
 Page 1 
 

Chapter 2: Coding and Representation of data / 

information 
 

II.1. Introduction  

Data and instructions cannot be entered and processed directly into computers using human 

language. Any type of data be it numbers, letters, special symbols, sound or pictures must first be 

converted into machine-readable form i.e. binary form. Due to this reason, it is important to 

understand how a computer together with its peripheral devices handles data. Data Representation 

refers to the form in which data is stored, processed, and transmitted. 

II.2. Representation of the numbers in the machine 

We call representation of a number the manner it is written in binary form. The 

representation of numbers in the computer is indispensable because it allows their storing and 

manipulation.  

The main problem is the limitation of the size of coding because the coding of numbers is 

carried out in the computer using a fixed number n of bits. 

 

 

 

II.2.1. Natural numbers 

The natural numbers (without sign) are coded using fixed number of bytes. Typically, we 

find 1, 2, 4, bytes. A coding using n bits allows the representation of all natural numbers from 0 to 

2n − 1.  

Example: 

Using 1 byte, we can represent the numbers from  0 to 28−1 = 255. 

We represent the number in base 2 (binary system) and we arrange the bits in the binary 

cells corresponding to their binary weight. If necessary, we complete on the left with zeros (most 

significant bits). 

(5)10=  

 

 

II.2.2. The integer numbers  

A signed integer is an integer with a positive ‘+’ or negative sign ‘-‘ associated with it. 

Since the computer only understands binary, it is necessary to represent these signed integers in 

0 1 0 0 0 0 1 

n-1 n-2 n-3 3 2 1 0 

0 1 0 1 1 0 1 

n-1 n-2 n-3 3 2 1 0 

https://www.geeksforgeeks.org/computer-arithmetic-set-1/


 Page 2 
 

binary form. Example: -52, +6987. There are three methods of writing and representing the integer 

numbers (positive and negative):  

a) Signed magnitude.  

b) One’s (1’s) complement. 

c) Two’s (2’s) complement. 

II.2.2.a. Signed magnitude representation 

Sign-magnitude notation is the simplest and one of the most common methods of 

representing positive and negative numbers. In this representation, a number consists of a 

magnitude and a symbol which indicates whether the magnitude is positive or negative. In the 

signed magnitude representation method, the following rules are followed: 

 The MSB (Most Significant Bit) represents the sign of the Integer. 

 Magnitude is represented by other bits other than MSB i.e. (n-1) bits where n is the no. of 

bits i.e the other bits (n -1)   are used to represent the absolute value of the number. 

 If we use n bits, then the most significant bit is used for indicate the sign:   

1: negative sign 

0: positive sign 

Example:  we have 4 bits to represent a signed binary number, (1-bit for the Sign bit and 3-bits 

for the Magnitude bits): 

 

 

 

 

 

 

 

 

 

 

 

The following table shows the representation of the 

values betwing -3 and +3. 

−𝟑 ≤ 𝑵 ≤  +𝟑 

−(𝟒 − 𝟏) ≤ 𝑵 ≤  +(𝟒 − 𝟏) 

−(𝟐𝟐 − 𝟏) ≤ 𝑵 ≤  +(𝟐𝟐 − 𝟏) 

−(𝟐(𝟑−𝟏) − 𝟏) ≤ 𝑵 ≤  +(𝟐(𝟑−𝟏) − 𝟏) 

 

 

 

Sign AV Value 

0 

0 

0 

0 

00 

01 

10 

11 

+0 

+1 

+2 

+3 

1 

1 

1 

1 

00 

01 

10 

11 

-0 

-1 

-2 

-3 



 Page 3 
 

If we use n bits, the range (interval) of the values that we can represent using Signed 

magnitude representation is: 

−(𝟐(𝒏−𝟏) − 𝟏) ≤ 𝑵 ≤  +(𝟐(𝒏−𝟏) − 𝟏)  

 

Advantages and drawbacks of signed magnitude representation are: 

 It is a simple representation. 

 We remark that the zero has two representations +0 and -0, which should not be the case as 

0 is neither negative nor positive and which causes difficulties in the arithmetic operations. 

 For the arithmetic operations, it is necessary to use two circuits: one for the addition and the 

second for the subtraction. The idea is to use only one circuit to perform both operation, 

because:  a - b = a + ( -b )  

II.2.2.b. Representation of integer numbers using One’s (1’s) complement 

First of all, we should define the notions of 1’s complement. 1’s complement of a number N 

is another number N’ such as: 

N+N’=2n
- 1 

N’=2n -1 - N 

n : is the number of bits for representing the number N . 

Example:  Consider N=1010 represented in 4 bits, so its 1’s complement is:  N’= (24 - 1)-N 

N’=(16-1 )-(1010)2= (15 ) - (1010)2 = (1111)2 – (1010)2 = 0101 

In 1’s complement representation the following rules are used: 

 For positive numbers the representation rules are the same as signed magnitude 

representation. 

 For negative numbers, we can follow any one of the two approaches:    

1. Write the positive number in binary and take 1’s complement of it. 1’s 

complement of 0 = 1 and 1’s complement of 1 = 0  

2. Write Unsigned representation of (2n -1-X) for –X. 

Simply, to find the 1’s complement of a number, we toggle all the bits of this number: 

transforming the 0 bit to 1 and the 1 bit to 0. 

N= 1010 thus N’ = 0101 

N= 10110 thus N’ =01001 

Example:    Using 8 Bits  

(+5) = 00000101 by toggling all the bits, we obtain 11111010, so 

(-5) = 11111010 



 Page 4 
 

 

 

 

 

 

 

Remarks: 

 In this representation, the most significant bit indicates the sign (0: positive, 1: negative). 

 The 1’s complement of 1’s complement of a number equals the same number. 

 We remark that the zero has also two representations +0 and -0 

The range of 1’s complement integer representation of n-bit number is given as: 

−(𝟐(𝒏−𝟏) − 𝟏) ≤ 𝑵 ≤  +(𝟐(𝒏−𝟏) − 𝟏)  

II.2.2.c. Representation of integer numbers using Two’s (2’s) complement 

To obtain the 2’s complement of a number is by calculating its 1’s complement and adding 

one. Two’s complement of a number is toggling all the bits of the number and add one.  To take 2’s 

complement simply take 1’s complement and add 1 to it.     

Two’s complement = One’s complement + 1 

Example: in 8 Bits 

(+5) = 00000101  toggling all the bits 11111010 then add 1 : 11111010 +1 = 11111011 

(-5) = 11111011 

If we use n bits, the rage (interval) of the values that we can represent using 2’s 

Complement is: 

−(𝟐(𝒏−𝟏)) ≤ 𝑵 ≤  +(𝟐(𝒏−𝟏) − 𝟏)  

 

Remarks: 

 In this representation, the most significant bit indicates the sign (0: positive, 1: negative). 

 The advantage of this representation is the zero presents only one representation. Therefore; 

no ambiguity in the representation of 0. 

 Numbers are in cyclic order i.e. after +7 comes -8. 

 Signed Extension works. 

Value in 1s C Binary 

value 

Decimal 

Value 

000 

001 

010 

011 

000 

001 

010 

011 

+0 

+1 

+2 

+3 

100 

101 

110 

111 

- 011 

- 010 

- 001 

- 000 

-3 

-2 

-1 

-1 



 Page 5 
 

 The range of numbers that can be represented using 2’s complement is very high.  

 Two’s complement representation facilitates the arithmetic operations (using the same 

manner for positive and negative numbers). 

Due to all of the above merits of 2’s complement representation of a signed integer, binary 

numbers are generally represented using 2’s complement method instead of signed bit and 1’s 

complement. 

II.2.3. Representation of the real numbers 

Real numbers are numbers that include fractions/values after the decimal point. For 

example, 123.75 is a real number. In the decimal system, we write :  

(12, 346)10 = 1* 101 +  2 *100 +  3* 10−1 +  4* 10−2 +  6* 10−3.  

In general, in base b, we write: (an−1...a1a0  , a−1a−2...a−p)b. 

The equivalent to the decimal: N10=[( an−1*bn−1+...+a0*b0)+(a−1*b−1+...+a−p*b−p)]10 

To represent the real numbers, we have two methods: 

II.2.3.a. Fixed-Point 

A fixed-point is used to represent a real number (one that has a fractional part) using a fixed 

number of digits after the radix point. The radix point is called the decimal point for real numbers to 

base ten. In binary number systems it would be called the binary point. Fixed-point numbers are 

sometimes used where the processor employed does not have a floating-point unit (FPU), which is 

often the case in low-cost microcontrollers. 

In the fixed-point representation (the one that we humans use in everyday life), a fixed 

predetermined number of bits is allocated for the integer part and for the fractional part of 

the real number, and the radix point is assumed to lie between the two . Since we know where 

the radix point is assumed to lie, we don't need to store it explicitly in the computer, and we can 

treat (internally) fixed-point numbers just like integers, knowing that there is a radix point sitting at 

a given place in the middle of the number.  

The calculations in fixed-point and integer arithmetic are entirely identical, all that we need 

to do is to keep track of the location of the decimal point. The computer can therefore represent 

internally real numbers as integers, carry out integer arithmetic on them, and simply scale the end 

results before outputting them.  

The advantage of fixed-point representation is that it requires no complex software or 

hardware to be implemented. However; this method is not convenient to represent real numbers. 

With fixed-point representation we reserve a fixed number of bits on the left and on the right of the 

binary point. In many cases, we would need to reserve several words to represent a large range of 

values.  



 Page 6 
 

Convert a fractional decimal number to binary system 

We convert the integer part and fractional part separately and then combine the results. We 

multiply the fractional part by the base “2”, by repeating the operation on the fractional part of the 

product until it becomes zero (or until the desired precision is reached). For the integer part, we 

proceed by divisions as for an integer. 

Example: Convert the number N= (85.375)10 to binary number (base 2) using 16 bits: 6 bits for 

fractional part and 10 bits for integer part. 

Integer part  

The integer part of 85.375 is 85. Divide this number repeatedly by 2 until the quotient 

becomes 0. Write the remainders from bottom to top:  

(85)10 = (1010101)2 

Fractional part 

The fractional part of 85.375 is 0.375. Multiply the fractional part repeatedly by 2 until it 

becomes 0. 

 0.375 × 2 = 0.750 

 0.750 × 2 = 1.500 

 0.500 × 2 = 1.000 

From top to bottom, write the integer parts of the results to the fractional part of the number 

in base 2:                                   (0.375)10 = (0.011)2 

Overall result 

Combine the whole number and fractional parts to obtain the overall result. 

N = (85.375)10 = (1010101)2 + (0.011)2 = (1010101.011)2 

N = (85.375)10 = 0001010101011000 

II.2.3.2. Floating point representation 

Real numbers are stored in a computer as floating-point numbers using a mantissa (M), a 

base (b) and an exponent (E) in this format: M * bE 

Sign Exponent Mantissa 

Example: 

(1.011011)2 * 23 is equivalent to (1011.011)2. The mantissa is 1.011011, the radix is 2, and the 

exponent is 3. 

The scientific notation of real numbers is: In “scientific notation” called “floating point”: - 

.006234 is written: - 6.234 e-3 or - 6.234 E-3 This notation is the equivalent of: 6.234 * 10 - 3 



 Page 7 
 

This example gives a general idea of the role of the mantissa, base and exponent. It does not 

fully reflect the computer's method for storing real numbers. The radix r is understood to be 2 and 

the computer doesn't need to store it explicitly. 

Some examples of floating-point binary formats 

IEEE 754 has 3 basic components: 

1. The Sign of Mantissa –This is as simple as the name. 0 represents a positive number while 

1 represents a negative number.  

2. The Biased exponent (stored exponent) – The exponent field needs to represent both 

positive and negative exponents. A bias is added to the actual exponent in order to get the 

stored exponent.  

3. The Normalized Mantissa – The mantissa is part of a number in scientific notation or a 

floating-point number, consisting of its significant digits. Here we have only 2 digits, i.e. 0 

and 1. So a normalized mantissa is one with only one 1 to the left of the binary point.  

 

 32-bit binary floating point formats IEEE 754 standard: used for the “float” type (single 

precision) 

 

 

 

 

 64-bit binary floating point formats IEEE 754 standard: used for the “float” type (double 

precision) 

 

 

 

 

 

 



 Page 8 
 

The adopted format of floating-point numbers at the level of their binary representation. 

IEEE Standard is as follows: 

(Sign) 1,Mantissa * 2True Exponent 

 

In binary scientific notation, the number before the binary point is always 1: it can therefore 

be omitted in the coding of floats concerning the mantissa. We are talking about a hidden 1. 

 

 

 

Es = Et + B 
We have Bias = (2n-1)-1    

with n: the number of bits assigned to the exponent 
 

 

 
Et = Es - B 

 

Example:   Represent the number N= +85.125 using single precision IEEE 754 floating-point 

standard 

1) Sign Bit Calculation: 

The given number is Positive. Therefore,  sign = 0  

2) Mantissa or Significand Bits Calculation and Normalizing: 

First, Convert 85 into binary format  

85 = 1010101 

Second, look at the fraction part now that is 0.125 

0.125 = (001)2 

85.125 = 1010101.001 = 1.010101001 x 26  

Normalized mantissa = 010101001 

3) Exponent Bits Calculation (Biasing the exponent): 

Es = Et + B = 6 + 28-1-1 = 6 + 27 = 6+127 = 133 

So biased exponent = (133)10 

(133)10 = (10000101)2 

Stored Exponent = True Exponent + Bias 

True Exponent = Stored Exponent -  Bias 



 Page 9 
 

4) Complete Single-Precision Format: 

Hence, the Complete Single-Precision IEEE 754 Floating-Point Representation of 85.125 looks as 

follows: 

Sign Bit+Exponent Bits+Mantissa Bits 

Normalized mantissa = 010101001 

we will add 0's to complete the 23 bits 

Mantissa = 01010100100000000000000 

The IEEE 754 Single precision is:= 0 10000101 01010100100000000000000 

This can be written in hexadecimal form (42AA4000)16 

II.3. Character representation 

Characters are non-numeric data: there is no meaning in adding or multiplying two 

characters. On the other hand, it is often useful to compare two characters, for example to sort them 

in alphabetical order. The characters, called alphanumeric symbols, include upper and lower case 

letters, punctuation symbols (& ~, . ; # " - etc), and the numbers. A text, or character string, will be 

represented as a sequence of characters. 

Everything in a computer is binary and can be represented as a binary value. Though 

computers deal use binary to represent data, humans usually deal with information as symbolic 

alphabetic and numeric data. So, to allow computers to handle user readable alpha/numeric data, a 

system to encode characters as binary numbers was created. The two best-known codes are 

EBCDIC (Extended Binary Coded Decimal Interchange Code) and ASCII (American Standard 

Code for Information Interchange). 

In ASCII all characters are represented by a number from 1 - 127, stored in 8 bits. The 

ASCII encodings are shown in the following table. 

Numbers as character data are also represented in ASCII. Note the number 13 is 0xD or 

(1101)2. However; the value of the character string "13" is 0x3133 or (001100100110011)2. 

Character numbers are represented using binary values, but are very different from their binary 

numbers.  

ASCII is limited to just 127 characters, and is thus too limited for many applications that 

deal with internationalization using multiple languages and alphabets so that it does not allow the 

representation of accented characters (é, è, à, ù,...), and even of Chinese or Arabic characters. 

Representations, such as Unicode, have been developed to handle these character sets. 

Several important points about ASCII code: 

 Codes between 0 and 31 do not represent characters, they cannot be displayed. These codes, 

often called control characters, are used to indicate actions such as moving to the line  



 Page 10 
 

 The letters follow each other in alphabetical order (codes 65 to 90 for uppercase, 97 to 122 

for lowercase), which simplifies comparisons. 

 We go from upper case to lower case by modifying the 5th bit, which amounts to adding 32 

to the decimal ASCII code. 

 The digits are arranged in ascending order (codes 48 to 57), and the 4 least significant bits 

define the binary value of the digit.  

There are other codes known in computing, we can cite the codes:  

 BCD “Binary Coded Decimal”   

 EBCDIC “Extended Binary Coded Decimal Interchange Code” a character is coded on 8 

bits. 

 UNICode (16 bits); ISO/IEC (32 bits): appeared in the 90s to represent all the characters of 

all the languages on the planet. 

Character ASCII  
code 

Hexadecimal  
code 

Character ASCII  
code 

Hexadecimal  
code 

Character ASCII  
code 

Hexadecimal  
code 

NUL 0 00 + 43 2B V 86 56 

SOH 1 01 , 44 2C W 87 57 

STX 2 02 - 45 2D X 88 58 

ETX 3 03 . 46 2E Y 89 59 

EOT 4 04 / 47 2F Z 90 5A 

ENQ 5 05 0 48 30 [ 91 5B 

ACK 6 06 1 49 31 \ 92 5C 

BEL 7 07 2 50 32 ] 93 5D 

BS 8 08 3 51 33 ^ 94 5E 

TAB 9 09 4 52 34 _ 95 5F 

LF 10 0A 5 53 35 ` 96 60 

VT 11 0B 6 54 36 a 97 61 

FF 12 0C 7 55 37 b 98 62 

CR 13 0D 8 56 38 c 99 63 

SO 14 0E 9 57 39 d 100 64 

SI 15 0F : 58 3A e 101 65 

DLE 16 10 ; 59 3B f 102 66 

DC1 17 11 < 60 3C g 103 67 

DC2 18 12 = 61 3D h 104 68 

DC3 19 13 > 62 3E i 105 69 

DC4 20 14 ? 63 3F j 106 6A 

NAK 21 15 @ 64 40 k 107 6B 

SYN 22 16 A 65 41 l 108 6C 

ETB 23 17 B 66 42 m 109 6D 

CAN 24 18 C 67 43 n 110 6E 

EM 25 19 D 68 44 o 111 6F 

SUB 26 1A E 69 45 p 112 70 

ESC 27 1B F 70 46 q 113 71 

FS 28 1C G 71 47 r 114 72 

GS 29 1D H 72 48 s 115 73 

RS 30 1E I 73 49 t 116 74 

US 31 1F J 74 4A u 117 75 

Espace 32 20 K 75 4B v 118 76 

! 33 21 L 76 4C w 119 77 

" 34 22 M 77 4D x 120 78 

# 35 23 N 78 4E y 121 79 

$ 36 24 O 79 4F z 122 7A 

% 37 25 P 80 50 { 123 7B 

& 38 26 Q 81 51 | 124 7C 



 Page 11 
 

 

II.4. Gray code 

The reflected binary code (RBC), also known as reflected binary (RB) or Gray code, is an 

ordering of the binary numeral system such that two successive values differ in only one bit (binary 

digit). This property is important for several applications. The name of the code comes from the 

American engineer Frank Gray. 

Gray codes are widely used to prevent spurious output from electromechanical switches and 

to facilitate error correction in digital communications such as digital terrestrial television and some 

cable TV systems. The use of Gray code in these devices helps simplify logic operations and reduce 

errors in practice. 

The construction of the Gray code for numbers 0 to 15 is represented by the following table:  

 

 

 

 

 

 

 

 

 

   

   

 

 

 

 

 

 

 

 

II.4.1. Binary Code to Gray Code conversion method 

To convert Binary into Gray, use the following method: 

1. We add the binary number to another like it. The second number need to be moved one digit 

to the right. 

' 39 27 R 82 52 } 125 7D 

( 40 28 S 83 53 ~ 126 7E 

) 41 29 T 84 54 
Touche de 

suppression 
127 7F 

* 42 2A U 85 55    

https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Electromechanical
https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Error_correction
https://en.wikipedia.org/wiki/Digital_terrestrial_television
https://en.wikipedia.org/wiki/DOCSIS


 Page 12 
 

2. We do a binary addition digit by digit, and we discard the carry. 

3. We remove the last digit on the right side of the result on step 2 (we remove the zero, which 

is in red color). The resulting code is the GRAY code. 

 

 

 

 

 

 

 

II.5. Binary-Coded Decimal  (BCD) 

In electronic control systems, binary-coded decimal (BCD) is a method for representing 

decimal numbers in which each decimal digit is represented by a sequence of 4 binary digits. This 

makes it relatively easy for the system to convert the numeric representation for printing or display 

purposes, and speeds up decimal calculations. The main disadvantage is that representing decimal 

numbers in this way takes up more space in memory than using a more conventional binary 

representation. The decimal digits 0-9 are each represented using four bits. The table below shows 

the standard BCD encodings for the decimal digits 0-9. Note that values greater than 1001 (1010, 

1011, 1100, 1101, 1110, or 1111) are not valid BCD decimal values.  

BCD representation 

Decimal BCD Encoding 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

Example : 

The BCD encoding for the number 123 would therefore be:  0001 0010 0011  

As opposed to the normal binary representation:  1111011  

II.6. Excess 3 code (or code of Stibitz) 

shifted binary or Stibitz code (after George Stibitz, who built a relay-based adding machine 

in 1937) is obtained by adding 3 to each code word of the BCD code. Just like BCD, the code with 

excess of 3 is a decimal code, its conversion table therefore only concerns the digits from 0 to 9. 

Excess-3 code was used on some older computers as well as in cash registers and hand-held 



 Page 13 
 

portable electronic calculators of the 1970s, among other uses. In excess-3 code, numbers are 

represented as decimal digits, and each digit is represented by four bits as the digit value (BCD) 

plus 3 (the "excess" 

amount): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.wikiwand.com/en/Bit


 Page 14 
 

II.7. Binary arithmetic for signed numbers  

II.7.1. Signed magnitude method 

The sign is treated separately from the magnitude 

Consider   N1, N2: two binary numbers of n bits 

II.7.1.1. The addition 

Rule 1: N1 and N2 have the same sign 

If         ( N1   ≥0 )  and ( N2   ≥  0 )         (The sign bit of the two numbers contains 0) 

Or if     ( N1   ≤ 0 )  and ( N2  ≤ 0 )          (The sign bit of the two numbers contains 1) 

 The magnitude of N1 is added to the magnitude of N2 like the natural binary 

 The sign bit of the result has the sign of the value N1 (or N2) 

 Overflow: when the number of the magnitude bits of the result ≥ n bits 

Rule 2 : N1 and N2 have different sign 

If         ( N1   ≥0 )  et ( N2    ≤  0 )          

Or if     ( N1   ≤ 0 )  et ( N2  ≥ 0 )          

 The smaller magnitude is subtracted from the greater magnitude like the natural binary  

 The sign bit of the result has the sign of the greater magnitude (value) 

 No overflow in this 

II.7.1.2. Subtraction 

 change the sign of the value you want to subtract 

 the subtraction operation transforms into a simple binary addition operation [A-B = A+(-B)]. 

 we apply the rules of addition 

II.7.1.3. Multiplication 

 The magnitude of N1 is multiplied to the magnitude of N2 like the natural binary 

 The result sign bit (bitn-1) includes: 

 bitn-1 = 1 if ( N1 x N2  ) ≤ 0   (N1 , N2 have different signs) 

 bitn-1 = 0 if ( N1 x N2  ) ≥ 0   (N1 , N2  have same sign) 

 Overflow: when the number of magnitude bits of the result ≥ n bits 

II.7.2. One’s complement method 

Consider   N1, N2: two binary numbers of n bits 

II.7.2.1. The addition 

Whatever the sign of the two binary values: 

 The binary sequence of N1 is added to the binary sequence of N2 like the natural binary 

 If there is a carry at the end, this is added to the least significant bit of the result 



 Page 15 
 

 The result of the addition can be positive or negative and must be less than 2n, i.e. its binary 

representation has n bits at most  

 If the most significant bit (sign) of the result is 0, the number obtained is positive and 

coded in natural binary on the n bits. 

 If the most significant bit (sign) of the result is 1, the number obtained is negative 

and coded in one’s complement to 1. 

 Overflow: If 2 Two's Complement numbers are added, and they both have the same sign 

(both positive or both negative), then overflow occurs if and only if the result has the 

opposite sign i.e. When the sum of two positive numbers gives a negative number or the 

sum of two negative numbers gives a positive number. Overflow never occurs when adding 

operands with different signs. 

Exemple :      in 5 bits 

 

 

 

   (+14) =       01110                
1 
01110 

+  (-13) =   + (-01101)  C1(13) - + 10010  

--------    --------------         ----------- 

                                       00000  

                                            +1 

                                     --------- 

                                     = 00001  

                                    

                                    Signe=0 =>                   

                                Résultat>0 

=(00001)2=(+1)10 
 

 

 

 

 (+13)   =    01101                   01101 

+(-14)   = +(-01110 )  C1(14) - + 10001   

-----    -----------               --------- 

                                      11110  

                               Sign=1 => Result <0  

                                      => Result =-C1(11110)2 

                                                =-(00001)2 

=(-1)10 

Example of overflow 
 

   (15)  =   01111  

+   (2)  = + 00010  

  -----    -------- 

    17       10001  

          Sign=1=>R<0 => R=-C1 (10001)2 =-(01110)2 =(-14)10 

 

                                                                             We have an Overflow 

 

The carry is added to the result 



 Page 16 
 

II.7.2.2. Subtraction 

Subtrahend: what is being subtracted 

Minuhend: what it is being subtracted from 

 change the sign of the value of the subtrahend: value you want to subtract  (Invert the bits of 

the second number) 

 the subtraction operation transforms into a simple binary addition operation [A-B = A+(-B)]. 

 we apply the rules of addition 

II.7.2.3. Multiplication 

 Calculate the 1’s complement of the negative numbers (we invert the bits of negative values) 

 we apply multiplication like the natural binary  

 if one and only one of the two values N1 or N2 is negative, we invert the result bits (1’s 

complement of the result). 

 Overflow: when the number of result bits ≥ n bits 

II.7.2.4. Division 

 we invert the bits of negative values 

 we apply division like the natural binary  

 we invert the result bits if one and only one of the two values N1 or N2 is negative 

 No overflow 

II.7.3. Two’s complement method 

Consider   N1, N2: two binary numbers of n bits 

II.7.3.1. The addition 

Whatever the sign of the two binary values: 

 The binary sequence of N1 is added to the binary sequence of N2 like the natural binary 

 If there is a carry at the end, this should be discarded (ignored) in any cases 

 The result of the addition can be positive or negative and must be less than 2n, i.e. its binary 

representation has n bits at most  

 If the most significant bit (sign) of the result is 0, the number obtained is positive and 

coded in natural binary on the n bits. 

 If the most significant bit (sign) of the result is 1, the number obtained is negative 

and coded in one’s complement to 2. 

 Overflow: If 2 Two's Complement numbers are added, and they both have the same sign 

(both positive or both negative), then overflow occurs if and only if the result has the 

opposite sign i.e. When the sum of two positive numbers gives a negative number or the 



 Page 17 
 

sum of two negative numbers gives a positive number. Overflow never occurs when adding 

operands with different signs. 

Example: in 5 bits 

 
 

 

 
   (+14) =       01110                

1
01110 

+  (-13) =   + (-01101)  C2(13) - + 10011  

--------    --------------         ----------- 

                                       00001  

                                  Signe=0 => 

                                Résultat>0 

=(00001)2=(+1)10 
 

 

 

 (+13)   =    01101                   01101 

+(-14)   = +(-01110 )  C2(14) - + 10010   

-----    -----------               --------- 

                                      11111  

                               Sign=1 => Result <0  

                                      => Result =-C2(11111)2 

                                                =-(00001)2 

=(-1)10 

Example of overflow 
 

   (15)  =   01111  

+   (2)  = + 00010  

  -----    -------- 

    17       10001  

          Sign=1=>R<0 => R=-C2(10001)2 =-(01111)2 =(-1510) 

 

                                                                             We have an Overflow 

II.7.3.2. Subtraction 

 Calculate the C2 (N2) i.e. change the sign of the value you want to subtract (Invert the bits 

of the second number and add 1 to the least significant bit) 

 the subtraction operation transforms into a simple binary addition operation [A-B = A+(-B)]. 

 we apply the rules of addition 

II.7.3.3. Multiplication 

 calculate the 2’s complement of the negative numbers (we invert the bits of negative values 

and add 1 to the least significant bit) 

 we apply multiplication like the natural binary  

 if one and only one of the two values N1 or N2 is negative, then we calculate the 2’s 

complement of the result.  

 Overflow: when the number of result bits ≥ n bits 

The carry is discarded 



 Page 18 
 

II.7.3.4. Division 

 Calculate the 2’s complement of the negative numbers (we invert the bits of negative values 

and add 1 to the least significant bit) 

 we apply division like the natural binary  

 if one and only one of the two values N1 or N2 is negative, then we calculate the 2’s 

complement of the result.  

 No overflow 

 

 


	First of all, we should define the notions of 1’s complement. 1’s complement of a number N is another number N’ such as:

