

x� x0
=) y � y0 = ln jx� x0j, the solution depends on two constants x0; y0:

2. Equation not containing x : Consider a di¤erential equation of 2nd order F (x; y; �y; ½y) =

0. If we consider that �y as a function of y, by setting �y = z(y) we obtain

½y =
d�y

dx
=
dz

dx
=
dz

dy
:
dy

dx
=
dz

dy
:z

y therefore plays the role of variable, and the equation becomes F (y; z; z
dz

dy
) = 0, it is a

1er order equation for z. Let z = '(y; �1) be the integral of this equation, then z =
dy

dx
=

'(y; �1) or
dy

'(y; �1)
= dx, then by integrating x = f(y; �1)+�2 with f(y; �1) =

R dx

'(y; �1)
:

Example 3.3.4 Consider the equation y2½y+�y = 0. By setting �y = z(y) or ½y= z�z, the

equation becomes y2z�z + z = 0, discarding the banal solution z = 0 (corresponding to

y = k), we have y2�z + 1 = 0 =) �z =
1

y
+ �1, we have brought to the �rst order equation

dy

dx
=
1

y
+ �1, then

dx =
dy

1

y
+ �1

=
ydy

�1y + 1
=
1

�1
(1� 1

�1y + 1
)dy:

From where x =
1

�1
y � 1

�21
ln j�1y + 1j+ �2:

3.3.3 Second order linear di¤erential equation

De�nition 3.3.2 We call a linear di¤erential equation of the 2nd order an equation of the form

a(x)½y+ b(x)�y + c(x)y = f(x): (3.8)

a; b; c; f are functions on I � R. (a; b; c are called coe¢ cients of the equation). We associate

with this equation the so-called equation without a second member

a(x)½y+ b(x)�y + c(x)y = 0 (3.9)

Theorem 3.3.1 (Fundamental theorem) is obtained by adding to a particular integral of

12



the complete equation the integral of the equation without a second member. If y is the general

solution of (3.8) and y0 is a particular solution of (3.8), and Y is the general solution of (3.9),

then y = y0 + Y:

Integration of the equation without a second member

1. Case where we know two particular solutions : If y1; y2 are two solutions of (3.8),

then y1 + y2 and �y1 with (� 2 R are solutions of (3.9). y1 and y2 are said to be linearly

independent if there do not exist two non-zero constants �1, �2 such that : 8x 2 I; �1y1(x)+

�2y2(x) = 0 this results in �1�y1(x) + �2�y2(x) = 0: this results in8><>: �1y1(x) + �2y2(x) = 0

�1�y1(x) + �2�y2(x) = 0

admits only (�1; �2) = (0; 0) as a solution. So the determinant

w(x) =

�������
y1(x) y2(x)

�y1(x) �y2(x)

�������
called Wronskian of y1; y2 is not zero ; On the contrary if w(x) = 0 then y1 and y2 are

linearly dependent.

Theorem 3.3.2 The dimension of the vector space of the solutions of the equation a(x)½y+b(x)�y+

c(x)y = 0 is equal to 2.

Consequence : If y1 and y2 are two linearly independent solutions of the equation without

a second member, the general solution is written Y (x) = �1y1(x)+�2y2(x), �1; �2 are two

arbitrary constants.

Example 3.3.5 ½y+wy = 0; y1 = coswx and sinwx are two independent solutions because

w(x) =

�������
coswx sinwx

�w sinwx w coswx

������� = w 6= 0
Y = �1 coswx+ �2 sinwx:

Example 3.3.6 ½y�wy = 0, y1 = coshwx and sinhwx are two independent solutions

Y = �1 coshwx+ �2 sinhwx:
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2. Case where we only know a particular solution : Let y1 be a solution of (3.9), we

set y = y1z therefore �y = �y1z + y1�z and ½y=½y1z + 2�y1�z + y1½z. Let a(x)[½y1z + 2�y1�z + y1½z] +

b(x)[�y1z + y1�z] + c(x)yz = 0 taking into account a½y1 + b�y1 + cy1 = 0, then we obtain

ay1½z+ (2a�y1 + by1)�z = 0, is an equation that can be integrated easily.

Example 3.3.7 Let the equation x2½y+x�y � y = 0; y1 = x:y = xz =) �y = z + x�z =)

½y= 2�z + xz, then x2(2�z + x½z) + x(z + x�z)� xz = 0 where x½z+3�z = 0 or �z
�z
= �3x, which

gives �z =
�1
x3
, so z = ��1

x2
+ �2, we obtain y =

�1
2

1

x
+ �2x or even y = C1

1

x
+ C2x.

3.3.4 Integration of the full equation

1. In the case where we know a particular solution y0 : Simply apply the fundamen-

tal theorem, y = y0 + Y:

Example 3.3.8 Given the equation x2½y+x�y�y = x3, the solution of the equation without

a second member is Y = C1
1

x
+ C2x, we are looking for a particular solution in the form

of a polynomial of 3�eme degree y0 = ax3 therefore �y0 = 3ax2, and ½y0 = 6ax which gives

a =
1

8
, therefore the general solution of the given equation is y =

x3

8
+ C1

1

x
+ C2x:

2. If we do not know a particular solution :We apply the method of variation of constants.

Let y1; y2 be two independent solutions of (3.9) y = �1y1 + �2y2 the general solution of

the equation without a second member. We set y = �1(x)y1 + �2(x)y2 where �1; �2 are

functions, then �y = ��1(x)y1 + ��2(x)y2 + �1(x)�y1 + �2(x)�y2; by imposing the condition

��1(x)y1 + ��2(x)y2 = 0 on obtient ½y= ��1(x)�y1 + ��2(x)�y2 + �1(x)½y1 + �2(x)½y2, or by repor-

ting in (3.8)

a
h
��1(x)y1 + ��2(x)y2 + �1(x)�y1(x) + �2(x)�y2(x)

i
+b [�1(x)�y1 + �2(x)�y2]+c [�1(x)y1 + �2(x)y2] = f(x);

but we have 8><>: a½y1 + b�y1 + cy1 = 0

a½y2 + b�y2 + cy2 = 0

we obtain 8><>:
��1(x)y1(x) + ��2(x)y2(x) = 0

��1(x)�y1(x) + ��2(x)�y2(x) =
1

a(x)
f(x)

:
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w(x) =

�������
y1 y2

�y1 �y2

������� 6= 0 because y1, y2 are linearly independent.
Example 3.3.9 Consider the equation ½y+y = tanx. We have ½y+y = 0 =) y = �1 cosx +

�2 sinx. Then �y = ��1 sinx+ �2 cosx if

��1 cosx + ��2 sinx = 0. And ½y= ���1 sinx + ��2 cosx � �1 cosx + �2 sinx: By reporting in the

equation we obtain : ½y+�y = ���1 sinx+ ��2 cosx = tanx, we have the system :

8><>:
��1 cosx+ ��2 sinx = 0

���1 sinx+ ��2 cosx = tanx = 0

hence ��1 = �
sinx

cosx
= cosx� 1

cosx
, et ��2 = sinx, Then

�1 = sinx� ln j tan(
x

2
+
�

4
)j+ C1

�2 = cosx+ C2:

The general solution is written : y = C1 cosx+ C2 sinx� cosx ln j tan(
x

2
+
�

4
)j:

3.4 Linear equation with constant coe¢ cients

De�nition 3.4.1 We call a linear di¤erential equation of the second order with constant coef-

�cients a di¤erential equation of the form

a½y+ b�y + cy = f(x) (3.10)

in which a; b; c are constants.

We associate with (3.10) the equation without a second member

a½y+ b�y + cy = 0 (3.11)

If y0 is a solution of (3.11) and Y the general solution of (3.11), then y = y0 + Y:
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3.4.1 Integration

We set y = erx, then �y = rerx et ½y= r2erx, by reporting in (3.11) we obtain ar2erx+brerx+cerx =

0 or erx 6= 0 so we obtain

ar2 + br + c = 0: (3.12)

Then y = erx is solution of the di¤erential equation if and only if r is root of (3.12).

Discussion :

1. If (3.12) admits two di¤erent roots r1 6= r2, then y1 = er1x and y2 = er2x are two

particular integrals of (3.12) linearly independent because r1 6= r2, the general integral is

written y = �1er1x + �2er2x:

2. If � < 0, r1 and r2 are complex conjugates, the general solution is written y = �1er1x +

�2e
r2x, we choose �2 = �1 then y = �1er1x + �1er1x = 2Re(�1er1x):

Example 3.4.1 a) ½y�2�y � 3y = 0, we have r2 � 2r � 3 = 0 =) r1 = �1; r2 = 3, then

y = �1e
�x + �2e3x:

b) ½y�2�y + 5y = 0, so r2 � 2r + 5 = 0 =) r1 = 1 � 2i; r2 = 1 + 2i, hence y =

ex(�1 cos 2x+ �2 sin 2x):

3. If (3.12) admits a double root r1 = r2 =
�b
2a
; y = erx is a particular solution. We look

for the general solution in the form y = erxz, where z is an unknown function of x, we

have �y = erx(rz+�z) and ½y= erx(r2z+2r�z+½z), by transferring into the equation we obtain :

erxa
�
(r2z + 2r�z + ½z) + b(rz + �z) + cz

�
= 0, therefore erx

�
ar2 + br + cz + (2ar + b)�z + a½z

�
=

0, then ½z= 0, hence z = �1x+ �2, he general solution is given by y = erx(�1x+ �2):

Example 3.4.2 ½y+4�y + 4y = 0, on a r2 + 4r + 4 = 0 =) r1 = r2 = �2, then

y = e�2x(�1x+ �2):

3.4.2 Integration of the full equation

The solution of the equation without a second member being assumed to be known, we can :

- Either use the constant variation method.

- Either look for a particular solution of degree n of (3.10).

1. f(x) = Pn(x) where Pn is a polynomial of degree n. It is natural to look for a parti-

cular solution in the form of a polynomial :
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1) of degree n if c 6= 0:

2) of degree n+ 1 if c = 0 and b 6= 0:

3) of degree n+ 2 if c = 0 and b = 0:

Example 3.4.3 ½y�2�y � 3y = 3x2 + 1, we look for the particular solution in the form

y = �x2 + �x + 
, then �y = 2�x + � and ½y= 2�; we �nd � = �1; � = 4

3
; 
 =

�17
3
, the

general solution is y = �1e�x + �2e3x � x2 +
4

3
x� �17

3
:

2. f(x) = emxPn(x), with (m 2 C), we look for a particular integral in the form y = emxz(x),

then �y = emx(mz+�z), and ½y= emx(m2z2+2m�z+½z), or after simpli�cation by emx; a½z+(2am+

b)�z + (am2 + bm+ c)z = Pn(x): We �nd ourselves brought back to the previous case, we

will therefore take for z(x) a polynomial :

- of degree n if am2 + bm + c 6= 0 that is to say if m is not the root of the characteristic

equation.

- of degree n+ 1 if, am2 + bm+ c = 0 and 2am+ b 6= 0 (m simple root).

- of degree n+ 2 if, am2 + bm+ c = 0 and 2am+ b = 0 (m double root).

Example 3.4.4 ½y��y = 2xex, here m = 1, we have m = 1 is a simple root of the characte-

ristic equation r2�1. We are looking for a particular solution in the form y = exz(x) where

z(x) is a polynomial of degree 2, n here equal to 1 since Pn(x) = 2x, it is the case (n+1).

z(x) = �x2+�x+ 
, therefore �z = 2�x+� and ½z= 2�, by entering into the equation, and

after calculation we �nd � =
1

2
; � = �1

2
, the particular solution is y = ex(

x2

2
� x

2
). The

general solution is therefore y = �1ex + �2e�x +
ex

2
(x2 � x):
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